]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_trait_selection/src/traits/error_reporting/mod.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / error_reporting / mod.rs
1 pub mod on_unimplemented;
2 pub mod suggestions;
3
4 use super::{
5 ConstEvalFailure, EvaluationResult, FulfillmentError, FulfillmentErrorCode,
6 MismatchedProjectionTypes, Obligation, ObligationCause, ObligationCauseCode,
7 OnUnimplementedDirective, OnUnimplementedNote, OutputTypeParameterMismatch, Overflow,
8 PredicateObligation, SelectionContext, SelectionError, TraitNotObjectSafe,
9 };
10
11 use crate::infer::error_reporting::{TyCategory, TypeAnnotationNeeded as ErrorCode};
12 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
13 use crate::infer::{self, InferCtxt, TyCtxtInferExt};
14 use rustc_data_structures::fx::FxHashMap;
15 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticBuilder, ErrorReported};
16 use rustc_hir as hir;
17 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
18 use rustc_hir::intravisit::Visitor;
19 use rustc_hir::Node;
20 use rustc_middle::mir::interpret::ErrorHandled;
21 use rustc_middle::ty::error::ExpectedFound;
22 use rustc_middle::ty::fold::TypeFolder;
23 use rustc_middle::ty::{
24 self, fast_reject, AdtKind, SubtypePredicate, ToPolyTraitRef, ToPredicate, Ty, TyCtxt,
25 TypeFoldable, WithConstness,
26 };
27 use rustc_session::DiagnosticMessageId;
28 use rustc_span::symbol::{kw, sym};
29 use rustc_span::{ExpnKind, MultiSpan, Span, DUMMY_SP};
30 use std::fmt;
31
32 use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
33 use crate::traits::query::normalize::AtExt as _;
34 use on_unimplemented::InferCtxtExt as _;
35 use suggestions::InferCtxtExt as _;
36
37 pub use rustc_infer::traits::error_reporting::*;
38
39 pub trait InferCtxtExt<'tcx> {
40 fn report_fulfillment_errors(
41 &self,
42 errors: &[FulfillmentError<'tcx>],
43 body_id: Option<hir::BodyId>,
44 fallback_has_occurred: bool,
45 );
46
47 fn report_overflow_error<T>(
48 &self,
49 obligation: &Obligation<'tcx, T>,
50 suggest_increasing_limit: bool,
51 ) -> !
52 where
53 T: fmt::Display + TypeFoldable<'tcx>;
54
55 fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> !;
56
57 fn report_selection_error(
58 &self,
59 obligation: &PredicateObligation<'tcx>,
60 error: &SelectionError<'tcx>,
61 fallback_has_occurred: bool,
62 points_at_arg: bool,
63 );
64
65 /// Given some node representing a fn-like thing in the HIR map,
66 /// returns a span and `ArgKind` information that describes the
67 /// arguments it expects. This can be supplied to
68 /// `report_arg_count_mismatch`.
69 fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Vec<ArgKind>)>;
70
71 /// Reports an error when the number of arguments needed by a
72 /// trait match doesn't match the number that the expression
73 /// provides.
74 fn report_arg_count_mismatch(
75 &self,
76 span: Span,
77 found_span: Option<Span>,
78 expected_args: Vec<ArgKind>,
79 found_args: Vec<ArgKind>,
80 is_closure: bool,
81 ) -> DiagnosticBuilder<'tcx>;
82 }
83
84 impl<'a, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'a, 'tcx> {
85 fn report_fulfillment_errors(
86 &self,
87 errors: &[FulfillmentError<'tcx>],
88 body_id: Option<hir::BodyId>,
89 fallback_has_occurred: bool,
90 ) {
91 #[derive(Debug)]
92 struct ErrorDescriptor<'tcx> {
93 predicate: ty::Predicate<'tcx>,
94 index: Option<usize>, // None if this is an old error
95 }
96
97 let mut error_map: FxHashMap<_, Vec<_>> = self
98 .reported_trait_errors
99 .borrow()
100 .iter()
101 .map(|(&span, predicates)| {
102 (
103 span,
104 predicates
105 .iter()
106 .map(|&predicate| ErrorDescriptor { predicate, index: None })
107 .collect(),
108 )
109 })
110 .collect();
111
112 for (index, error) in errors.iter().enumerate() {
113 // We want to ignore desugarings here: spans are equivalent even
114 // if one is the result of a desugaring and the other is not.
115 let mut span = error.obligation.cause.span;
116 let expn_data = span.ctxt().outer_expn_data();
117 if let ExpnKind::Desugaring(_) = expn_data.kind {
118 span = expn_data.call_site;
119 }
120
121 error_map.entry(span).or_default().push(ErrorDescriptor {
122 predicate: error.obligation.predicate,
123 index: Some(index),
124 });
125
126 self.reported_trait_errors
127 .borrow_mut()
128 .entry(span)
129 .or_default()
130 .push(error.obligation.predicate);
131 }
132
133 // We do this in 2 passes because we want to display errors in order, though
134 // maybe it *is* better to sort errors by span or something.
135 let mut is_suppressed = vec![false; errors.len()];
136 for (_, error_set) in error_map.iter() {
137 // We want to suppress "duplicate" errors with the same span.
138 for error in error_set {
139 if let Some(index) = error.index {
140 // Suppress errors that are either:
141 // 1) strictly implied by another error.
142 // 2) implied by an error with a smaller index.
143 for error2 in error_set {
144 if error2.index.map_or(false, |index2| is_suppressed[index2]) {
145 // Avoid errors being suppressed by already-suppressed
146 // errors, to prevent all errors from being suppressed
147 // at once.
148 continue;
149 }
150
151 if self.error_implies(error2.predicate, error.predicate)
152 && !(error2.index >= error.index
153 && self.error_implies(error.predicate, error2.predicate))
154 {
155 info!("skipping {:?} (implied by {:?})", error, error2);
156 is_suppressed[index] = true;
157 break;
158 }
159 }
160 }
161 }
162 }
163
164 for (error, suppressed) in errors.iter().zip(is_suppressed) {
165 if !suppressed {
166 self.report_fulfillment_error(error, body_id, fallback_has_occurred);
167 }
168 }
169 }
170
171 /// Reports that an overflow has occurred and halts compilation. We
172 /// halt compilation unconditionally because it is important that
173 /// overflows never be masked -- they basically represent computations
174 /// whose result could not be truly determined and thus we can't say
175 /// if the program type checks or not -- and they are unusual
176 /// occurrences in any case.
177 fn report_overflow_error<T>(
178 &self,
179 obligation: &Obligation<'tcx, T>,
180 suggest_increasing_limit: bool,
181 ) -> !
182 where
183 T: fmt::Display + TypeFoldable<'tcx>,
184 {
185 let predicate = self.resolve_vars_if_possible(&obligation.predicate);
186 let mut err = struct_span_err!(
187 self.tcx.sess,
188 obligation.cause.span,
189 E0275,
190 "overflow evaluating the requirement `{}`",
191 predicate
192 );
193
194 if suggest_increasing_limit {
195 self.suggest_new_overflow_limit(&mut err);
196 }
197
198 self.note_obligation_cause_code(
199 &mut err,
200 &obligation.predicate,
201 &obligation.cause.code,
202 &mut vec![],
203 );
204
205 err.emit();
206 self.tcx.sess.abort_if_errors();
207 bug!();
208 }
209
210 /// Reports that a cycle was detected which led to overflow and halts
211 /// compilation. This is equivalent to `report_overflow_error` except
212 /// that we can give a more helpful error message (and, in particular,
213 /// we do not suggest increasing the overflow limit, which is not
214 /// going to help).
215 fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
216 let cycle = self.resolve_vars_if_possible(&cycle.to_owned());
217 assert!(!cycle.is_empty());
218
219 debug!("report_overflow_error_cycle: cycle={:?}", cycle);
220
221 self.report_overflow_error(&cycle[0], false);
222 }
223
224 fn report_selection_error(
225 &self,
226 obligation: &PredicateObligation<'tcx>,
227 error: &SelectionError<'tcx>,
228 fallback_has_occurred: bool,
229 points_at_arg: bool,
230 ) {
231 let tcx = self.tcx;
232 let span = obligation.cause.span;
233
234 let mut err = match *error {
235 SelectionError::Unimplemented => {
236 if let ObligationCauseCode::CompareImplMethodObligation {
237 item_name,
238 impl_item_def_id,
239 trait_item_def_id,
240 }
241 | ObligationCauseCode::CompareImplTypeObligation {
242 item_name,
243 impl_item_def_id,
244 trait_item_def_id,
245 } = obligation.cause.code
246 {
247 self.report_extra_impl_obligation(
248 span,
249 item_name,
250 impl_item_def_id,
251 trait_item_def_id,
252 &format!("`{}`", obligation.predicate),
253 )
254 .emit();
255 return;
256 }
257
258 match obligation.predicate.skip_binders() {
259 ty::PredicateAtom::Trait(trait_predicate, _) => {
260 let trait_predicate = ty::Binder::bind(trait_predicate);
261 let trait_predicate = self.resolve_vars_if_possible(&trait_predicate);
262
263 if self.tcx.sess.has_errors() && trait_predicate.references_error() {
264 return;
265 }
266 let trait_ref = trait_predicate.to_poly_trait_ref();
267 let (post_message, pre_message, type_def) = self
268 .get_parent_trait_ref(&obligation.cause.code)
269 .map(|(t, s)| {
270 (
271 format!(" in `{}`", t),
272 format!("within `{}`, ", t),
273 s.map(|s| (format!("within this `{}`", t), s)),
274 )
275 })
276 .unwrap_or_default();
277
278 let OnUnimplementedNote { message, label, note, enclosing_scope } =
279 self.on_unimplemented_note(trait_ref, obligation);
280 let have_alt_message = message.is_some() || label.is_some();
281 let is_try = self
282 .tcx
283 .sess
284 .source_map()
285 .span_to_snippet(span)
286 .map(|s| &s == "?")
287 .unwrap_or(false);
288 let is_from = self.tcx.get_diagnostic_item(sym::from_trait)
289 == Some(trait_ref.def_id());
290 let is_unsize =
291 { Some(trait_ref.def_id()) == self.tcx.lang_items().unsize_trait() };
292 let (message, note) = if is_try && is_from {
293 (
294 Some(format!(
295 "`?` couldn't convert the error to `{}`",
296 trait_ref.skip_binder().self_ty(),
297 )),
298 Some(
299 "the question mark operation (`?`) implicitly performs a \
300 conversion on the error value using the `From` trait"
301 .to_owned(),
302 ),
303 )
304 } else {
305 (message, note)
306 };
307
308 let mut err = struct_span_err!(
309 self.tcx.sess,
310 span,
311 E0277,
312 "{}",
313 message.unwrap_or_else(|| format!(
314 "the trait bound `{}` is not satisfied{}",
315 trait_ref.without_const().to_predicate(tcx),
316 post_message,
317 ))
318 );
319
320 if is_try && is_from {
321 let none_error = self
322 .tcx
323 .get_diagnostic_item(sym::none_error)
324 .map(|def_id| tcx.type_of(def_id));
325 let should_convert_option_to_result =
326 Some(trait_ref.skip_binder().substs.type_at(1)) == none_error;
327 let should_convert_result_to_option =
328 Some(trait_ref.self_ty().skip_binder()) == none_error;
329 if should_convert_option_to_result {
330 err.span_suggestion_verbose(
331 span.shrink_to_lo(),
332 "consider converting the `Option<T>` into a `Result<T, _>` \
333 using `Option::ok_or` or `Option::ok_or_else`",
334 ".ok_or_else(|| /* error value */)".to_string(),
335 Applicability::HasPlaceholders,
336 );
337 } else if should_convert_result_to_option {
338 err.span_suggestion_verbose(
339 span.shrink_to_lo(),
340 "consider converting the `Result<T, _>` into an `Option<T>` \
341 using `Result::ok`",
342 ".ok()".to_string(),
343 Applicability::MachineApplicable,
344 );
345 }
346 if let Some(ret_span) = self.return_type_span(obligation) {
347 err.span_label(
348 ret_span,
349 &format!(
350 "expected `{}` because of this",
351 trait_ref.skip_binder().self_ty()
352 ),
353 );
354 }
355 }
356
357 let explanation =
358 if obligation.cause.code == ObligationCauseCode::MainFunctionType {
359 "consider using `()`, or a `Result`".to_owned()
360 } else {
361 format!(
362 "{}the trait `{}` is not implemented for `{}`",
363 pre_message,
364 trait_ref.print_only_trait_path(),
365 trait_ref.skip_binder().self_ty(),
366 )
367 };
368
369 if self.suggest_add_reference_to_arg(
370 &obligation,
371 &mut err,
372 &trait_ref,
373 points_at_arg,
374 have_alt_message,
375 ) {
376 self.note_obligation_cause(&mut err, obligation);
377 err.emit();
378 return;
379 }
380 if let Some(ref s) = label {
381 // If it has a custom `#[rustc_on_unimplemented]`
382 // error message, let's display it as the label!
383 err.span_label(span, s.as_str());
384 if !matches!(trait_ref.skip_binder().self_ty().kind(), ty::Param(_)) {
385 // When the self type is a type param We don't need to "the trait
386 // `std::marker::Sized` is not implemented for `T`" as we will point
387 // at the type param with a label to suggest constraining it.
388 err.help(&explanation);
389 }
390 } else {
391 err.span_label(span, explanation);
392 }
393 if let Some((msg, span)) = type_def {
394 err.span_label(span, &msg);
395 }
396 if let Some(ref s) = note {
397 // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
398 err.note(s.as_str());
399 }
400 if let Some(ref s) = enclosing_scope {
401 let body = tcx
402 .hir()
403 .opt_local_def_id(obligation.cause.body_id)
404 .unwrap_or_else(|| {
405 tcx.hir().body_owner_def_id(hir::BodyId {
406 hir_id: obligation.cause.body_id,
407 })
408 });
409
410 let enclosing_scope_span =
411 tcx.hir().span_with_body(tcx.hir().local_def_id_to_hir_id(body));
412
413 err.span_label(enclosing_scope_span, s.as_str());
414 }
415
416 self.suggest_dereferences(&obligation, &mut err, &trait_ref, points_at_arg);
417 self.suggest_fn_call(&obligation, &mut err, &trait_ref, points_at_arg);
418 self.suggest_remove_reference(&obligation, &mut err, &trait_ref);
419 self.suggest_semicolon_removal(&obligation, &mut err, span, &trait_ref);
420 self.note_version_mismatch(&mut err, &trait_ref);
421
422 if Some(trait_ref.def_id()) == tcx.lang_items().try_trait() {
423 self.suggest_await_before_try(&mut err, &obligation, &trait_ref, span);
424 }
425
426 if self.suggest_impl_trait(&mut err, span, &obligation, &trait_ref) {
427 err.emit();
428 return;
429 }
430
431 if is_unsize {
432 // If the obligation failed due to a missing implementation of the
433 // `Unsize` trait, give a pointer to why that might be the case
434 err.note(
435 "all implementations of `Unsize` are provided \
436 automatically by the compiler, see \
437 <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
438 for more information",
439 );
440 }
441
442 let is_fn_trait = [
443 self.tcx.lang_items().fn_trait(),
444 self.tcx.lang_items().fn_mut_trait(),
445 self.tcx.lang_items().fn_once_trait(),
446 ]
447 .contains(&Some(trait_ref.def_id()));
448 let is_target_feature_fn = if let ty::FnDef(def_id, _) =
449 *trait_ref.skip_binder().self_ty().kind()
450 {
451 !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
452 } else {
453 false
454 };
455 if is_fn_trait && is_target_feature_fn {
456 err.note(
457 "`#[target_feature]` functions do not implement the `Fn` traits",
458 );
459 }
460
461 // Try to report a help message
462 if !trait_ref.has_infer_types_or_consts()
463 && self.predicate_can_apply(obligation.param_env, trait_ref)
464 {
465 // If a where-clause may be useful, remind the
466 // user that they can add it.
467 //
468 // don't display an on-unimplemented note, as
469 // these notes will often be of the form
470 // "the type `T` can't be frobnicated"
471 // which is somewhat confusing.
472 self.suggest_restricting_param_bound(
473 &mut err,
474 trait_ref,
475 obligation.cause.body_id,
476 );
477 } else {
478 if !have_alt_message {
479 // Can't show anything else useful, try to find similar impls.
480 let impl_candidates = self.find_similar_impl_candidates(trait_ref);
481 self.report_similar_impl_candidates(impl_candidates, &mut err);
482 }
483 // Changing mutability doesn't make a difference to whether we have
484 // an `Unsize` impl (Fixes ICE in #71036)
485 if !is_unsize {
486 self.suggest_change_mut(
487 &obligation,
488 &mut err,
489 &trait_ref,
490 points_at_arg,
491 );
492 }
493 }
494
495 // If this error is due to `!: Trait` not implemented but `(): Trait` is
496 // implemented, and fallback has occurred, then it could be due to a
497 // variable that used to fallback to `()` now falling back to `!`. Issue a
498 // note informing about the change in behaviour.
499 if trait_predicate.skip_binder().self_ty().is_never()
500 && fallback_has_occurred
501 {
502 let predicate = trait_predicate.map_bound(|mut trait_pred| {
503 trait_pred.trait_ref.substs = self.tcx.mk_substs_trait(
504 self.tcx.mk_unit(),
505 &trait_pred.trait_ref.substs[1..],
506 );
507 trait_pred
508 });
509 let unit_obligation =
510 obligation.with(predicate.without_const().to_predicate(tcx));
511 if self.predicate_may_hold(&unit_obligation) {
512 err.note(
513 "the trait is implemented for `()`. \
514 Possibly this error has been caused by changes to \
515 Rust's type-inference algorithm (see issue #48950 \
516 <https://github.com/rust-lang/rust/issues/48950> \
517 for more information). Consider whether you meant to use \
518 the type `()` here instead.",
519 );
520 }
521 }
522
523 err
524 }
525
526 ty::PredicateAtom::Subtype(predicate) => {
527 // Errors for Subtype predicates show up as
528 // `FulfillmentErrorCode::CodeSubtypeError`,
529 // not selection error.
530 span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
531 }
532
533 ty::PredicateAtom::RegionOutlives(predicate) => {
534 let predicate = ty::Binder::bind(predicate);
535 let predicate = self.resolve_vars_if_possible(&predicate);
536 let err = self
537 .region_outlives_predicate(&obligation.cause, predicate)
538 .err()
539 .unwrap();
540 struct_span_err!(
541 self.tcx.sess,
542 span,
543 E0279,
544 "the requirement `{}` is not satisfied (`{}`)",
545 predicate,
546 err,
547 )
548 }
549
550 ty::PredicateAtom::Projection(..) | ty::PredicateAtom::TypeOutlives(..) => {
551 let predicate = self.resolve_vars_if_possible(&obligation.predicate);
552 struct_span_err!(
553 self.tcx.sess,
554 span,
555 E0280,
556 "the requirement `{}` is not satisfied",
557 predicate
558 )
559 }
560
561 ty::PredicateAtom::ObjectSafe(trait_def_id) => {
562 let violations = self.tcx.object_safety_violations(trait_def_id);
563 report_object_safety_error(self.tcx, span, trait_def_id, violations)
564 }
565
566 ty::PredicateAtom::ClosureKind(closure_def_id, closure_substs, kind) => {
567 let found_kind = self.closure_kind(closure_substs).unwrap();
568 let closure_span =
569 self.tcx.sess.source_map().guess_head_span(
570 self.tcx.hir().span_if_local(closure_def_id).unwrap(),
571 );
572 let hir_id =
573 self.tcx.hir().local_def_id_to_hir_id(closure_def_id.expect_local());
574 let mut err = struct_span_err!(
575 self.tcx.sess,
576 closure_span,
577 E0525,
578 "expected a closure that implements the `{}` trait, \
579 but this closure only implements `{}`",
580 kind,
581 found_kind
582 );
583
584 err.span_label(
585 closure_span,
586 format!("this closure implements `{}`, not `{}`", found_kind, kind),
587 );
588 err.span_label(
589 obligation.cause.span,
590 format!("the requirement to implement `{}` derives from here", kind),
591 );
592
593 // Additional context information explaining why the closure only implements
594 // a particular trait.
595 if let Some(typeck_results) = self.in_progress_typeck_results {
596 let typeck_results = typeck_results.borrow();
597 match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
598 (ty::ClosureKind::FnOnce, Some((span, name))) => {
599 err.span_label(
600 *span,
601 format!(
602 "closure is `FnOnce` because it moves the \
603 variable `{}` out of its environment",
604 name
605 ),
606 );
607 }
608 (ty::ClosureKind::FnMut, Some((span, name))) => {
609 err.span_label(
610 *span,
611 format!(
612 "closure is `FnMut` because it mutates the \
613 variable `{}` here",
614 name
615 ),
616 );
617 }
618 _ => {}
619 }
620 }
621
622 err.emit();
623 return;
624 }
625
626 ty::PredicateAtom::WellFormed(ty) => {
627 if !self.tcx.sess.opts.debugging_opts.chalk {
628 // WF predicates cannot themselves make
629 // errors. They can only block due to
630 // ambiguity; otherwise, they always
631 // degenerate into other obligations
632 // (which may fail).
633 span_bug!(span, "WF predicate not satisfied for {:?}", ty);
634 } else {
635 // FIXME: we'll need a better message which takes into account
636 // which bounds actually failed to hold.
637 self.tcx.sess.struct_span_err(
638 span,
639 &format!("the type `{}` is not well-formed (chalk)", ty),
640 )
641 }
642 }
643
644 ty::PredicateAtom::ConstEvaluatable(..) => {
645 // Errors for `ConstEvaluatable` predicates show up as
646 // `SelectionError::ConstEvalFailure`,
647 // not `Unimplemented`.
648 span_bug!(
649 span,
650 "const-evaluatable requirement gave wrong error: `{:?}`",
651 obligation
652 )
653 }
654
655 ty::PredicateAtom::ConstEquate(..) => {
656 // Errors for `ConstEquate` predicates show up as
657 // `SelectionError::ConstEvalFailure`,
658 // not `Unimplemented`.
659 span_bug!(
660 span,
661 "const-equate requirement gave wrong error: `{:?}`",
662 obligation
663 )
664 }
665
666 ty::PredicateAtom::TypeWellFormedFromEnv(..) => span_bug!(
667 span,
668 "TypeWellFormedFromEnv predicate should only exist in the environment"
669 ),
670 }
671 }
672
673 OutputTypeParameterMismatch(ref found_trait_ref, ref expected_trait_ref, _) => {
674 let found_trait_ref = self.resolve_vars_if_possible(&*found_trait_ref);
675 let expected_trait_ref = self.resolve_vars_if_possible(&*expected_trait_ref);
676
677 if expected_trait_ref.self_ty().references_error() {
678 return;
679 }
680
681 let found_trait_ty = match found_trait_ref.self_ty().no_bound_vars() {
682 Some(ty) => ty,
683 None => return,
684 };
685
686 let found_did = match *found_trait_ty.kind() {
687 ty::Closure(did, _) | ty::Foreign(did) | ty::FnDef(did, _) => Some(did),
688 ty::Adt(def, _) => Some(def.did),
689 _ => None,
690 };
691
692 let found_span = found_did
693 .and_then(|did| self.tcx.hir().span_if_local(did))
694 .map(|sp| self.tcx.sess.source_map().guess_head_span(sp)); // the sp could be an fn def
695
696 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
697 // We check closures twice, with obligations flowing in different directions,
698 // but we want to complain about them only once.
699 return;
700 }
701
702 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
703
704 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind() {
705 ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
706 _ => vec![ArgKind::empty()],
707 };
708
709 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
710 let expected = match expected_ty.kind() {
711 ty::Tuple(ref tys) => tys
712 .iter()
713 .map(|t| ArgKind::from_expected_ty(t.expect_ty(), Some(span)))
714 .collect(),
715 _ => vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())],
716 };
717
718 if found.len() == expected.len() {
719 self.report_closure_arg_mismatch(
720 span,
721 found_span,
722 found_trait_ref,
723 expected_trait_ref,
724 )
725 } else {
726 let (closure_span, found) = found_did
727 .and_then(|did| {
728 let node = self.tcx.hir().get_if_local(did)?;
729 let (found_span, found) = self.get_fn_like_arguments(node)?;
730 Some((Some(found_span), found))
731 })
732 .unwrap_or((found_span, found));
733
734 self.report_arg_count_mismatch(
735 span,
736 closure_span,
737 expected,
738 found,
739 found_trait_ty.is_closure(),
740 )
741 }
742 }
743
744 TraitNotObjectSafe(did) => {
745 let violations = self.tcx.object_safety_violations(did);
746 report_object_safety_error(self.tcx, span, did, violations)
747 }
748 ConstEvalFailure(ErrorHandled::TooGeneric) => {
749 bug!("too generic should have been handled in `is_const_evaluatable`");
750 }
751 // Already reported in the query.
752 ConstEvalFailure(ErrorHandled::Reported(ErrorReported)) => {
753 // FIXME(eddyb) remove this once `ErrorReported` becomes a proof token.
754 self.tcx.sess.delay_span_bug(span, "`ErrorReported` without an error");
755 return;
756 }
757
758 // Already reported in the query, but only as a lint.
759 // This shouldn't actually happen for constants used in types, modulo
760 // bugs. The `delay_span_bug` here ensures it won't be ignored.
761 ConstEvalFailure(ErrorHandled::Linted) => {
762 self.tcx.sess.delay_span_bug(span, "constant in type had error reported as lint");
763 return;
764 }
765
766 Overflow => {
767 bug!("overflow should be handled before the `report_selection_error` path");
768 }
769 };
770
771 self.note_obligation_cause(&mut err, obligation);
772 self.point_at_returns_when_relevant(&mut err, &obligation);
773
774 err.emit();
775 }
776
777 /// Given some node representing a fn-like thing in the HIR map,
778 /// returns a span and `ArgKind` information that describes the
779 /// arguments it expects. This can be supplied to
780 /// `report_arg_count_mismatch`.
781 fn get_fn_like_arguments(&self, node: Node<'_>) -> Option<(Span, Vec<ArgKind>)> {
782 let sm = self.tcx.sess.source_map();
783 let hir = self.tcx.hir();
784 Some(match node {
785 Node::Expr(&hir::Expr {
786 kind: hir::ExprKind::Closure(_, ref _decl, id, span, _),
787 ..
788 }) => (
789 sm.guess_head_span(span),
790 hir.body(id)
791 .params
792 .iter()
793 .map(|arg| {
794 if let hir::Pat { kind: hir::PatKind::Tuple(ref args, _), span, .. } =
795 *arg.pat
796 {
797 Some(ArgKind::Tuple(
798 Some(span),
799 args.iter()
800 .map(|pat| {
801 sm.span_to_snippet(pat.span)
802 .ok()
803 .map(|snippet| (snippet, "_".to_owned()))
804 })
805 .collect::<Option<Vec<_>>>()?,
806 ))
807 } else {
808 let name = sm.span_to_snippet(arg.pat.span).ok()?;
809 Some(ArgKind::Arg(name, "_".to_owned()))
810 }
811 })
812 .collect::<Option<Vec<ArgKind>>>()?,
813 ),
814 Node::Item(&hir::Item { span, kind: hir::ItemKind::Fn(ref sig, ..), .. })
815 | Node::ImplItem(&hir::ImplItem {
816 span,
817 kind: hir::ImplItemKind::Fn(ref sig, _),
818 ..
819 })
820 | Node::TraitItem(&hir::TraitItem {
821 span,
822 kind: hir::TraitItemKind::Fn(ref sig, _),
823 ..
824 }) => (
825 sm.guess_head_span(span),
826 sig.decl
827 .inputs
828 .iter()
829 .map(|arg| match arg.clone().kind {
830 hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
831 Some(arg.span),
832 vec![("_".to_owned(), "_".to_owned()); tys.len()],
833 ),
834 _ => ArgKind::empty(),
835 })
836 .collect::<Vec<ArgKind>>(),
837 ),
838 Node::Ctor(ref variant_data) => {
839 let span = variant_data.ctor_hir_id().map(|id| hir.span(id)).unwrap_or(DUMMY_SP);
840 let span = sm.guess_head_span(span);
841 (span, vec![ArgKind::empty(); variant_data.fields().len()])
842 }
843 _ => panic!("non-FnLike node found: {:?}", node),
844 })
845 }
846
847 /// Reports an error when the number of arguments needed by a
848 /// trait match doesn't match the number that the expression
849 /// provides.
850 fn report_arg_count_mismatch(
851 &self,
852 span: Span,
853 found_span: Option<Span>,
854 expected_args: Vec<ArgKind>,
855 found_args: Vec<ArgKind>,
856 is_closure: bool,
857 ) -> DiagnosticBuilder<'tcx> {
858 let kind = if is_closure { "closure" } else { "function" };
859
860 let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
861 let arg_length = arguments.len();
862 let distinct = match &other[..] {
863 &[ArgKind::Tuple(..)] => true,
864 _ => false,
865 };
866 match (arg_length, arguments.get(0)) {
867 (1, Some(&ArgKind::Tuple(_, ref fields))) => {
868 format!("a single {}-tuple as argument", fields.len())
869 }
870 _ => format!(
871 "{} {}argument{}",
872 arg_length,
873 if distinct && arg_length > 1 { "distinct " } else { "" },
874 pluralize!(arg_length)
875 ),
876 }
877 };
878
879 let expected_str = args_str(&expected_args, &found_args);
880 let found_str = args_str(&found_args, &expected_args);
881
882 let mut err = struct_span_err!(
883 self.tcx.sess,
884 span,
885 E0593,
886 "{} is expected to take {}, but it takes {}",
887 kind,
888 expected_str,
889 found_str,
890 );
891
892 err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
893
894 if let Some(found_span) = found_span {
895 err.span_label(found_span, format!("takes {}", found_str));
896
897 // move |_| { ... }
898 // ^^^^^^^^-- def_span
899 //
900 // move |_| { ... }
901 // ^^^^^-- prefix
902 let prefix_span = self.tcx.sess.source_map().span_until_non_whitespace(found_span);
903 // move |_| { ... }
904 // ^^^-- pipe_span
905 let pipe_span =
906 if let Some(span) = found_span.trim_start(prefix_span) { span } else { found_span };
907
908 // Suggest to take and ignore the arguments with expected_args_length `_`s if
909 // found arguments is empty (assume the user just wants to ignore args in this case).
910 // For example, if `expected_args_length` is 2, suggest `|_, _|`.
911 if found_args.is_empty() && is_closure {
912 let underscores = vec!["_"; expected_args.len()].join(", ");
913 err.span_suggestion_verbose(
914 pipe_span,
915 &format!(
916 "consider changing the closure to take and ignore the expected argument{}",
917 pluralize!(expected_args.len())
918 ),
919 format!("|{}|", underscores),
920 Applicability::MachineApplicable,
921 );
922 }
923
924 if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
925 if fields.len() == expected_args.len() {
926 let sugg = fields
927 .iter()
928 .map(|(name, _)| name.to_owned())
929 .collect::<Vec<String>>()
930 .join(", ");
931 err.span_suggestion_verbose(
932 found_span,
933 "change the closure to take multiple arguments instead of a single tuple",
934 format!("|{}|", sugg),
935 Applicability::MachineApplicable,
936 );
937 }
938 }
939 if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..] {
940 if fields.len() == found_args.len() && is_closure {
941 let sugg = format!(
942 "|({}){}|",
943 found_args
944 .iter()
945 .map(|arg| match arg {
946 ArgKind::Arg(name, _) => name.to_owned(),
947 _ => "_".to_owned(),
948 })
949 .collect::<Vec<String>>()
950 .join(", "),
951 // add type annotations if available
952 if found_args.iter().any(|arg| match arg {
953 ArgKind::Arg(_, ty) => ty != "_",
954 _ => false,
955 }) {
956 format!(
957 ": ({})",
958 fields
959 .iter()
960 .map(|(_, ty)| ty.to_owned())
961 .collect::<Vec<String>>()
962 .join(", ")
963 )
964 } else {
965 String::new()
966 },
967 );
968 err.span_suggestion_verbose(
969 found_span,
970 "change the closure to accept a tuple instead of individual arguments",
971 sugg,
972 Applicability::MachineApplicable,
973 );
974 }
975 }
976 }
977
978 err
979 }
980 }
981
982 trait InferCtxtPrivExt<'tcx> {
983 // returns if `cond` not occurring implies that `error` does not occur - i.e., that
984 // `error` occurring implies that `cond` occurs.
985 fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool;
986
987 fn report_fulfillment_error(
988 &self,
989 error: &FulfillmentError<'tcx>,
990 body_id: Option<hir::BodyId>,
991 fallback_has_occurred: bool,
992 );
993
994 fn report_projection_error(
995 &self,
996 obligation: &PredicateObligation<'tcx>,
997 error: &MismatchedProjectionTypes<'tcx>,
998 );
999
1000 fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool;
1001
1002 fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str>;
1003
1004 fn find_similar_impl_candidates(
1005 &self,
1006 trait_ref: ty::PolyTraitRef<'tcx>,
1007 ) -> Vec<ty::TraitRef<'tcx>>;
1008
1009 fn report_similar_impl_candidates(
1010 &self,
1011 impl_candidates: Vec<ty::TraitRef<'tcx>>,
1012 err: &mut DiagnosticBuilder<'_>,
1013 );
1014
1015 /// Gets the parent trait chain start
1016 fn get_parent_trait_ref(
1017 &self,
1018 code: &ObligationCauseCode<'tcx>,
1019 ) -> Option<(String, Option<Span>)>;
1020
1021 /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1022 /// with the same path as `trait_ref`, a help message about
1023 /// a probable version mismatch is added to `err`
1024 fn note_version_mismatch(
1025 &self,
1026 err: &mut DiagnosticBuilder<'_>,
1027 trait_ref: &ty::PolyTraitRef<'tcx>,
1028 );
1029
1030 /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
1031 /// `trait_ref`.
1032 ///
1033 /// For this to work, `new_self_ty` must have no escaping bound variables.
1034 fn mk_trait_obligation_with_new_self_ty(
1035 &self,
1036 param_env: ty::ParamEnv<'tcx>,
1037 trait_ref: &ty::PolyTraitRef<'tcx>,
1038 new_self_ty: Ty<'tcx>,
1039 ) -> PredicateObligation<'tcx>;
1040
1041 fn maybe_report_ambiguity(
1042 &self,
1043 obligation: &PredicateObligation<'tcx>,
1044 body_id: Option<hir::BodyId>,
1045 );
1046
1047 fn predicate_can_apply(
1048 &self,
1049 param_env: ty::ParamEnv<'tcx>,
1050 pred: ty::PolyTraitRef<'tcx>,
1051 ) -> bool;
1052
1053 fn note_obligation_cause(
1054 &self,
1055 err: &mut DiagnosticBuilder<'tcx>,
1056 obligation: &PredicateObligation<'tcx>,
1057 );
1058
1059 fn suggest_unsized_bound_if_applicable(
1060 &self,
1061 err: &mut DiagnosticBuilder<'tcx>,
1062 obligation: &PredicateObligation<'tcx>,
1063 );
1064
1065 fn is_recursive_obligation(
1066 &self,
1067 obligated_types: &mut Vec<&ty::TyS<'tcx>>,
1068 cause_code: &ObligationCauseCode<'tcx>,
1069 ) -> bool;
1070 }
1071
1072 impl<'a, 'tcx> InferCtxtPrivExt<'tcx> for InferCtxt<'a, 'tcx> {
1073 // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1074 // `error` occurring implies that `cond` occurs.
1075 fn error_implies(&self, cond: ty::Predicate<'tcx>, error: ty::Predicate<'tcx>) -> bool {
1076 if cond == error {
1077 return true;
1078 }
1079
1080 // FIXME: It should be possible to deal with `ForAll` in a cleaner way.
1081 let (cond, error) = match (cond.skip_binders(), error.skip_binders()) {
1082 (ty::PredicateAtom::Trait(..), ty::PredicateAtom::Trait(error, _)) => {
1083 (cond, ty::Binder::bind(error))
1084 }
1085 _ => {
1086 // FIXME: make this work in other cases too.
1087 return false;
1088 }
1089 };
1090
1091 for obligation in super::elaborate_predicates(self.tcx, std::iter::once(cond)) {
1092 if let ty::PredicateAtom::Trait(implication, _) = obligation.predicate.skip_binders() {
1093 let error = error.to_poly_trait_ref();
1094 let implication = ty::Binder::bind(implication.trait_ref);
1095 // FIXME: I'm just not taking associated types at all here.
1096 // Eventually I'll need to implement param-env-aware
1097 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
1098 let param_env = ty::ParamEnv::empty();
1099 if self.can_sub(param_env, error, implication).is_ok() {
1100 debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
1101 return true;
1102 }
1103 }
1104 }
1105
1106 false
1107 }
1108
1109 fn report_fulfillment_error(
1110 &self,
1111 error: &FulfillmentError<'tcx>,
1112 body_id: Option<hir::BodyId>,
1113 fallback_has_occurred: bool,
1114 ) {
1115 debug!("report_fulfillment_error({:?})", error);
1116 match error.code {
1117 FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
1118 self.report_selection_error(
1119 &error.obligation,
1120 selection_error,
1121 fallback_has_occurred,
1122 error.points_at_arg_span,
1123 );
1124 }
1125 FulfillmentErrorCode::CodeProjectionError(ref e) => {
1126 self.report_projection_error(&error.obligation, e);
1127 }
1128 FulfillmentErrorCode::CodeAmbiguity => {
1129 self.maybe_report_ambiguity(&error.obligation, body_id);
1130 }
1131 FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
1132 self.report_mismatched_types(
1133 &error.obligation.cause,
1134 expected_found.expected,
1135 expected_found.found,
1136 err.clone(),
1137 )
1138 .emit();
1139 }
1140 FulfillmentErrorCode::CodeConstEquateError(ref expected_found, ref err) => {
1141 self.report_mismatched_consts(
1142 &error.obligation.cause,
1143 expected_found.expected,
1144 expected_found.found,
1145 err.clone(),
1146 )
1147 .emit();
1148 }
1149 }
1150 }
1151
1152 fn report_projection_error(
1153 &self,
1154 obligation: &PredicateObligation<'tcx>,
1155 error: &MismatchedProjectionTypes<'tcx>,
1156 ) {
1157 let predicate = self.resolve_vars_if_possible(&obligation.predicate);
1158
1159 if predicate.references_error() {
1160 return;
1161 }
1162
1163 self.probe(|_| {
1164 let err_buf;
1165 let mut err = &error.err;
1166 let mut values = None;
1167
1168 // try to find the mismatched types to report the error with.
1169 //
1170 // this can fail if the problem was higher-ranked, in which
1171 // cause I have no idea for a good error message.
1172 if let ty::PredicateAtom::Projection(data) = predicate.skip_binders() {
1173 let mut selcx = SelectionContext::new(self);
1174 let (data, _) = self.replace_bound_vars_with_fresh_vars(
1175 obligation.cause.span,
1176 infer::LateBoundRegionConversionTime::HigherRankedType,
1177 &ty::Binder::bind(data),
1178 );
1179 let mut obligations = vec![];
1180 let normalized_ty = super::normalize_projection_type(
1181 &mut selcx,
1182 obligation.param_env,
1183 data.projection_ty,
1184 obligation.cause.clone(),
1185 0,
1186 &mut obligations,
1187 );
1188
1189 debug!(
1190 "report_projection_error obligation.cause={:?} obligation.param_env={:?}",
1191 obligation.cause, obligation.param_env
1192 );
1193
1194 debug!(
1195 "report_projection_error normalized_ty={:?} data.ty={:?}",
1196 normalized_ty, data.ty
1197 );
1198
1199 let is_normalized_ty_expected = match &obligation.cause.code {
1200 ObligationCauseCode::ItemObligation(_)
1201 | ObligationCauseCode::BindingObligation(_, _)
1202 | ObligationCauseCode::ObjectCastObligation(_) => false,
1203 _ => true,
1204 };
1205
1206 if let Err(error) = self.at(&obligation.cause, obligation.param_env).eq_exp(
1207 is_normalized_ty_expected,
1208 normalized_ty,
1209 data.ty,
1210 ) {
1211 values = Some(infer::ValuePairs::Types(ExpectedFound::new(
1212 is_normalized_ty_expected,
1213 normalized_ty,
1214 data.ty,
1215 )));
1216
1217 err_buf = error;
1218 err = &err_buf;
1219 }
1220 }
1221
1222 let msg = format!("type mismatch resolving `{}`", predicate);
1223 let error_id = (DiagnosticMessageId::ErrorId(271), Some(obligation.cause.span), msg);
1224 let fresh = self.tcx.sess.one_time_diagnostics.borrow_mut().insert(error_id);
1225 if fresh {
1226 let mut diag = struct_span_err!(
1227 self.tcx.sess,
1228 obligation.cause.span,
1229 E0271,
1230 "type mismatch resolving `{}`",
1231 predicate
1232 );
1233 self.note_type_err(&mut diag, &obligation.cause, None, values, err);
1234 self.note_obligation_cause(&mut diag, obligation);
1235 diag.emit();
1236 }
1237 });
1238 }
1239
1240 fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
1241 /// returns the fuzzy category of a given type, or None
1242 /// if the type can be equated to any type.
1243 fn type_category(t: Ty<'_>) -> Option<u32> {
1244 match t.kind() {
1245 ty::Bool => Some(0),
1246 ty::Char => Some(1),
1247 ty::Str => Some(2),
1248 ty::Int(..) | ty::Uint(..) | ty::Infer(ty::IntVar(..)) => Some(3),
1249 ty::Float(..) | ty::Infer(ty::FloatVar(..)) => Some(4),
1250 ty::Ref(..) | ty::RawPtr(..) => Some(5),
1251 ty::Array(..) | ty::Slice(..) => Some(6),
1252 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1253 ty::Dynamic(..) => Some(8),
1254 ty::Closure(..) => Some(9),
1255 ty::Tuple(..) => Some(10),
1256 ty::Projection(..) => Some(11),
1257 ty::Param(..) => Some(12),
1258 ty::Opaque(..) => Some(13),
1259 ty::Never => Some(14),
1260 ty::Adt(adt, ..) => match adt.adt_kind() {
1261 AdtKind::Struct => Some(15),
1262 AdtKind::Union => Some(16),
1263 AdtKind::Enum => Some(17),
1264 },
1265 ty::Generator(..) => Some(18),
1266 ty::Foreign(..) => Some(19),
1267 ty::GeneratorWitness(..) => Some(20),
1268 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1269 }
1270 }
1271
1272 match (type_category(a), type_category(b)) {
1273 (Some(cat_a), Some(cat_b)) => match (a.kind(), b.kind()) {
1274 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => def_a == def_b,
1275 _ => cat_a == cat_b,
1276 },
1277 // infer and error can be equated to all types
1278 _ => true,
1279 }
1280 }
1281
1282 fn describe_generator(&self, body_id: hir::BodyId) -> Option<&'static str> {
1283 self.tcx.hir().body(body_id).generator_kind.map(|gen_kind| match gen_kind {
1284 hir::GeneratorKind::Gen => "a generator",
1285 hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Block) => "an async block",
1286 hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn) => "an async function",
1287 hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Closure) => "an async closure",
1288 })
1289 }
1290
1291 fn find_similar_impl_candidates(
1292 &self,
1293 trait_ref: ty::PolyTraitRef<'tcx>,
1294 ) -> Vec<ty::TraitRef<'tcx>> {
1295 let simp = fast_reject::simplify_type(self.tcx, trait_ref.skip_binder().self_ty(), true);
1296 let all_impls = self.tcx.all_impls(trait_ref.def_id());
1297
1298 match simp {
1299 Some(simp) => all_impls
1300 .filter_map(|def_id| {
1301 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
1302 let imp_simp = fast_reject::simplify_type(self.tcx, imp.self_ty(), true);
1303 if let Some(imp_simp) = imp_simp {
1304 if simp != imp_simp {
1305 return None;
1306 }
1307 }
1308 Some(imp)
1309 })
1310 .collect(),
1311 None => all_impls.map(|def_id| self.tcx.impl_trait_ref(def_id).unwrap()).collect(),
1312 }
1313 }
1314
1315 fn report_similar_impl_candidates(
1316 &self,
1317 impl_candidates: Vec<ty::TraitRef<'tcx>>,
1318 err: &mut DiagnosticBuilder<'_>,
1319 ) {
1320 if impl_candidates.is_empty() {
1321 return;
1322 }
1323
1324 let len = impl_candidates.len();
1325 let end = if impl_candidates.len() <= 5 { impl_candidates.len() } else { 4 };
1326
1327 let normalize = |candidate| {
1328 self.tcx.infer_ctxt().enter(|ref infcx| {
1329 let normalized = infcx
1330 .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
1331 .normalize(candidate)
1332 .ok();
1333 match normalized {
1334 Some(normalized) => format!("\n {}", normalized.value),
1335 None => format!("\n {}", candidate),
1336 }
1337 })
1338 };
1339
1340 // Sort impl candidates so that ordering is consistent for UI tests.
1341 let mut normalized_impl_candidates =
1342 impl_candidates.iter().map(normalize).collect::<Vec<String>>();
1343
1344 // Sort before taking the `..end` range,
1345 // because the ordering of `impl_candidates` may not be deterministic:
1346 // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
1347 normalized_impl_candidates.sort();
1348
1349 err.help(&format!(
1350 "the following implementations were found:{}{}",
1351 normalized_impl_candidates[..end].join(""),
1352 if len > 5 { format!("\nand {} others", len - 4) } else { String::new() }
1353 ));
1354 }
1355
1356 /// Gets the parent trait chain start
1357 fn get_parent_trait_ref(
1358 &self,
1359 code: &ObligationCauseCode<'tcx>,
1360 ) -> Option<(String, Option<Span>)> {
1361 match code {
1362 &ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
1363 let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
1364 match self.get_parent_trait_ref(&data.parent_code) {
1365 Some(t) => Some(t),
1366 None => {
1367 let ty = parent_trait_ref.skip_binder().self_ty();
1368 let span =
1369 TyCategory::from_ty(ty).map(|(_, def_id)| self.tcx.def_span(def_id));
1370 Some((ty.to_string(), span))
1371 }
1372 }
1373 }
1374 _ => None,
1375 }
1376 }
1377
1378 /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
1379 /// with the same path as `trait_ref`, a help message about
1380 /// a probable version mismatch is added to `err`
1381 fn note_version_mismatch(
1382 &self,
1383 err: &mut DiagnosticBuilder<'_>,
1384 trait_ref: &ty::PolyTraitRef<'tcx>,
1385 ) {
1386 let get_trait_impl = |trait_def_id| {
1387 let mut trait_impl = None;
1388 self.tcx.for_each_relevant_impl(
1389 trait_def_id,
1390 trait_ref.skip_binder().self_ty(),
1391 |impl_def_id| {
1392 if trait_impl.is_none() {
1393 trait_impl = Some(impl_def_id);
1394 }
1395 },
1396 );
1397 trait_impl
1398 };
1399 let required_trait_path = self.tcx.def_path_str(trait_ref.def_id());
1400 let all_traits = self.tcx.all_traits(LOCAL_CRATE);
1401 let traits_with_same_path: std::collections::BTreeSet<_> = all_traits
1402 .iter()
1403 .filter(|trait_def_id| **trait_def_id != trait_ref.def_id())
1404 .filter(|trait_def_id| self.tcx.def_path_str(**trait_def_id) == required_trait_path)
1405 .collect();
1406 for trait_with_same_path in traits_with_same_path {
1407 if let Some(impl_def_id) = get_trait_impl(*trait_with_same_path) {
1408 let impl_span = self.tcx.def_span(impl_def_id);
1409 err.span_help(impl_span, "trait impl with same name found");
1410 let trait_crate = self.tcx.crate_name(trait_with_same_path.krate);
1411 let crate_msg = format!(
1412 "perhaps two different versions of crate `{}` are being used?",
1413 trait_crate
1414 );
1415 err.note(&crate_msg);
1416 }
1417 }
1418 }
1419
1420 fn mk_trait_obligation_with_new_self_ty(
1421 &self,
1422 param_env: ty::ParamEnv<'tcx>,
1423 trait_ref: &ty::PolyTraitRef<'tcx>,
1424 new_self_ty: Ty<'tcx>,
1425 ) -> PredicateObligation<'tcx> {
1426 assert!(!new_self_ty.has_escaping_bound_vars());
1427
1428 let trait_ref = trait_ref.map_bound_ref(|tr| ty::TraitRef {
1429 substs: self.tcx.mk_substs_trait(new_self_ty, &tr.substs[1..]),
1430 ..*tr
1431 });
1432
1433 Obligation::new(
1434 ObligationCause::dummy(),
1435 param_env,
1436 trait_ref.without_const().to_predicate(self.tcx),
1437 )
1438 }
1439
1440 fn maybe_report_ambiguity(
1441 &self,
1442 obligation: &PredicateObligation<'tcx>,
1443 body_id: Option<hir::BodyId>,
1444 ) {
1445 // Unable to successfully determine, probably means
1446 // insufficient type information, but could mean
1447 // ambiguous impls. The latter *ought* to be a
1448 // coherence violation, so we don't report it here.
1449
1450 let predicate = self.resolve_vars_if_possible(&obligation.predicate);
1451 let span = obligation.cause.span;
1452
1453 debug!(
1454 "maybe_report_ambiguity(predicate={:?}, obligation={:?} body_id={:?}, code={:?})",
1455 predicate, obligation, body_id, obligation.cause.code,
1456 );
1457
1458 // Ambiguity errors are often caused as fallout from earlier
1459 // errors. So just ignore them if this infcx is tainted.
1460 if self.is_tainted_by_errors() {
1461 return;
1462 }
1463
1464 let mut err = match predicate.skip_binders() {
1465 ty::PredicateAtom::Trait(data, _) => {
1466 let trait_ref = ty::Binder::bind(data.trait_ref);
1467 let self_ty = trait_ref.skip_binder().self_ty();
1468 debug!("self_ty {:?} {:?} trait_ref {:?}", self_ty, self_ty.kind(), trait_ref);
1469
1470 if predicate.references_error() {
1471 return;
1472 }
1473 // Typically, this ambiguity should only happen if
1474 // there are unresolved type inference variables
1475 // (otherwise it would suggest a coherence
1476 // failure). But given #21974 that is not necessarily
1477 // the case -- we can have multiple where clauses that
1478 // are only distinguished by a region, which results
1479 // in an ambiguity even when all types are fully
1480 // known, since we don't dispatch based on region
1481 // relationships.
1482
1483 // This is kind of a hack: it frequently happens that some earlier
1484 // error prevents types from being fully inferred, and then we get
1485 // a bunch of uninteresting errors saying something like "<generic
1486 // #0> doesn't implement Sized". It may even be true that we
1487 // could just skip over all checks where the self-ty is an
1488 // inference variable, but I was afraid that there might be an
1489 // inference variable created, registered as an obligation, and
1490 // then never forced by writeback, and hence by skipping here we'd
1491 // be ignoring the fact that we don't KNOW the type works
1492 // out. Though even that would probably be harmless, given that
1493 // we're only talking about builtin traits, which are known to be
1494 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
1495 // avoid inundating the user with unnecessary errors, but we now
1496 // check upstream for type errors and don't add the obligations to
1497 // begin with in those cases.
1498 if self.tcx.lang_items().sized_trait() == Some(trait_ref.def_id()) {
1499 self.emit_inference_failure_err(
1500 body_id,
1501 span,
1502 self_ty.into(),
1503 ErrorCode::E0282,
1504 )
1505 .emit();
1506 return;
1507 }
1508 let mut err = self.emit_inference_failure_err(
1509 body_id,
1510 span,
1511 self_ty.into(),
1512 ErrorCode::E0283,
1513 );
1514 err.note(&format!("cannot satisfy `{}`", predicate));
1515 if let ObligationCauseCode::ItemObligation(def_id) = obligation.cause.code {
1516 self.suggest_fully_qualified_path(&mut err, def_id, span, trait_ref.def_id());
1517 } else if let (
1518 Ok(ref snippet),
1519 ObligationCauseCode::BindingObligation(ref def_id, _),
1520 ) =
1521 (self.tcx.sess.source_map().span_to_snippet(span), &obligation.cause.code)
1522 {
1523 let generics = self.tcx.generics_of(*def_id);
1524 if generics.params.iter().any(|p| p.name != kw::SelfUpper)
1525 && !snippet.ends_with('>')
1526 {
1527 // FIXME: To avoid spurious suggestions in functions where type arguments
1528 // where already supplied, we check the snippet to make sure it doesn't
1529 // end with a turbofish. Ideally we would have access to a `PathSegment`
1530 // instead. Otherwise we would produce the following output:
1531 //
1532 // error[E0283]: type annotations needed
1533 // --> $DIR/issue-54954.rs:3:24
1534 // |
1535 // LL | const ARR_LEN: usize = Tt::const_val::<[i8; 123]>();
1536 // | ^^^^^^^^^^^^^^^^^^^^^^^^^^
1537 // | |
1538 // | cannot infer type
1539 // | help: consider specifying the type argument
1540 // | in the function call:
1541 // | `Tt::const_val::<[i8; 123]>::<T>`
1542 // ...
1543 // LL | const fn const_val<T: Sized>() -> usize {
1544 // | - required by this bound in `Tt::const_val`
1545 // |
1546 // = note: cannot satisfy `_: Tt`
1547
1548 err.span_suggestion_verbose(
1549 span.shrink_to_hi(),
1550 &format!(
1551 "consider specifying the type argument{} in the function call",
1552 pluralize!(generics.params.len()),
1553 ),
1554 format!(
1555 "::<{}>",
1556 generics
1557 .params
1558 .iter()
1559 .map(|p| p.name.to_string())
1560 .collect::<Vec<String>>()
1561 .join(", ")
1562 ),
1563 Applicability::HasPlaceholders,
1564 );
1565 }
1566 }
1567 err
1568 }
1569
1570 ty::PredicateAtom::WellFormed(arg) => {
1571 // Same hacky approach as above to avoid deluging user
1572 // with error messages.
1573 if arg.references_error() || self.tcx.sess.has_errors() {
1574 return;
1575 }
1576
1577 self.emit_inference_failure_err(body_id, span, arg, ErrorCode::E0282)
1578 }
1579
1580 ty::PredicateAtom::Subtype(data) => {
1581 if data.references_error() || self.tcx.sess.has_errors() {
1582 // no need to overload user in such cases
1583 return;
1584 }
1585 let SubtypePredicate { a_is_expected: _, a, b } = data;
1586 // both must be type variables, or the other would've been instantiated
1587 assert!(a.is_ty_var() && b.is_ty_var());
1588 self.emit_inference_failure_err(body_id, span, a.into(), ErrorCode::E0282)
1589 }
1590 ty::PredicateAtom::Projection(data) => {
1591 let trait_ref = ty::Binder::bind(data).to_poly_trait_ref(self.tcx);
1592 let self_ty = trait_ref.skip_binder().self_ty();
1593 let ty = data.ty;
1594 if predicate.references_error() {
1595 return;
1596 }
1597 if self_ty.needs_infer() && ty.needs_infer() {
1598 // We do this for the `foo.collect()?` case to produce a suggestion.
1599 let mut err = self.emit_inference_failure_err(
1600 body_id,
1601 span,
1602 self_ty.into(),
1603 ErrorCode::E0284,
1604 );
1605 err.note(&format!("cannot satisfy `{}`", predicate));
1606 err
1607 } else {
1608 let mut err = struct_span_err!(
1609 self.tcx.sess,
1610 span,
1611 E0284,
1612 "type annotations needed: cannot satisfy `{}`",
1613 predicate,
1614 );
1615 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
1616 err
1617 }
1618 }
1619
1620 _ => {
1621 if self.tcx.sess.has_errors() {
1622 return;
1623 }
1624 let mut err = struct_span_err!(
1625 self.tcx.sess,
1626 span,
1627 E0284,
1628 "type annotations needed: cannot satisfy `{}`",
1629 predicate,
1630 );
1631 err.span_label(span, &format!("cannot satisfy `{}`", predicate));
1632 err
1633 }
1634 };
1635 self.note_obligation_cause(&mut err, obligation);
1636 err.emit();
1637 }
1638
1639 /// Returns `true` if the trait predicate may apply for *some* assignment
1640 /// to the type parameters.
1641 fn predicate_can_apply(
1642 &self,
1643 param_env: ty::ParamEnv<'tcx>,
1644 pred: ty::PolyTraitRef<'tcx>,
1645 ) -> bool {
1646 struct ParamToVarFolder<'a, 'tcx> {
1647 infcx: &'a InferCtxt<'a, 'tcx>,
1648 var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
1649 }
1650
1651 impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
1652 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
1653 self.infcx.tcx
1654 }
1655
1656 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1657 if let ty::Param(ty::ParamTy { name, .. }) = *ty.kind() {
1658 let infcx = self.infcx;
1659 self.var_map.entry(ty).or_insert_with(|| {
1660 infcx.next_ty_var(TypeVariableOrigin {
1661 kind: TypeVariableOriginKind::TypeParameterDefinition(name, None),
1662 span: DUMMY_SP,
1663 })
1664 })
1665 } else {
1666 ty.super_fold_with(self)
1667 }
1668 }
1669 }
1670
1671 self.probe(|_| {
1672 let mut selcx = SelectionContext::new(self);
1673
1674 let cleaned_pred =
1675 pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
1676
1677 let cleaned_pred = super::project::normalize(
1678 &mut selcx,
1679 param_env,
1680 ObligationCause::dummy(),
1681 &cleaned_pred,
1682 )
1683 .value;
1684
1685 let obligation = Obligation::new(
1686 ObligationCause::dummy(),
1687 param_env,
1688 cleaned_pred.without_const().to_predicate(selcx.tcx()),
1689 );
1690
1691 self.predicate_may_hold(&obligation)
1692 })
1693 }
1694
1695 fn note_obligation_cause(
1696 &self,
1697 err: &mut DiagnosticBuilder<'tcx>,
1698 obligation: &PredicateObligation<'tcx>,
1699 ) {
1700 // First, attempt to add note to this error with an async-await-specific
1701 // message, and fall back to regular note otherwise.
1702 if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
1703 self.note_obligation_cause_code(
1704 err,
1705 &obligation.predicate,
1706 &obligation.cause.code,
1707 &mut vec![],
1708 );
1709 self.suggest_unsized_bound_if_applicable(err, obligation);
1710 }
1711 }
1712
1713 fn suggest_unsized_bound_if_applicable(
1714 &self,
1715 err: &mut DiagnosticBuilder<'tcx>,
1716 obligation: &PredicateObligation<'tcx>,
1717 ) {
1718 let (pred, item_def_id, span) =
1719 match (obligation.predicate.skip_binders(), obligation.cause.code.peel_derives()) {
1720 (
1721 ty::PredicateAtom::Trait(pred, _),
1722 &ObligationCauseCode::BindingObligation(item_def_id, span),
1723 ) => (pred, item_def_id, span),
1724 _ => return,
1725 };
1726
1727 let node = match (
1728 self.tcx.hir().get_if_local(item_def_id),
1729 Some(pred.def_id()) == self.tcx.lang_items().sized_trait(),
1730 ) {
1731 (Some(node), true) => node,
1732 _ => return,
1733 };
1734 let generics = match node.generics() {
1735 Some(generics) => generics,
1736 None => return,
1737 };
1738 for param in generics.params {
1739 if param.span != span
1740 || param.bounds.iter().any(|bound| {
1741 bound.trait_ref().and_then(|trait_ref| trait_ref.trait_def_id())
1742 == self.tcx.lang_items().sized_trait()
1743 })
1744 {
1745 continue;
1746 }
1747 match node {
1748 hir::Node::Item(
1749 item
1750 @
1751 hir::Item {
1752 kind:
1753 hir::ItemKind::Enum(..)
1754 | hir::ItemKind::Struct(..)
1755 | hir::ItemKind::Union(..),
1756 ..
1757 },
1758 ) => {
1759 // Suggesting `T: ?Sized` is only valid in an ADT if `T` is only used in a
1760 // borrow. `struct S<'a, T: ?Sized>(&'a T);` is valid, `struct S<T: ?Sized>(T);`
1761 // is not.
1762 let mut visitor = FindTypeParam {
1763 param: param.name.ident().name,
1764 invalid_spans: vec![],
1765 nested: false,
1766 };
1767 visitor.visit_item(item);
1768 if !visitor.invalid_spans.is_empty() {
1769 let mut multispan: MultiSpan = param.span.into();
1770 multispan.push_span_label(
1771 param.span,
1772 format!("this could be changed to `{}: ?Sized`...", param.name.ident()),
1773 );
1774 for sp in visitor.invalid_spans {
1775 multispan.push_span_label(
1776 sp,
1777 format!(
1778 "...if indirection was used here: `Box<{}>`",
1779 param.name.ident(),
1780 ),
1781 );
1782 }
1783 err.span_help(
1784 multispan,
1785 &format!(
1786 "you could relax the implicit `Sized` bound on `{T}` if it were \
1787 used through indirection like `&{T}` or `Box<{T}>`",
1788 T = param.name.ident(),
1789 ),
1790 );
1791 return;
1792 }
1793 }
1794 _ => {}
1795 }
1796 let (span, separator) = match param.bounds {
1797 [] => (span.shrink_to_hi(), ":"),
1798 [.., bound] => (bound.span().shrink_to_hi(), " +"),
1799 };
1800 err.span_suggestion_verbose(
1801 span,
1802 "consider relaxing the implicit `Sized` restriction",
1803 format!("{} ?Sized", separator),
1804 Applicability::MachineApplicable,
1805 );
1806 return;
1807 }
1808 }
1809
1810 fn is_recursive_obligation(
1811 &self,
1812 obligated_types: &mut Vec<&ty::TyS<'tcx>>,
1813 cause_code: &ObligationCauseCode<'tcx>,
1814 ) -> bool {
1815 if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
1816 let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
1817
1818 if obligated_types.iter().any(|ot| ot == &parent_trait_ref.skip_binder().self_ty()) {
1819 return true;
1820 }
1821 }
1822 false
1823 }
1824 }
1825
1826 /// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
1827 /// `param: ?Sized` would be a valid constraint.
1828 struct FindTypeParam {
1829 param: rustc_span::Symbol,
1830 invalid_spans: Vec<Span>,
1831 nested: bool,
1832 }
1833
1834 impl<'v> Visitor<'v> for FindTypeParam {
1835 type Map = rustc_hir::intravisit::ErasedMap<'v>;
1836
1837 fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
1838 hir::intravisit::NestedVisitorMap::None
1839 }
1840
1841 fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
1842 // We collect the spans of all uses of the "bare" type param, like in `field: T` or
1843 // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
1844 // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
1845 // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
1846 // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
1847 // in that case should make what happened clear enough.
1848 match ty.kind {
1849 hir::TyKind::Ptr(_) | hir::TyKind::Rptr(..) | hir::TyKind::TraitObject(..) => {}
1850 hir::TyKind::Path(hir::QPath::Resolved(None, path))
1851 if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
1852 {
1853 if !self.nested {
1854 self.invalid_spans.push(ty.span);
1855 }
1856 }
1857 hir::TyKind::Path(_) => {
1858 let prev = self.nested;
1859 self.nested = true;
1860 hir::intravisit::walk_ty(self, ty);
1861 self.nested = prev;
1862 }
1863 _ => {
1864 hir::intravisit::walk_ty(self, ty);
1865 }
1866 }
1867 }
1868 }
1869
1870 pub fn recursive_type_with_infinite_size_error(
1871 tcx: TyCtxt<'tcx>,
1872 type_def_id: DefId,
1873 spans: Vec<Span>,
1874 ) {
1875 assert!(type_def_id.is_local());
1876 let span = tcx.hir().span_if_local(type_def_id).unwrap();
1877 let span = tcx.sess.source_map().guess_head_span(span);
1878 let path = tcx.def_path_str(type_def_id);
1879 let mut err =
1880 struct_span_err!(tcx.sess, span, E0072, "recursive type `{}` has infinite size", path);
1881 err.span_label(span, "recursive type has infinite size");
1882 for &span in &spans {
1883 err.span_label(span, "recursive without indirection");
1884 }
1885 let msg = format!(
1886 "insert some indirection (e.g., a `Box`, `Rc`, or `&`) to make `{}` representable",
1887 path,
1888 );
1889 if spans.len() <= 4 {
1890 err.multipart_suggestion(
1891 &msg,
1892 spans
1893 .iter()
1894 .flat_map(|&span| {
1895 vec![
1896 (span.shrink_to_lo(), "Box<".to_string()),
1897 (span.shrink_to_hi(), ">".to_string()),
1898 ]
1899 .into_iter()
1900 })
1901 .collect(),
1902 Applicability::HasPlaceholders,
1903 );
1904 } else {
1905 err.help(&msg);
1906 }
1907 err.emit();
1908 }
1909
1910 /// Summarizes information
1911 #[derive(Clone)]
1912 pub enum ArgKind {
1913 /// An argument of non-tuple type. Parameters are (name, ty)
1914 Arg(String, String),
1915
1916 /// An argument of tuple type. For a "found" argument, the span is
1917 /// the locationo in the source of the pattern. For a "expected"
1918 /// argument, it will be None. The vector is a list of (name, ty)
1919 /// strings for the components of the tuple.
1920 Tuple(Option<Span>, Vec<(String, String)>),
1921 }
1922
1923 impl ArgKind {
1924 fn empty() -> ArgKind {
1925 ArgKind::Arg("_".to_owned(), "_".to_owned())
1926 }
1927
1928 /// Creates an `ArgKind` from the expected type of an
1929 /// argument. It has no name (`_`) and an optional source span.
1930 pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
1931 match t.kind() {
1932 ty::Tuple(tys) => ArgKind::Tuple(
1933 span,
1934 tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
1935 ),
1936 _ => ArgKind::Arg("_".to_owned(), t.to_string()),
1937 }
1938 }
1939 }