]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_trait_selection/src/traits/select/mod.rs
New upstream version 1.58.1+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / select / mod.rs
1 //! Candidate selection. See the [rustc dev guide] for more information on how this works.
2 //!
3 //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::const_evaluatable;
10 use super::project;
11 use super::project::normalize_with_depth_to;
12 use super::project::ProjectionTyObligation;
13 use super::util;
14 use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
15 use super::wf;
16 use super::DerivedObligationCause;
17 use super::Normalized;
18 use super::Obligation;
19 use super::ObligationCauseCode;
20 use super::Selection;
21 use super::SelectionResult;
22 use super::TraitQueryMode;
23 use super::{ErrorReporting, Overflow, SelectionError};
24 use super::{ObligationCause, PredicateObligation, TraitObligation};
25
26 use crate::infer::{InferCtxt, InferOk, TypeFreshener};
27 use crate::traits::error_reporting::InferCtxtExt;
28 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
29 use rustc_data_structures::stack::ensure_sufficient_stack;
30 use rustc_data_structures::sync::Lrc;
31 use rustc_errors::ErrorReported;
32 use rustc_hir as hir;
33 use rustc_hir::def_id::DefId;
34 use rustc_infer::infer::LateBoundRegionConversionTime;
35 use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
36 use rustc_middle::mir::interpret::ErrorHandled;
37 use rustc_middle::thir::abstract_const::NotConstEvaluatable;
38 use rustc_middle::ty::fast_reject;
39 use rustc_middle::ty::print::with_no_trimmed_paths;
40 use rustc_middle::ty::relate::TypeRelation;
41 use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
42 use rustc_middle::ty::WithConstness;
43 use rustc_middle::ty::{self, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
44 use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable};
45 use rustc_span::symbol::sym;
46
47 use std::cell::{Cell, RefCell};
48 use std::cmp;
49 use std::fmt::{self, Display};
50 use std::iter;
51
52 pub use rustc_middle::traits::select::*;
53
54 mod candidate_assembly;
55 mod confirmation;
56
57 #[derive(Clone, Debug)]
58 pub enum IntercrateAmbiguityCause {
59 DownstreamCrate { trait_desc: String, self_desc: Option<String> },
60 UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
61 ReservationImpl { message: String },
62 }
63
64 impl IntercrateAmbiguityCause {
65 /// Emits notes when the overlap is caused by complex intercrate ambiguities.
66 /// See #23980 for details.
67 pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
68 err.note(&self.intercrate_ambiguity_hint());
69 }
70
71 pub fn intercrate_ambiguity_hint(&self) -> String {
72 match self {
73 IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } => {
74 let self_desc = if let Some(ty) = self_desc {
75 format!(" for type `{}`", ty)
76 } else {
77 String::new()
78 };
79 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
80 }
81 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } => {
82 let self_desc = if let Some(ty) = self_desc {
83 format!(" for type `{}`", ty)
84 } else {
85 String::new()
86 };
87 format!(
88 "upstream crates may add a new impl of trait `{}`{} \
89 in future versions",
90 trait_desc, self_desc
91 )
92 }
93 IntercrateAmbiguityCause::ReservationImpl { message } => message.clone(),
94 }
95 }
96 }
97
98 pub struct SelectionContext<'cx, 'tcx> {
99 infcx: &'cx InferCtxt<'cx, 'tcx>,
100
101 /// Freshener used specifically for entries on the obligation
102 /// stack. This ensures that all entries on the stack at one time
103 /// will have the same set of placeholder entries, which is
104 /// important for checking for trait bounds that recursively
105 /// require themselves.
106 freshener: TypeFreshener<'cx, 'tcx>,
107
108 /// If `true`, indicates that the evaluation should be conservative
109 /// and consider the possibility of types outside this crate.
110 /// This comes up primarily when resolving ambiguity. Imagine
111 /// there is some trait reference `$0: Bar` where `$0` is an
112 /// inference variable. If `intercrate` is true, then we can never
113 /// say for sure that this reference is not implemented, even if
114 /// there are *no impls at all for `Bar`*, because `$0` could be
115 /// bound to some type that in a downstream crate that implements
116 /// `Bar`. This is the suitable mode for coherence. Elsewhere,
117 /// though, we set this to false, because we are only interested
118 /// in types that the user could actually have written --- in
119 /// other words, we consider `$0: Bar` to be unimplemented if
120 /// there is no type that the user could *actually name* that
121 /// would satisfy it. This avoids crippling inference, basically.
122 intercrate: bool,
123
124 intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
125
126 /// Controls whether or not to filter out negative impls when selecting.
127 /// This is used in librustdoc to distinguish between the lack of an impl
128 /// and a negative impl
129 allow_negative_impls: bool,
130
131 /// Are we in a const context that needs `~const` bounds to be const?
132 is_in_const_context: bool,
133
134 /// The mode that trait queries run in, which informs our error handling
135 /// policy. In essence, canonicalized queries need their errors propagated
136 /// rather than immediately reported because we do not have accurate spans.
137 query_mode: TraitQueryMode,
138 }
139
140 // A stack that walks back up the stack frame.
141 struct TraitObligationStack<'prev, 'tcx> {
142 obligation: &'prev TraitObligation<'tcx>,
143
144 /// The trait ref from `obligation` but "freshened" with the
145 /// selection-context's freshener. Used to check for recursion.
146 fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
147
148 /// Starts out equal to `depth` -- if, during evaluation, we
149 /// encounter a cycle, then we will set this flag to the minimum
150 /// depth of that cycle for all participants in the cycle. These
151 /// participants will then forego caching their results. This is
152 /// not the most efficient solution, but it addresses #60010. The
153 /// problem we are trying to prevent:
154 ///
155 /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
156 /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
157 /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
158 ///
159 /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
160 /// is `EvaluatedToOk`; this is because they were only considered
161 /// ok on the premise that if `A: AutoTrait` held, but we indeed
162 /// encountered a problem (later on) with `A: AutoTrait. So we
163 /// currently set a flag on the stack node for `B: AutoTrait` (as
164 /// well as the second instance of `A: AutoTrait`) to suppress
165 /// caching.
166 ///
167 /// This is a simple, targeted fix. A more-performant fix requires
168 /// deeper changes, but would permit more caching: we could
169 /// basically defer caching until we have fully evaluated the
170 /// tree, and then cache the entire tree at once. In any case, the
171 /// performance impact here shouldn't be so horrible: every time
172 /// this is hit, we do cache at least one trait, so we only
173 /// evaluate each member of a cycle up to N times, where N is the
174 /// length of the cycle. This means the performance impact is
175 /// bounded and we shouldn't have any terrible worst-cases.
176 reached_depth: Cell<usize>,
177
178 previous: TraitObligationStackList<'prev, 'tcx>,
179
180 /// The number of parent frames plus one (thus, the topmost frame has depth 1).
181 depth: usize,
182
183 /// The depth-first number of this node in the search graph -- a
184 /// pre-order index. Basically, a freshly incremented counter.
185 dfn: usize,
186 }
187
188 struct SelectionCandidateSet<'tcx> {
189 // A list of candidates that definitely apply to the current
190 // obligation (meaning: types unify).
191 vec: Vec<SelectionCandidate<'tcx>>,
192
193 // If `true`, then there were candidates that might or might
194 // not have applied, but we couldn't tell. This occurs when some
195 // of the input types are type variables, in which case there are
196 // various "builtin" rules that might or might not trigger.
197 ambiguous: bool,
198 }
199
200 #[derive(PartialEq, Eq, Debug, Clone)]
201 struct EvaluatedCandidate<'tcx> {
202 candidate: SelectionCandidate<'tcx>,
203 evaluation: EvaluationResult,
204 }
205
206 /// When does the builtin impl for `T: Trait` apply?
207 enum BuiltinImplConditions<'tcx> {
208 /// The impl is conditional on `T1, T2, ...: Trait`.
209 Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
210 /// There is no built-in impl. There may be some other
211 /// candidate (a where-clause or user-defined impl).
212 None,
213 /// It is unknown whether there is an impl.
214 Ambiguous,
215 }
216
217 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
218 pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
219 SelectionContext {
220 infcx,
221 freshener: infcx.freshener_keep_static(),
222 intercrate: false,
223 intercrate_ambiguity_causes: None,
224 allow_negative_impls: false,
225 is_in_const_context: false,
226 query_mode: TraitQueryMode::Standard,
227 }
228 }
229
230 pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
231 SelectionContext {
232 infcx,
233 freshener: infcx.freshener_keep_static(),
234 intercrate: true,
235 intercrate_ambiguity_causes: None,
236 allow_negative_impls: false,
237 is_in_const_context: false,
238 query_mode: TraitQueryMode::Standard,
239 }
240 }
241
242 pub fn with_negative(
243 infcx: &'cx InferCtxt<'cx, 'tcx>,
244 allow_negative_impls: bool,
245 ) -> SelectionContext<'cx, 'tcx> {
246 debug!(?allow_negative_impls, "with_negative");
247 SelectionContext {
248 infcx,
249 freshener: infcx.freshener_keep_static(),
250 intercrate: false,
251 intercrate_ambiguity_causes: None,
252 allow_negative_impls,
253 is_in_const_context: false,
254 query_mode: TraitQueryMode::Standard,
255 }
256 }
257
258 pub fn with_query_mode(
259 infcx: &'cx InferCtxt<'cx, 'tcx>,
260 query_mode: TraitQueryMode,
261 ) -> SelectionContext<'cx, 'tcx> {
262 debug!(?query_mode, "with_query_mode");
263 SelectionContext {
264 infcx,
265 freshener: infcx.freshener_keep_static(),
266 intercrate: false,
267 intercrate_ambiguity_causes: None,
268 allow_negative_impls: false,
269 is_in_const_context: false,
270 query_mode,
271 }
272 }
273
274 pub fn with_constness(
275 infcx: &'cx InferCtxt<'cx, 'tcx>,
276 constness: hir::Constness,
277 ) -> SelectionContext<'cx, 'tcx> {
278 SelectionContext {
279 infcx,
280 freshener: infcx.freshener_keep_static(),
281 intercrate: false,
282 intercrate_ambiguity_causes: None,
283 allow_negative_impls: false,
284 is_in_const_context: matches!(constness, hir::Constness::Const),
285 query_mode: TraitQueryMode::Standard,
286 }
287 }
288
289 /// Enables tracking of intercrate ambiguity causes. These are
290 /// used in coherence to give improved diagnostics. We don't do
291 /// this until we detect a coherence error because it can lead to
292 /// false overflow results (#47139) and because it costs
293 /// computation time.
294 pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
295 assert!(self.intercrate);
296 assert!(self.intercrate_ambiguity_causes.is_none());
297 self.intercrate_ambiguity_causes = Some(vec![]);
298 debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
299 }
300
301 /// Gets the intercrate ambiguity causes collected since tracking
302 /// was enabled and disables tracking at the same time. If
303 /// tracking is not enabled, just returns an empty vector.
304 pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
305 assert!(self.intercrate);
306 self.intercrate_ambiguity_causes.take().unwrap_or_default()
307 }
308
309 pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
310 self.infcx
311 }
312
313 pub fn tcx(&self) -> TyCtxt<'tcx> {
314 self.infcx.tcx
315 }
316
317 pub fn is_intercrate(&self) -> bool {
318 self.intercrate
319 }
320
321 /// Returns `true` if the trait predicate is considerd `const` to this selection context.
322 pub fn is_trait_predicate_const(&self, pred: ty::TraitPredicate<'_>) -> bool {
323 matches!(pred.constness, ty::BoundConstness::ConstIfConst) && self.is_in_const_context
324 }
325
326 /// Returns `true` if the predicate is considered `const` to
327 /// this selection context.
328 pub fn is_predicate_const(&self, pred: ty::Predicate<'_>) -> bool {
329 match pred.kind().skip_binder() {
330 ty::PredicateKind::Trait(pred) => self.is_trait_predicate_const(pred),
331 _ => false,
332 }
333 }
334
335 ///////////////////////////////////////////////////////////////////////////
336 // Selection
337 //
338 // The selection phase tries to identify *how* an obligation will
339 // be resolved. For example, it will identify which impl or
340 // parameter bound is to be used. The process can be inconclusive
341 // if the self type in the obligation is not fully inferred. Selection
342 // can result in an error in one of two ways:
343 //
344 // 1. If no applicable impl or parameter bound can be found.
345 // 2. If the output type parameters in the obligation do not match
346 // those specified by the impl/bound. For example, if the obligation
347 // is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
348 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
349
350 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
351 /// type environment by performing unification.
352 #[instrument(level = "debug", skip(self))]
353 pub fn select(
354 &mut self,
355 obligation: &TraitObligation<'tcx>,
356 ) -> SelectionResult<'tcx, Selection<'tcx>> {
357 let candidate = match self.select_from_obligation(obligation) {
358 Err(SelectionError::Overflow) => {
359 // In standard mode, overflow must have been caught and reported
360 // earlier.
361 assert!(self.query_mode == TraitQueryMode::Canonical);
362 return Err(SelectionError::Overflow);
363 }
364 Err(SelectionError::Ambiguous(_)) => {
365 return Ok(None);
366 }
367 Err(e) => {
368 return Err(e);
369 }
370 Ok(None) => {
371 return Ok(None);
372 }
373 Ok(Some(candidate)) => candidate,
374 };
375
376 match self.confirm_candidate(obligation, candidate) {
377 Err(SelectionError::Overflow) => {
378 assert!(self.query_mode == TraitQueryMode::Canonical);
379 Err(SelectionError::Overflow)
380 }
381 Err(e) => Err(e),
382 Ok(candidate) => {
383 debug!(?candidate);
384 Ok(Some(candidate))
385 }
386 }
387 }
388
389 crate fn select_from_obligation(
390 &mut self,
391 obligation: &TraitObligation<'tcx>,
392 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
393 debug_assert!(!obligation.predicate.has_escaping_bound_vars());
394
395 let pec = &ProvisionalEvaluationCache::default();
396 let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
397
398 self.candidate_from_obligation(&stack)
399 }
400
401 ///////////////////////////////////////////////////////////////////////////
402 // EVALUATION
403 //
404 // Tests whether an obligation can be selected or whether an impl
405 // can be applied to particular types. It skips the "confirmation"
406 // step and hence completely ignores output type parameters.
407 //
408 // The result is "true" if the obligation *may* hold and "false" if
409 // we can be sure it does not.
410
411 /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
412 pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
413 debug!(?obligation, "predicate_may_hold_fatal");
414
415 // This fatal query is a stopgap that should only be used in standard mode,
416 // where we do not expect overflow to be propagated.
417 assert!(self.query_mode == TraitQueryMode::Standard);
418
419 self.evaluate_root_obligation(obligation)
420 .expect("Overflow should be caught earlier in standard query mode")
421 .may_apply()
422 }
423
424 /// Evaluates whether the obligation `obligation` can be satisfied
425 /// and returns an `EvaluationResult`. This is meant for the
426 /// *initial* call.
427 pub fn evaluate_root_obligation(
428 &mut self,
429 obligation: &PredicateObligation<'tcx>,
430 ) -> Result<EvaluationResult, OverflowError> {
431 self.evaluation_probe(|this| {
432 this.evaluate_predicate_recursively(
433 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
434 obligation.clone(),
435 )
436 })
437 }
438
439 fn evaluation_probe(
440 &mut self,
441 op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
442 ) -> Result<EvaluationResult, OverflowError> {
443 self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
444 let result = op(self)?;
445
446 match self.infcx.leak_check(true, snapshot) {
447 Ok(()) => {}
448 Err(_) => return Ok(EvaluatedToErr),
449 }
450
451 match self.infcx.region_constraints_added_in_snapshot(snapshot) {
452 None => Ok(result),
453 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
454 }
455 })
456 }
457
458 /// Evaluates the predicates in `predicates` recursively. Note that
459 /// this applies projections in the predicates, and therefore
460 /// is run within an inference probe.
461 #[instrument(skip(self, stack), level = "debug")]
462 fn evaluate_predicates_recursively<'o, I>(
463 &mut self,
464 stack: TraitObligationStackList<'o, 'tcx>,
465 predicates: I,
466 ) -> Result<EvaluationResult, OverflowError>
467 where
468 I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
469 {
470 let mut result = EvaluatedToOk;
471 for obligation in predicates {
472 let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
473 if let EvaluatedToErr = eval {
474 // fast-path - EvaluatedToErr is the top of the lattice,
475 // so we don't need to look on the other predicates.
476 return Ok(EvaluatedToErr);
477 } else {
478 result = cmp::max(result, eval);
479 }
480 }
481 Ok(result)
482 }
483
484 #[instrument(
485 level = "debug",
486 skip(self, previous_stack),
487 fields(previous_stack = ?previous_stack.head())
488 )]
489 fn evaluate_predicate_recursively<'o>(
490 &mut self,
491 previous_stack: TraitObligationStackList<'o, 'tcx>,
492 obligation: PredicateObligation<'tcx>,
493 ) -> Result<EvaluationResult, OverflowError> {
494 // `previous_stack` stores a `TraitObligation`, while `obligation` is
495 // a `PredicateObligation`. These are distinct types, so we can't
496 // use any `Option` combinator method that would force them to be
497 // the same.
498 match previous_stack.head() {
499 Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
500 None => self.check_recursion_limit(&obligation, &obligation)?,
501 }
502
503 let result = ensure_sufficient_stack(|| {
504 let bound_predicate = obligation.predicate.kind();
505 match bound_predicate.skip_binder() {
506 ty::PredicateKind::Trait(t) => {
507 let t = bound_predicate.rebind(t);
508 debug_assert!(!t.has_escaping_bound_vars());
509 let obligation = obligation.with(t);
510 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
511 }
512
513 ty::PredicateKind::Subtype(p) => {
514 let p = bound_predicate.rebind(p);
515 // Does this code ever run?
516 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
517 Some(Ok(InferOk { mut obligations, .. })) => {
518 self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
519 self.evaluate_predicates_recursively(
520 previous_stack,
521 obligations.into_iter(),
522 )
523 }
524 Some(Err(_)) => Ok(EvaluatedToErr),
525 None => Ok(EvaluatedToAmbig),
526 }
527 }
528
529 ty::PredicateKind::Coerce(p) => {
530 let p = bound_predicate.rebind(p);
531 // Does this code ever run?
532 match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
533 Some(Ok(InferOk { mut obligations, .. })) => {
534 self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
535 self.evaluate_predicates_recursively(
536 previous_stack,
537 obligations.into_iter(),
538 )
539 }
540 Some(Err(_)) => Ok(EvaluatedToErr),
541 None => Ok(EvaluatedToAmbig),
542 }
543 }
544
545 ty::PredicateKind::WellFormed(arg) => match wf::obligations(
546 self.infcx,
547 obligation.param_env,
548 obligation.cause.body_id,
549 obligation.recursion_depth + 1,
550 arg,
551 obligation.cause.span,
552 ) {
553 Some(mut obligations) => {
554 self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
555 self.evaluate_predicates_recursively(previous_stack, obligations)
556 }
557 None => Ok(EvaluatedToAmbig),
558 },
559
560 ty::PredicateKind::TypeOutlives(pred) => {
561 if pred.0.is_known_global() {
562 Ok(EvaluatedToOk)
563 } else {
564 Ok(EvaluatedToOkModuloRegions)
565 }
566 }
567
568 ty::PredicateKind::RegionOutlives(..) => {
569 // We do not consider region relationships when evaluating trait matches.
570 Ok(EvaluatedToOkModuloRegions)
571 }
572
573 ty::PredicateKind::ObjectSafe(trait_def_id) => {
574 if self.tcx().is_object_safe(trait_def_id) {
575 Ok(EvaluatedToOk)
576 } else {
577 Ok(EvaluatedToErr)
578 }
579 }
580
581 ty::PredicateKind::Projection(data) => {
582 let data = bound_predicate.rebind(data);
583 let project_obligation = obligation.with(data);
584 match project::poly_project_and_unify_type(self, &project_obligation) {
585 Ok(Ok(Some(mut subobligations))) => {
586 self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
587 self.evaluate_predicates_recursively(previous_stack, subobligations)
588 }
589 Ok(Ok(None)) => Ok(EvaluatedToAmbig),
590 Ok(Err(project::InProgress)) => Ok(EvaluatedToRecur),
591 Err(_) => Ok(EvaluatedToErr),
592 }
593 }
594
595 ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
596 match self.infcx.closure_kind(closure_substs) {
597 Some(closure_kind) => {
598 if closure_kind.extends(kind) {
599 Ok(EvaluatedToOk)
600 } else {
601 Ok(EvaluatedToErr)
602 }
603 }
604 None => Ok(EvaluatedToAmbig),
605 }
606 }
607
608 ty::PredicateKind::ConstEvaluatable(uv) => {
609 match const_evaluatable::is_const_evaluatable(
610 self.infcx,
611 uv,
612 obligation.param_env,
613 obligation.cause.span,
614 ) {
615 Ok(()) => Ok(EvaluatedToOk),
616 Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
617 Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
618 Err(_) => Ok(EvaluatedToErr),
619 }
620 }
621
622 ty::PredicateKind::ConstEquate(c1, c2) => {
623 debug!(?c1, ?c2, "evaluate_predicate_recursively: equating consts");
624
625 if self.tcx().features().generic_const_exprs {
626 // FIXME: we probably should only try to unify abstract constants
627 // if the constants depend on generic parameters.
628 //
629 // Let's just see where this breaks :shrug:
630 if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
631 (c1.val, c2.val)
632 {
633 if self.infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
634 return Ok(EvaluatedToOk);
635 }
636 }
637 }
638
639 let evaluate = |c: &'tcx ty::Const<'tcx>| {
640 if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
641 self.infcx
642 .const_eval_resolve(
643 obligation.param_env,
644 unevaluated,
645 Some(obligation.cause.span),
646 )
647 .map(|val| ty::Const::from_value(self.tcx(), val, c.ty))
648 } else {
649 Ok(c)
650 }
651 };
652
653 match (evaluate(c1), evaluate(c2)) {
654 (Ok(c1), Ok(c2)) => {
655 match self
656 .infcx()
657 .at(&obligation.cause, obligation.param_env)
658 .eq(c1, c2)
659 {
660 Ok(_) => Ok(EvaluatedToOk),
661 Err(_) => Ok(EvaluatedToErr),
662 }
663 }
664 (Err(ErrorHandled::Reported(ErrorReported)), _)
665 | (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
666 (Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
667 span_bug!(
668 obligation.cause.span(self.tcx()),
669 "ConstEquate: const_eval_resolve returned an unexpected error"
670 )
671 }
672 (Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
673 if c1.has_infer_types_or_consts() || c2.has_infer_types_or_consts() {
674 Ok(EvaluatedToAmbig)
675 } else {
676 // Two different constants using generic parameters ~> error.
677 Ok(EvaluatedToErr)
678 }
679 }
680 }
681 }
682 ty::PredicateKind::TypeWellFormedFromEnv(..) => {
683 bug!("TypeWellFormedFromEnv is only used for chalk")
684 }
685 }
686 });
687
688 debug!("finished: {:?} from {:?}", result, obligation);
689
690 result
691 }
692
693 #[instrument(skip(self, previous_stack), level = "debug")]
694 fn evaluate_trait_predicate_recursively<'o>(
695 &mut self,
696 previous_stack: TraitObligationStackList<'o, 'tcx>,
697 mut obligation: TraitObligation<'tcx>,
698 ) -> Result<EvaluationResult, OverflowError> {
699 if !self.intercrate
700 && obligation.is_global(self.tcx())
701 && obligation
702 .param_env
703 .caller_bounds()
704 .iter()
705 .all(|bound| bound.definitely_needs_subst(self.tcx()))
706 {
707 // If a param env has no global bounds, global obligations do not
708 // depend on its particular value in order to work, so we can clear
709 // out the param env and get better caching.
710 debug!("in global");
711 obligation.param_env = obligation.param_env.without_caller_bounds();
712 }
713
714 let stack = self.push_stack(previous_stack, &obligation);
715 let fresh_trait_ref = stack.fresh_trait_ref;
716
717 debug!(?fresh_trait_ref);
718
719 if let Some(result) = self.check_evaluation_cache(
720 obligation.param_env,
721 fresh_trait_ref,
722 obligation.polarity(),
723 ) {
724 debug!(?result, "CACHE HIT");
725 return Ok(result);
726 }
727
728 if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
729 debug!(?result, "PROVISIONAL CACHE HIT");
730 stack.update_reached_depth(result.reached_depth);
731 return Ok(result.result);
732 }
733
734 // Check if this is a match for something already on the
735 // stack. If so, we don't want to insert the result into the
736 // main cache (it is cycle dependent) nor the provisional
737 // cache (which is meant for things that have completed but
738 // for a "backedge" -- this result *is* the backedge).
739 if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
740 return Ok(cycle_result);
741 }
742
743 let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
744 let result = result?;
745
746 if !result.must_apply_modulo_regions() {
747 stack.cache().on_failure(stack.dfn);
748 }
749
750 let reached_depth = stack.reached_depth.get();
751 if reached_depth >= stack.depth {
752 debug!(?result, "CACHE MISS");
753 self.insert_evaluation_cache(
754 obligation.param_env,
755 fresh_trait_ref,
756 obligation.polarity(),
757 dep_node,
758 result,
759 );
760
761 stack.cache().on_completion(stack.dfn, |fresh_trait_ref, provisional_result| {
762 self.insert_evaluation_cache(
763 obligation.param_env,
764 fresh_trait_ref,
765 obligation.polarity(),
766 dep_node,
767 provisional_result.max(result),
768 );
769 });
770 } else {
771 debug!(?result, "PROVISIONAL");
772 debug!(
773 "caching provisionally because {:?} \
774 is a cycle participant (at depth {}, reached depth {})",
775 fresh_trait_ref, stack.depth, reached_depth,
776 );
777
778 stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
779 }
780
781 Ok(result)
782 }
783
784 /// If there is any previous entry on the stack that precisely
785 /// matches this obligation, then we can assume that the
786 /// obligation is satisfied for now (still all other conditions
787 /// must be met of course). One obvious case this comes up is
788 /// marker traits like `Send`. Think of a linked list:
789 ///
790 /// struct List<T> { data: T, next: Option<Box<List<T>>> }
791 ///
792 /// `Box<List<T>>` will be `Send` if `T` is `Send` and
793 /// `Option<Box<List<T>>>` is `Send`, and in turn
794 /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
795 /// `Send`.
796 ///
797 /// Note that we do this comparison using the `fresh_trait_ref`
798 /// fields. Because these have all been freshened using
799 /// `self.freshener`, we can be sure that (a) this will not
800 /// affect the inferencer state and (b) that if we see two
801 /// fresh regions with the same index, they refer to the same
802 /// unbound type variable.
803 fn check_evaluation_cycle(
804 &mut self,
805 stack: &TraitObligationStack<'_, 'tcx>,
806 ) -> Option<EvaluationResult> {
807 if let Some(cycle_depth) = stack
808 .iter()
809 .skip(1) // Skip top-most frame.
810 .find(|prev| {
811 stack.obligation.param_env == prev.obligation.param_env
812 && stack.fresh_trait_ref == prev.fresh_trait_ref
813 })
814 .map(|stack| stack.depth)
815 {
816 debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
817
818 // If we have a stack like `A B C D E A`, where the top of
819 // the stack is the final `A`, then this will iterate over
820 // `A, E, D, C, B` -- i.e., all the participants apart
821 // from the cycle head. We mark them as participating in a
822 // cycle. This suppresses caching for those nodes. See
823 // `in_cycle` field for more details.
824 stack.update_reached_depth(cycle_depth);
825
826 // Subtle: when checking for a coinductive cycle, we do
827 // not compare using the "freshened trait refs" (which
828 // have erased regions) but rather the fully explicit
829 // trait refs. This is important because it's only a cycle
830 // if the regions match exactly.
831 let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
832 let tcx = self.tcx();
833 let cycle = cycle.map(|stack| stack.obligation.predicate.to_predicate(tcx));
834 if self.coinductive_match(cycle) {
835 debug!("evaluate_stack --> recursive, coinductive");
836 Some(EvaluatedToOk)
837 } else {
838 debug!("evaluate_stack --> recursive, inductive");
839 Some(EvaluatedToRecur)
840 }
841 } else {
842 None
843 }
844 }
845
846 fn evaluate_stack<'o>(
847 &mut self,
848 stack: &TraitObligationStack<'o, 'tcx>,
849 ) -> Result<EvaluationResult, OverflowError> {
850 // In intercrate mode, whenever any of the generics are unbound,
851 // there can always be an impl. Even if there are no impls in
852 // this crate, perhaps the type would be unified with
853 // something from another crate that does provide an impl.
854 //
855 // In intra mode, we must still be conservative. The reason is
856 // that we want to avoid cycles. Imagine an impl like:
857 //
858 // impl<T:Eq> Eq for Vec<T>
859 //
860 // and a trait reference like `$0 : Eq` where `$0` is an
861 // unbound variable. When we evaluate this trait-reference, we
862 // will unify `$0` with `Vec<$1>` (for some fresh variable
863 // `$1`), on the condition that `$1 : Eq`. We will then wind
864 // up with many candidates (since that are other `Eq` impls
865 // that apply) and try to winnow things down. This results in
866 // a recursive evaluation that `$1 : Eq` -- as you can
867 // imagine, this is just where we started. To avoid that, we
868 // check for unbound variables and return an ambiguous (hence possible)
869 // match if we've seen this trait before.
870 //
871 // This suffices to allow chains like `FnMut` implemented in
872 // terms of `Fn` etc, but we could probably make this more
873 // precise still.
874 let unbound_input_types =
875 stack.fresh_trait_ref.value.skip_binder().substs.types().any(|ty| ty.is_fresh());
876
877 if stack.obligation.polarity() != ty::ImplPolarity::Negative {
878 // This check was an imperfect workaround for a bug in the old
879 // intercrate mode; it should be removed when that goes away.
880 if unbound_input_types && self.intercrate {
881 debug!("evaluate_stack --> unbound argument, intercrate --> ambiguous",);
882 // Heuristics: show the diagnostics when there are no candidates in crate.
883 if self.intercrate_ambiguity_causes.is_some() {
884 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
885 if let Ok(candidate_set) = self.assemble_candidates(stack) {
886 if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
887 let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
888 let self_ty = trait_ref.self_ty();
889 let cause = with_no_trimmed_paths(|| {
890 IntercrateAmbiguityCause::DownstreamCrate {
891 trait_desc: trait_ref.print_only_trait_path().to_string(),
892 self_desc: if self_ty.has_concrete_skeleton() {
893 Some(self_ty.to_string())
894 } else {
895 None
896 },
897 }
898 });
899
900 debug!(?cause, "evaluate_stack: pushing cause");
901 self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
902 }
903 }
904 }
905 return Ok(EvaluatedToAmbig);
906 }
907 }
908
909 if unbound_input_types
910 && stack.iter().skip(1).any(|prev| {
911 stack.obligation.param_env == prev.obligation.param_env
912 && self.match_fresh_trait_refs(
913 stack.fresh_trait_ref,
914 prev.fresh_trait_ref,
915 prev.obligation.param_env,
916 )
917 })
918 {
919 debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
920 return Ok(EvaluatedToUnknown);
921 }
922
923 match self.candidate_from_obligation(stack) {
924 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
925 Err(SelectionError::Ambiguous(_)) => Ok(EvaluatedToAmbig),
926 Ok(None) => Ok(EvaluatedToAmbig),
927 Err(Overflow) => Err(OverflowError::Canonical),
928 Err(ErrorReporting) => Err(OverflowError::ErrorReporting),
929 Err(..) => Ok(EvaluatedToErr),
930 }
931 }
932
933 /// For defaulted traits, we use a co-inductive strategy to solve, so
934 /// that recursion is ok. This routine returns `true` if the top of the
935 /// stack (`cycle[0]`):
936 ///
937 /// - is a defaulted trait,
938 /// - it also appears in the backtrace at some position `X`,
939 /// - all the predicates at positions `X..` between `X` and the top are
940 /// also defaulted traits.
941 pub fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
942 where
943 I: Iterator<Item = ty::Predicate<'tcx>>,
944 {
945 cycle.all(|predicate| self.coinductive_predicate(predicate))
946 }
947
948 fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
949 let result = match predicate.kind().skip_binder() {
950 ty::PredicateKind::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
951 _ => false,
952 };
953 debug!(?predicate, ?result, "coinductive_predicate");
954 result
955 }
956
957 /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
958 /// obligations are met. Returns whether `candidate` remains viable after this further
959 /// scrutiny.
960 #[instrument(
961 level = "debug",
962 skip(self, stack),
963 fields(depth = stack.obligation.recursion_depth)
964 )]
965 fn evaluate_candidate<'o>(
966 &mut self,
967 stack: &TraitObligationStack<'o, 'tcx>,
968 candidate: &SelectionCandidate<'tcx>,
969 ) -> Result<EvaluationResult, OverflowError> {
970 let mut result = self.evaluation_probe(|this| {
971 let candidate = (*candidate).clone();
972 match this.confirm_candidate(stack.obligation, candidate) {
973 Ok(selection) => {
974 debug!(?selection);
975 this.evaluate_predicates_recursively(
976 stack.list(),
977 selection.nested_obligations().into_iter(),
978 )
979 }
980 Err(..) => Ok(EvaluatedToErr),
981 }
982 })?;
983
984 // If we erased any lifetimes, then we want to use
985 // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
986 // as your final result. The result will be cached using
987 // the freshened trait predicate as a key, so we need
988 // our result to be correct by *any* choice of original lifetimes,
989 // not just the lifetime choice for this particular (non-erased)
990 // predicate.
991 // See issue #80691
992 if stack.fresh_trait_ref.has_erased_regions() {
993 result = result.max(EvaluatedToOkModuloRegions);
994 }
995
996 debug!(?result);
997 Ok(result)
998 }
999
1000 fn check_evaluation_cache(
1001 &self,
1002 param_env: ty::ParamEnv<'tcx>,
1003 trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
1004 polarity: ty::ImplPolarity,
1005 ) -> Option<EvaluationResult> {
1006 // Neither the global nor local cache is aware of intercrate
1007 // mode, so don't do any caching. In particular, we might
1008 // re-use the same `InferCtxt` with both an intercrate
1009 // and non-intercrate `SelectionContext`
1010 if self.intercrate {
1011 return None;
1012 }
1013
1014 let tcx = self.tcx();
1015 if self.can_use_global_caches(param_env) {
1016 if let Some(res) = tcx.evaluation_cache.get(&(param_env.and(trait_ref), polarity), tcx)
1017 {
1018 return Some(res);
1019 }
1020 }
1021 self.infcx.evaluation_cache.get(&(param_env.and(trait_ref), polarity), tcx)
1022 }
1023
1024 fn insert_evaluation_cache(
1025 &mut self,
1026 param_env: ty::ParamEnv<'tcx>,
1027 trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
1028 polarity: ty::ImplPolarity,
1029 dep_node: DepNodeIndex,
1030 result: EvaluationResult,
1031 ) {
1032 // Avoid caching results that depend on more than just the trait-ref
1033 // - the stack can create recursion.
1034 if result.is_stack_dependent() {
1035 return;
1036 }
1037
1038 // Neither the global nor local cache is aware of intercrate
1039 // mode, so don't do any caching. In particular, we might
1040 // re-use the same `InferCtxt` with both an intercrate
1041 // and non-intercrate `SelectionContext`
1042 if self.intercrate {
1043 return;
1044 }
1045
1046 if self.can_use_global_caches(param_env) {
1047 if !trait_ref.needs_infer() {
1048 debug!(?trait_ref, ?result, "insert_evaluation_cache global");
1049 // This may overwrite the cache with the same value
1050 // FIXME: Due to #50507 this overwrites the different values
1051 // This should be changed to use HashMapExt::insert_same
1052 // when that is fixed
1053 self.tcx().evaluation_cache.insert(
1054 (param_env.and(trait_ref), polarity),
1055 dep_node,
1056 result,
1057 );
1058 return;
1059 }
1060 }
1061
1062 debug!(?trait_ref, ?result, "insert_evaluation_cache");
1063 self.infcx.evaluation_cache.insert((param_env.and(trait_ref), polarity), dep_node, result);
1064 }
1065
1066 /// For various reasons, it's possible for a subobligation
1067 /// to have a *lower* recursion_depth than the obligation used to create it.
1068 /// Projection sub-obligations may be returned from the projection cache,
1069 /// which results in obligations with an 'old' `recursion_depth`.
1070 /// Additionally, methods like `InferCtxt.subtype_predicate` produce
1071 /// subobligations without taking in a 'parent' depth, causing the
1072 /// generated subobligations to have a `recursion_depth` of `0`.
1073 ///
1074 /// To ensure that obligation_depth never decreases, we force all subobligations
1075 /// to have at least the depth of the original obligation.
1076 fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
1077 &self,
1078 it: I,
1079 min_depth: usize,
1080 ) {
1081 it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1082 }
1083
1084 fn check_recursion_depth<T: Display + TypeFoldable<'tcx>>(
1085 &self,
1086 depth: usize,
1087 error_obligation: &Obligation<'tcx, T>,
1088 ) -> Result<(), OverflowError> {
1089 if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1090 match self.query_mode {
1091 TraitQueryMode::Standard => {
1092 if self.infcx.is_tainted_by_errors() {
1093 return Err(OverflowError::ErrorReporting);
1094 }
1095 self.infcx.report_overflow_error(error_obligation, true);
1096 }
1097 TraitQueryMode::Canonical => {
1098 return Err(OverflowError::Canonical);
1099 }
1100 }
1101 }
1102 Ok(())
1103 }
1104
1105 /// Checks that the recursion limit has not been exceeded.
1106 ///
1107 /// The weird return type of this function allows it to be used with the `try` (`?`)
1108 /// operator within certain functions.
1109 #[inline(always)]
1110 fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1111 &self,
1112 obligation: &Obligation<'tcx, T>,
1113 error_obligation: &Obligation<'tcx, V>,
1114 ) -> Result<(), OverflowError> {
1115 self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1116 }
1117
1118 fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1119 where
1120 OP: FnOnce(&mut Self) -> R,
1121 {
1122 let (result, dep_node) =
1123 self.tcx().dep_graph.with_anon_task(self.tcx(), DepKind::TraitSelect, || op(self));
1124 self.tcx().dep_graph.read_index(dep_node);
1125 (result, dep_node)
1126 }
1127
1128 /// filter_impls filters constant trait obligations and candidates that have a positive impl
1129 /// for a negative goal and a negative impl for a positive goal
1130 #[instrument(level = "debug", skip(self))]
1131 fn filter_impls(
1132 &mut self,
1133 candidates: Vec<SelectionCandidate<'tcx>>,
1134 obligation: &TraitObligation<'tcx>,
1135 ) -> Vec<SelectionCandidate<'tcx>> {
1136 let tcx = self.tcx();
1137 let mut result = Vec::with_capacity(candidates.len());
1138
1139 for candidate in candidates {
1140 // Respect const trait obligations
1141 if self.is_trait_predicate_const(obligation.predicate.skip_binder()) {
1142 match candidate {
1143 // const impl
1144 ImplCandidate(def_id)
1145 if tcx.impl_constness(def_id) == hir::Constness::Const => {}
1146 // const param
1147 ParamCandidate((
1148 ty::ConstnessAnd { constness: ty::BoundConstness::ConstIfConst, .. },
1149 _,
1150 )) => {}
1151 // auto trait impl
1152 AutoImplCandidate(..) => {}
1153 // generator, this will raise error in other places
1154 // or ignore error with const_async_blocks feature
1155 GeneratorCandidate => {}
1156 // FnDef where the function is const
1157 FnPointerCandidate { is_const: true } => {}
1158 ConstDropCandidate => {}
1159 _ => {
1160 // reject all other types of candidates
1161 continue;
1162 }
1163 }
1164 }
1165
1166 if let ImplCandidate(def_id) = candidate {
1167 if ty::ImplPolarity::Reservation == tcx.impl_polarity(def_id)
1168 || obligation.polarity() == tcx.impl_polarity(def_id)
1169 || self.allow_negative_impls
1170 {
1171 result.push(candidate);
1172 }
1173 } else {
1174 result.push(candidate);
1175 }
1176 }
1177
1178 result
1179 }
1180
1181 /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1182 #[instrument(level = "debug", skip(self))]
1183 fn filter_reservation_impls(
1184 &mut self,
1185 candidate: SelectionCandidate<'tcx>,
1186 obligation: &TraitObligation<'tcx>,
1187 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1188 let tcx = self.tcx();
1189 // Treat reservation impls as ambiguity.
1190 if let ImplCandidate(def_id) = candidate {
1191 if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
1192 if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1193 let attrs = tcx.get_attrs(def_id);
1194 let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
1195 let value = attr.and_then(|a| a.value_str());
1196 if let Some(value) = value {
1197 debug!(
1198 "filter_reservation_impls: \
1199 reservation impl ambiguity on {:?}",
1200 def_id
1201 );
1202 intercrate_ambiguity_clauses.push(
1203 IntercrateAmbiguityCause::ReservationImpl {
1204 message: value.to_string(),
1205 },
1206 );
1207 }
1208 }
1209 return Ok(None);
1210 }
1211 }
1212 Ok(Some(candidate))
1213 }
1214
1215 fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1216 debug!("is_knowable(intercrate={:?})", self.intercrate);
1217
1218 if !self.intercrate || stack.obligation.polarity() == ty::ImplPolarity::Negative {
1219 return None;
1220 }
1221
1222 let obligation = &stack.obligation;
1223 let predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1224
1225 // Okay to skip binder because of the nature of the
1226 // trait-ref-is-knowable check, which does not care about
1227 // bound regions.
1228 let trait_ref = predicate.skip_binder().trait_ref;
1229
1230 coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
1231 }
1232
1233 /// Returns `true` if the global caches can be used.
1234 fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1235 // If there are any inference variables in the `ParamEnv`, then we
1236 // always use a cache local to this particular scope. Otherwise, we
1237 // switch to a global cache.
1238 if param_env.needs_infer() {
1239 return false;
1240 }
1241
1242 // Avoid using the master cache during coherence and just rely
1243 // on the local cache. This effectively disables caching
1244 // during coherence. It is really just a simplification to
1245 // avoid us having to fear that coherence results "pollute"
1246 // the master cache. Since coherence executes pretty quickly,
1247 // it's not worth going to more trouble to increase the
1248 // hit-rate, I don't think.
1249 if self.intercrate {
1250 return false;
1251 }
1252
1253 // Otherwise, we can use the global cache.
1254 true
1255 }
1256
1257 fn check_candidate_cache(
1258 &mut self,
1259 param_env: ty::ParamEnv<'tcx>,
1260 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1261 ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1262 // Neither the global nor local cache is aware of intercrate
1263 // mode, so don't do any caching. In particular, we might
1264 // re-use the same `InferCtxt` with both an intercrate
1265 // and non-intercrate `SelectionContext`
1266 if self.intercrate {
1267 return None;
1268 }
1269 let tcx = self.tcx();
1270 let pred = &cache_fresh_trait_pred.skip_binder();
1271 let trait_ref = pred.trait_ref;
1272 if self.can_use_global_caches(param_env) {
1273 if let Some(res) = tcx
1274 .selection_cache
1275 .get(&(param_env.and(trait_ref).with_constness(pred.constness), pred.polarity), tcx)
1276 {
1277 return Some(res);
1278 }
1279 }
1280 self.infcx
1281 .selection_cache
1282 .get(&(param_env.and(trait_ref).with_constness(pred.constness), pred.polarity), tcx)
1283 }
1284
1285 /// Determines whether can we safely cache the result
1286 /// of selecting an obligation. This is almost always `true`,
1287 /// except when dealing with certain `ParamCandidate`s.
1288 ///
1289 /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1290 /// since it was usually produced directly from a `DefId`. However,
1291 /// certain cases (currently only librustdoc's blanket impl finder),
1292 /// a `ParamEnv` may be explicitly constructed with inference types.
1293 /// When this is the case, we do *not* want to cache the resulting selection
1294 /// candidate. This is due to the fact that it might not always be possible
1295 /// to equate the obligation's trait ref and the candidate's trait ref,
1296 /// if more constraints end up getting added to an inference variable.
1297 ///
1298 /// Because of this, we always want to re-run the full selection
1299 /// process for our obligation the next time we see it, since
1300 /// we might end up picking a different `SelectionCandidate` (or none at all).
1301 fn can_cache_candidate(
1302 &self,
1303 result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1304 ) -> bool {
1305 // Neither the global nor local cache is aware of intercrate
1306 // mode, so don't do any caching. In particular, we might
1307 // re-use the same `InferCtxt` with both an intercrate
1308 // and non-intercrate `SelectionContext`
1309 if self.intercrate {
1310 return false;
1311 }
1312 match result {
1313 Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
1314 _ => true,
1315 }
1316 }
1317
1318 fn insert_candidate_cache(
1319 &mut self,
1320 param_env: ty::ParamEnv<'tcx>,
1321 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1322 dep_node: DepNodeIndex,
1323 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1324 ) {
1325 let tcx = self.tcx();
1326 let pred = cache_fresh_trait_pred.skip_binder();
1327 let trait_ref = pred.trait_ref;
1328
1329 if !self.can_cache_candidate(&candidate) {
1330 debug!(?trait_ref, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1331 return;
1332 }
1333
1334 if self.can_use_global_caches(param_env) {
1335 if let Err(Overflow) = candidate {
1336 // Don't cache overflow globally; we only produce this in certain modes.
1337 } else if !trait_ref.needs_infer() {
1338 if !candidate.needs_infer() {
1339 debug!(?trait_ref, ?candidate, "insert_candidate_cache global");
1340 // This may overwrite the cache with the same value.
1341 tcx.selection_cache.insert(
1342 (param_env.and(trait_ref).with_constness(pred.constness), pred.polarity),
1343 dep_node,
1344 candidate,
1345 );
1346 return;
1347 }
1348 }
1349 }
1350
1351 debug!(?trait_ref, ?candidate, "insert_candidate_cache local");
1352 self.infcx.selection_cache.insert(
1353 (param_env.and(trait_ref).with_constness(pred.constness), pred.polarity),
1354 dep_node,
1355 candidate,
1356 );
1357 }
1358
1359 /// Matches a predicate against the bounds of its self type.
1360 ///
1361 /// Given an obligation like `<T as Foo>::Bar: Baz` where the self type is
1362 /// a projection, look at the bounds of `T::Bar`, see if we can find a
1363 /// `Baz` bound. We return indexes into the list returned by
1364 /// `tcx.item_bounds` for any applicable bounds.
1365 fn match_projection_obligation_against_definition_bounds(
1366 &mut self,
1367 obligation: &TraitObligation<'tcx>,
1368 ) -> smallvec::SmallVec<[usize; 2]> {
1369 let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1370 let placeholder_trait_predicate =
1371 self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
1372 debug!(
1373 ?placeholder_trait_predicate,
1374 "match_projection_obligation_against_definition_bounds"
1375 );
1376
1377 let tcx = self.infcx.tcx;
1378 let (def_id, substs) = match *placeholder_trait_predicate.trait_ref.self_ty().kind() {
1379 ty::Projection(ref data) => (data.item_def_id, data.substs),
1380 ty::Opaque(def_id, substs) => (def_id, substs),
1381 _ => {
1382 span_bug!(
1383 obligation.cause.span,
1384 "match_projection_obligation_against_definition_bounds() called \
1385 but self-ty is not a projection: {:?}",
1386 placeholder_trait_predicate.trait_ref.self_ty()
1387 );
1388 }
1389 };
1390 let bounds = tcx.item_bounds(def_id).subst(tcx, substs);
1391
1392 // The bounds returned by `item_bounds` may contain duplicates after
1393 // normalization, so try to deduplicate when possible to avoid
1394 // unnecessary ambiguity.
1395 let mut distinct_normalized_bounds = FxHashSet::default();
1396
1397 let matching_bounds = bounds
1398 .iter()
1399 .enumerate()
1400 .filter_map(|(idx, bound)| {
1401 let bound_predicate = bound.kind();
1402 if let ty::PredicateKind::Trait(pred) = bound_predicate.skip_binder() {
1403 let bound = bound_predicate.rebind(pred.trait_ref);
1404 if self.infcx.probe(|_| {
1405 match self.match_normalize_trait_ref(
1406 obligation,
1407 bound,
1408 placeholder_trait_predicate.trait_ref,
1409 ) {
1410 Ok(None) => true,
1411 Ok(Some(normalized_trait))
1412 if distinct_normalized_bounds.insert(normalized_trait) =>
1413 {
1414 true
1415 }
1416 _ => false,
1417 }
1418 }) {
1419 return Some(idx);
1420 }
1421 }
1422 None
1423 })
1424 .collect();
1425
1426 debug!(?matching_bounds, "match_projection_obligation_against_definition_bounds");
1427 matching_bounds
1428 }
1429
1430 /// Equates the trait in `obligation` with trait bound. If the two traits
1431 /// can be equated and the normalized trait bound doesn't contain inference
1432 /// variables or placeholders, the normalized bound is returned.
1433 fn match_normalize_trait_ref(
1434 &mut self,
1435 obligation: &TraitObligation<'tcx>,
1436 trait_bound: ty::PolyTraitRef<'tcx>,
1437 placeholder_trait_ref: ty::TraitRef<'tcx>,
1438 ) -> Result<Option<ty::PolyTraitRef<'tcx>>, ()> {
1439 debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1440 if placeholder_trait_ref.def_id != trait_bound.def_id() {
1441 // Avoid unnecessary normalization
1442 return Err(());
1443 }
1444
1445 let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1446 project::normalize_with_depth(
1447 self,
1448 obligation.param_env,
1449 obligation.cause.clone(),
1450 obligation.recursion_depth + 1,
1451 trait_bound,
1452 )
1453 });
1454 self.infcx
1455 .at(&obligation.cause, obligation.param_env)
1456 .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1457 .map(|InferOk { obligations: _, value: () }| {
1458 // This method is called within a probe, so we can't have
1459 // inference variables and placeholders escape.
1460 if !trait_bound.needs_infer() && !trait_bound.has_placeholders() {
1461 Some(trait_bound)
1462 } else {
1463 None
1464 }
1465 })
1466 .map_err(|_| ())
1467 }
1468
1469 fn evaluate_where_clause<'o>(
1470 &mut self,
1471 stack: &TraitObligationStack<'o, 'tcx>,
1472 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1473 ) -> Result<EvaluationResult, OverflowError> {
1474 self.evaluation_probe(|this| {
1475 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1476 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1477 Err(()) => Ok(EvaluatedToErr),
1478 }
1479 })
1480 }
1481
1482 pub(super) fn match_projection_projections(
1483 &mut self,
1484 obligation: &ProjectionTyObligation<'tcx>,
1485 env_predicate: PolyProjectionPredicate<'tcx>,
1486 potentially_unnormalized_candidates: bool,
1487 ) -> bool {
1488 let mut nested_obligations = Vec::new();
1489 let (infer_predicate, _) = self.infcx.replace_bound_vars_with_fresh_vars(
1490 obligation.cause.span,
1491 LateBoundRegionConversionTime::HigherRankedType,
1492 env_predicate,
1493 );
1494 let infer_projection = if potentially_unnormalized_candidates {
1495 ensure_sufficient_stack(|| {
1496 project::normalize_with_depth_to(
1497 self,
1498 obligation.param_env,
1499 obligation.cause.clone(),
1500 obligation.recursion_depth + 1,
1501 infer_predicate.projection_ty,
1502 &mut nested_obligations,
1503 )
1504 })
1505 } else {
1506 infer_predicate.projection_ty
1507 };
1508
1509 self.infcx
1510 .at(&obligation.cause, obligation.param_env)
1511 .sup(obligation.predicate, infer_projection)
1512 .map_or(false, |InferOk { obligations, value: () }| {
1513 self.evaluate_predicates_recursively(
1514 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1515 nested_obligations.into_iter().chain(obligations),
1516 )
1517 .map_or(false, |res| res.may_apply())
1518 })
1519 }
1520
1521 ///////////////////////////////////////////////////////////////////////////
1522 // WINNOW
1523 //
1524 // Winnowing is the process of attempting to resolve ambiguity by
1525 // probing further. During the winnowing process, we unify all
1526 // type variables and then we also attempt to evaluate recursive
1527 // bounds to see if they are satisfied.
1528
1529 /// Returns `true` if `victim` should be dropped in favor of
1530 /// `other`. Generally speaking we will drop duplicate
1531 /// candidates and prefer where-clause candidates.
1532 ///
1533 /// See the comment for "SelectionCandidate" for more details.
1534 fn candidate_should_be_dropped_in_favor_of(
1535 &mut self,
1536 victim: &EvaluatedCandidate<'tcx>,
1537 other: &EvaluatedCandidate<'tcx>,
1538 needs_infer: bool,
1539 ) -> bool {
1540 if victim.candidate == other.candidate {
1541 return true;
1542 }
1543
1544 // Check if a bound would previously have been removed when normalizing
1545 // the param_env so that it can be given the lowest priority. See
1546 // #50825 for the motivation for this.
1547 let is_global = |cand: &ty::PolyTraitRef<'tcx>| {
1548 cand.is_global(self.infcx.tcx) && !cand.has_late_bound_regions()
1549 };
1550
1551 // (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
1552 // and `DiscriminantKindCandidate` to anything else.
1553 //
1554 // This is a fix for #53123 and prevents winnowing from accidentally extending the
1555 // lifetime of a variable.
1556 match (&other.candidate, &victim.candidate) {
1557 (_, AutoImplCandidate(..)) | (AutoImplCandidate(..), _) => {
1558 bug!(
1559 "default implementations shouldn't be recorded \
1560 when there are other valid candidates"
1561 );
1562 }
1563
1564 // (*)
1565 (
1566 BuiltinCandidate { has_nested: false }
1567 | DiscriminantKindCandidate
1568 | PointeeCandidate
1569 | ConstDropCandidate,
1570 _,
1571 ) => true,
1572 (
1573 _,
1574 BuiltinCandidate { has_nested: false }
1575 | DiscriminantKindCandidate
1576 | PointeeCandidate
1577 | ConstDropCandidate,
1578 ) => false,
1579
1580 (
1581 ParamCandidate((other, other_polarity)),
1582 ParamCandidate((victim, victim_polarity)),
1583 ) => {
1584 let same_except_bound_vars = other.value.skip_binder()
1585 == victim.value.skip_binder()
1586 && other.constness == victim.constness
1587 && other_polarity == victim_polarity
1588 && !other.value.skip_binder().has_escaping_bound_vars();
1589 if same_except_bound_vars {
1590 // See issue #84398. In short, we can generate multiple ParamCandidates which are
1591 // the same except for unused bound vars. Just pick the one with the fewest bound vars
1592 // or the current one if tied (they should both evaluate to the same answer). This is
1593 // probably best characterized as a "hack", since we might prefer to just do our
1594 // best to *not* create essentially duplicate candidates in the first place.
1595 other.value.bound_vars().len() <= victim.value.bound_vars().len()
1596 } else if other.value == victim.value
1597 && victim.constness == ty::BoundConstness::NotConst
1598 && other_polarity == victim_polarity
1599 {
1600 // Drop otherwise equivalent non-const candidates in favor of const candidates.
1601 true
1602 } else {
1603 false
1604 }
1605 }
1606
1607 // Drop otherwise equivalent non-const fn pointer candidates
1608 (FnPointerCandidate { .. }, FnPointerCandidate { is_const: false }) => true,
1609
1610 // Global bounds from the where clause should be ignored
1611 // here (see issue #50825). Otherwise, we have a where
1612 // clause so don't go around looking for impls.
1613 // Arbitrarily give param candidates priority
1614 // over projection and object candidates.
1615 (
1616 ParamCandidate(ref cand),
1617 ImplCandidate(..)
1618 | ClosureCandidate
1619 | GeneratorCandidate
1620 | FnPointerCandidate { .. }
1621 | BuiltinObjectCandidate
1622 | BuiltinUnsizeCandidate
1623 | TraitUpcastingUnsizeCandidate(_)
1624 | BuiltinCandidate { .. }
1625 | TraitAliasCandidate(..)
1626 | ObjectCandidate(_)
1627 | ProjectionCandidate(_),
1628 ) => !is_global(&cand.0.value),
1629 (ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(ref cand)) => {
1630 // Prefer these to a global where-clause bound
1631 // (see issue #50825).
1632 is_global(&cand.0.value)
1633 }
1634 (
1635 ImplCandidate(_)
1636 | ClosureCandidate
1637 | GeneratorCandidate
1638 | FnPointerCandidate { .. }
1639 | BuiltinObjectCandidate
1640 | BuiltinUnsizeCandidate
1641 | TraitUpcastingUnsizeCandidate(_)
1642 | BuiltinCandidate { has_nested: true }
1643 | TraitAliasCandidate(..),
1644 ParamCandidate(ref cand),
1645 ) => {
1646 // Prefer these to a global where-clause bound
1647 // (see issue #50825).
1648 is_global(&cand.0.value) && other.evaluation.must_apply_modulo_regions()
1649 }
1650
1651 (ProjectionCandidate(i), ProjectionCandidate(j))
1652 | (ObjectCandidate(i), ObjectCandidate(j)) => {
1653 // Arbitrarily pick the lower numbered candidate for backwards
1654 // compatibility reasons. Don't let this affect inference.
1655 i < j && !needs_infer
1656 }
1657 (ObjectCandidate(_), ProjectionCandidate(_))
1658 | (ProjectionCandidate(_), ObjectCandidate(_)) => {
1659 bug!("Have both object and projection candidate")
1660 }
1661
1662 // Arbitrarily give projection and object candidates priority.
1663 (
1664 ObjectCandidate(_) | ProjectionCandidate(_),
1665 ImplCandidate(..)
1666 | ClosureCandidate
1667 | GeneratorCandidate
1668 | FnPointerCandidate { .. }
1669 | BuiltinObjectCandidate
1670 | BuiltinUnsizeCandidate
1671 | TraitUpcastingUnsizeCandidate(_)
1672 | BuiltinCandidate { .. }
1673 | TraitAliasCandidate(..),
1674 ) => true,
1675
1676 (
1677 ImplCandidate(..)
1678 | ClosureCandidate
1679 | GeneratorCandidate
1680 | FnPointerCandidate { .. }
1681 | BuiltinObjectCandidate
1682 | BuiltinUnsizeCandidate
1683 | TraitUpcastingUnsizeCandidate(_)
1684 | BuiltinCandidate { .. }
1685 | TraitAliasCandidate(..),
1686 ObjectCandidate(_) | ProjectionCandidate(_),
1687 ) => false,
1688
1689 (&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
1690 // See if we can toss out `victim` based on specialization.
1691 // This requires us to know *for sure* that the `other` impl applies
1692 // i.e., `EvaluatedToOk`.
1693 //
1694 // FIXME(@lcnr): Using `modulo_regions` here seems kind of scary
1695 // to me but is required for `std` to compile, so I didn't change it
1696 // for now.
1697 let tcx = self.tcx();
1698 if other.evaluation.must_apply_modulo_regions() {
1699 if tcx.specializes((other_def, victim_def)) {
1700 return true;
1701 }
1702 }
1703
1704 if other.evaluation.must_apply_considering_regions() {
1705 match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
1706 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
1707 // Subtle: If the predicate we are evaluating has inference
1708 // variables, do *not* allow discarding candidates due to
1709 // marker trait impls.
1710 //
1711 // Without this restriction, we could end up accidentally
1712 // constrainting inference variables based on an arbitrarily
1713 // chosen trait impl.
1714 //
1715 // Imagine we have the following code:
1716 //
1717 // ```rust
1718 // #[marker] trait MyTrait {}
1719 // impl MyTrait for u8 {}
1720 // impl MyTrait for bool {}
1721 // ```
1722 //
1723 // And we are evaluating the predicate `<_#0t as MyTrait>`.
1724 //
1725 // During selection, we will end up with one candidate for each
1726 // impl of `MyTrait`. If we were to discard one impl in favor
1727 // of the other, we would be left with one candidate, causing
1728 // us to "successfully" select the predicate, unifying
1729 // _#0t with (for example) `u8`.
1730 //
1731 // However, we have no reason to believe that this unification
1732 // is correct - we've essentially just picked an arbitrary
1733 // *possibility* for _#0t, and required that this be the *only*
1734 // possibility.
1735 //
1736 // Eventually, we will either:
1737 // 1) Unify all inference variables in the predicate through
1738 // some other means (e.g. type-checking of a function). We will
1739 // then be in a position to drop marker trait candidates
1740 // without constraining inference variables (since there are
1741 // none left to constrin)
1742 // 2) Be left with some unconstrained inference variables. We
1743 // will then correctly report an inference error, since the
1744 // existence of multiple marker trait impls tells us nothing
1745 // about which one should actually apply.
1746 !needs_infer
1747 }
1748 Some(_) => true,
1749 None => false,
1750 }
1751 } else {
1752 false
1753 }
1754 }
1755
1756 // Everything else is ambiguous
1757 (
1758 ImplCandidate(_)
1759 | ClosureCandidate
1760 | GeneratorCandidate
1761 | FnPointerCandidate { .. }
1762 | BuiltinObjectCandidate
1763 | BuiltinUnsizeCandidate
1764 | TraitUpcastingUnsizeCandidate(_)
1765 | BuiltinCandidate { has_nested: true }
1766 | TraitAliasCandidate(..),
1767 ImplCandidate(_)
1768 | ClosureCandidate
1769 | GeneratorCandidate
1770 | FnPointerCandidate { .. }
1771 | BuiltinObjectCandidate
1772 | BuiltinUnsizeCandidate
1773 | TraitUpcastingUnsizeCandidate(_)
1774 | BuiltinCandidate { has_nested: true }
1775 | TraitAliasCandidate(..),
1776 ) => false,
1777 }
1778 }
1779
1780 fn sized_conditions(
1781 &mut self,
1782 obligation: &TraitObligation<'tcx>,
1783 ) -> BuiltinImplConditions<'tcx> {
1784 use self::BuiltinImplConditions::{Ambiguous, None, Where};
1785
1786 // NOTE: binder moved to (*)
1787 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1788
1789 match self_ty.kind() {
1790 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1791 | ty::Uint(_)
1792 | ty::Int(_)
1793 | ty::Bool
1794 | ty::Float(_)
1795 | ty::FnDef(..)
1796 | ty::FnPtr(_)
1797 | ty::RawPtr(..)
1798 | ty::Char
1799 | ty::Ref(..)
1800 | ty::Generator(..)
1801 | ty::GeneratorWitness(..)
1802 | ty::Array(..)
1803 | ty::Closure(..)
1804 | ty::Never
1805 | ty::Error(_) => {
1806 // safe for everything
1807 Where(ty::Binder::dummy(Vec::new()))
1808 }
1809
1810 ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
1811
1812 ty::Tuple(tys) => Where(
1813 obligation
1814 .predicate
1815 .rebind(tys.last().into_iter().map(|k| k.expect_ty()).collect()),
1816 ),
1817
1818 ty::Adt(def, substs) => {
1819 let sized_crit = def.sized_constraint(self.tcx());
1820 // (*) binder moved here
1821 Where(
1822 obligation.predicate.rebind({
1823 sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
1824 }),
1825 )
1826 }
1827
1828 ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
1829 ty::Infer(ty::TyVar(_)) => Ambiguous,
1830
1831 ty::Placeholder(..)
1832 | ty::Bound(..)
1833 | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1834 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1835 }
1836 }
1837 }
1838
1839 fn copy_clone_conditions(
1840 &mut self,
1841 obligation: &TraitObligation<'tcx>,
1842 ) -> BuiltinImplConditions<'tcx> {
1843 // NOTE: binder moved to (*)
1844 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1845
1846 use self::BuiltinImplConditions::{Ambiguous, None, Where};
1847
1848 match *self_ty.kind() {
1849 ty::Infer(ty::IntVar(_))
1850 | ty::Infer(ty::FloatVar(_))
1851 | ty::FnDef(..)
1852 | ty::FnPtr(_)
1853 | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
1854
1855 ty::Uint(_)
1856 | ty::Int(_)
1857 | ty::Bool
1858 | ty::Float(_)
1859 | ty::Char
1860 | ty::RawPtr(..)
1861 | ty::Never
1862 | ty::Ref(_, _, hir::Mutability::Not)
1863 | ty::Array(..) => {
1864 // Implementations provided in libcore
1865 None
1866 }
1867
1868 ty::Dynamic(..)
1869 | ty::Str
1870 | ty::Slice(..)
1871 | ty::Generator(..)
1872 | ty::GeneratorWitness(..)
1873 | ty::Foreign(..)
1874 | ty::Ref(_, _, hir::Mutability::Mut) => None,
1875
1876 ty::Tuple(tys) => {
1877 // (*) binder moved here
1878 Where(obligation.predicate.rebind(tys.iter().map(|k| k.expect_ty()).collect()))
1879 }
1880
1881 ty::Closure(_, substs) => {
1882 // (*) binder moved here
1883 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1884 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
1885 // Not yet resolved.
1886 Ambiguous
1887 } else {
1888 Where(obligation.predicate.rebind(substs.as_closure().upvar_tys().collect()))
1889 }
1890 }
1891
1892 ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
1893 // Fallback to whatever user-defined impls exist in this case.
1894 None
1895 }
1896
1897 ty::Infer(ty::TyVar(_)) => {
1898 // Unbound type variable. Might or might not have
1899 // applicable impls and so forth, depending on what
1900 // those type variables wind up being bound to.
1901 Ambiguous
1902 }
1903
1904 ty::Placeholder(..)
1905 | ty::Bound(..)
1906 | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1907 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1908 }
1909 }
1910 }
1911
1912 /// For default impls, we need to break apart a type into its
1913 /// "constituent types" -- meaning, the types that it contains.
1914 ///
1915 /// Here are some (simple) examples:
1916 ///
1917 /// ```
1918 /// (i32, u32) -> [i32, u32]
1919 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1920 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1921 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1922 /// ```
1923 fn constituent_types_for_ty(
1924 &self,
1925 t: ty::Binder<'tcx, Ty<'tcx>>,
1926 ) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
1927 match *t.skip_binder().kind() {
1928 ty::Uint(_)
1929 | ty::Int(_)
1930 | ty::Bool
1931 | ty::Float(_)
1932 | ty::FnDef(..)
1933 | ty::FnPtr(_)
1934 | ty::Str
1935 | ty::Error(_)
1936 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1937 | ty::Never
1938 | ty::Char => ty::Binder::dummy(Vec::new()),
1939
1940 ty::Placeholder(..)
1941 | ty::Dynamic(..)
1942 | ty::Param(..)
1943 | ty::Foreign(..)
1944 | ty::Projection(..)
1945 | ty::Bound(..)
1946 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1947 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
1948 }
1949
1950 ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
1951 t.rebind(vec![element_ty])
1952 }
1953
1954 ty::Array(element_ty, _) | ty::Slice(element_ty) => t.rebind(vec![element_ty]),
1955
1956 ty::Tuple(ref tys) => {
1957 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
1958 t.rebind(tys.iter().map(|k| k.expect_ty()).collect())
1959 }
1960
1961 ty::Closure(_, ref substs) => {
1962 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1963 t.rebind(vec![ty])
1964 }
1965
1966 ty::Generator(_, ref substs, _) => {
1967 let ty = self.infcx.shallow_resolve(substs.as_generator().tupled_upvars_ty());
1968 let witness = substs.as_generator().witness();
1969 t.rebind(vec![ty].into_iter().chain(iter::once(witness)).collect())
1970 }
1971
1972 ty::GeneratorWitness(types) => {
1973 debug_assert!(!types.has_escaping_bound_vars());
1974 types.map_bound(|types| types.to_vec())
1975 }
1976
1977 // For `PhantomData<T>`, we pass `T`.
1978 ty::Adt(def, substs) if def.is_phantom_data() => t.rebind(substs.types().collect()),
1979
1980 ty::Adt(def, substs) => {
1981 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect())
1982 }
1983
1984 ty::Opaque(def_id, substs) => {
1985 // We can resolve the `impl Trait` to its concrete type,
1986 // which enforces a DAG between the functions requiring
1987 // the auto trait bounds in question.
1988 t.rebind(vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)])
1989 }
1990 }
1991 }
1992
1993 fn collect_predicates_for_types(
1994 &mut self,
1995 param_env: ty::ParamEnv<'tcx>,
1996 cause: ObligationCause<'tcx>,
1997 recursion_depth: usize,
1998 trait_def_id: DefId,
1999 types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
2000 ) -> Vec<PredicateObligation<'tcx>> {
2001 // Because the types were potentially derived from
2002 // higher-ranked obligations they may reference late-bound
2003 // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2004 // yield a type like `for<'a> &'a i32`. In general, we
2005 // maintain the invariant that we never manipulate bound
2006 // regions, so we have to process these bound regions somehow.
2007 //
2008 // The strategy is to:
2009 //
2010 // 1. Instantiate those regions to placeholder regions (e.g.,
2011 // `for<'a> &'a i32` becomes `&0 i32`.
2012 // 2. Produce something like `&'0 i32 : Copy`
2013 // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2014
2015 types
2016 .as_ref()
2017 .skip_binder() // binder moved -\
2018 .iter()
2019 .flat_map(|ty| {
2020 let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(ty); // <----/
2021
2022 self.infcx.commit_unconditionally(|_| {
2023 let placeholder_ty = self.infcx.replace_bound_vars_with_placeholders(ty);
2024 let Normalized { value: normalized_ty, mut obligations } =
2025 ensure_sufficient_stack(|| {
2026 project::normalize_with_depth(
2027 self,
2028 param_env,
2029 cause.clone(),
2030 recursion_depth,
2031 placeholder_ty,
2032 )
2033 });
2034 let placeholder_obligation = predicate_for_trait_def(
2035 self.tcx(),
2036 param_env,
2037 cause.clone(),
2038 trait_def_id,
2039 recursion_depth,
2040 normalized_ty,
2041 &[],
2042 );
2043 obligations.push(placeholder_obligation);
2044 obligations
2045 })
2046 })
2047 .collect()
2048 }
2049
2050 ///////////////////////////////////////////////////////////////////////////
2051 // Matching
2052 //
2053 // Matching is a common path used for both evaluation and
2054 // confirmation. It basically unifies types that appear in impls
2055 // and traits. This does affect the surrounding environment;
2056 // therefore, when used during evaluation, match routines must be
2057 // run inside of a `probe()` so that their side-effects are
2058 // contained.
2059
2060 fn rematch_impl(
2061 &mut self,
2062 impl_def_id: DefId,
2063 obligation: &TraitObligation<'tcx>,
2064 ) -> Normalized<'tcx, SubstsRef<'tcx>> {
2065 match self.match_impl(impl_def_id, obligation) {
2066 Ok(substs) => substs,
2067 Err(()) => {
2068 bug!(
2069 "Impl {:?} was matchable against {:?} but now is not",
2070 impl_def_id,
2071 obligation
2072 );
2073 }
2074 }
2075 }
2076
2077 #[tracing::instrument(level = "debug", skip(self))]
2078 fn match_impl(
2079 &mut self,
2080 impl_def_id: DefId,
2081 obligation: &TraitObligation<'tcx>,
2082 ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
2083 let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
2084
2085 // Before we create the substitutions and everything, first
2086 // consider a "quick reject". This avoids creating more types
2087 // and so forth that we need to.
2088 if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
2089 return Err(());
2090 }
2091
2092 let placeholder_obligation =
2093 self.infcx().replace_bound_vars_with_placeholders(obligation.predicate);
2094 let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2095
2096 let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
2097
2098 let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
2099
2100 debug!(?impl_trait_ref);
2101
2102 let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2103 ensure_sufficient_stack(|| {
2104 project::normalize_with_depth(
2105 self,
2106 obligation.param_env,
2107 obligation.cause.clone(),
2108 obligation.recursion_depth + 1,
2109 impl_trait_ref,
2110 )
2111 });
2112
2113 debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2114
2115 let cause = ObligationCause::new(
2116 obligation.cause.span,
2117 obligation.cause.body_id,
2118 ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2119 );
2120
2121 let InferOk { obligations, .. } = self
2122 .infcx
2123 .at(&cause, obligation.param_env)
2124 .eq(placeholder_obligation_trait_ref, impl_trait_ref)
2125 .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
2126 nested_obligations.extend(obligations);
2127
2128 if !self.intercrate
2129 && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
2130 {
2131 debug!("match_impl: reservation impls only apply in intercrate mode");
2132 return Err(());
2133 }
2134
2135 debug!(?impl_substs, ?nested_obligations, "match_impl: success");
2136 Ok(Normalized { value: impl_substs, obligations: nested_obligations })
2137 }
2138
2139 fn fast_reject_trait_refs(
2140 &mut self,
2141 obligation: &TraitObligation<'_>,
2142 impl_trait_ref: &ty::TraitRef<'_>,
2143 ) -> bool {
2144 // We can avoid creating type variables and doing the full
2145 // substitution if we find that any of the input types, when
2146 // simplified, do not match.
2147
2148 iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs).any(
2149 |(obligation_arg, impl_arg)| {
2150 match (obligation_arg.unpack(), impl_arg.unpack()) {
2151 (GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
2152 let simplified_obligation_ty =
2153 fast_reject::simplify_type(self.tcx(), obligation_ty, true);
2154 let simplified_impl_ty =
2155 fast_reject::simplify_type(self.tcx(), impl_ty, false);
2156
2157 simplified_obligation_ty.is_some()
2158 && simplified_impl_ty.is_some()
2159 && simplified_obligation_ty != simplified_impl_ty
2160 }
2161 (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
2162 // Lifetimes can never cause a rejection.
2163 false
2164 }
2165 (GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
2166 // Conservatively ignore consts (i.e. assume they might
2167 // unify later) until we have `fast_reject` support for
2168 // them (if we'll ever need it, even).
2169 false
2170 }
2171 _ => unreachable!(),
2172 }
2173 },
2174 )
2175 }
2176
2177 /// Normalize `where_clause_trait_ref` and try to match it against
2178 /// `obligation`. If successful, return any predicates that
2179 /// result from the normalization.
2180 fn match_where_clause_trait_ref(
2181 &mut self,
2182 obligation: &TraitObligation<'tcx>,
2183 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2184 ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2185 self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2186 }
2187
2188 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2189 /// obligation is satisfied.
2190 #[instrument(skip(self), level = "debug")]
2191 fn match_poly_trait_ref(
2192 &mut self,
2193 obligation: &TraitObligation<'tcx>,
2194 poly_trait_ref: ty::PolyTraitRef<'tcx>,
2195 ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2196 self.infcx
2197 .at(&obligation.cause, obligation.param_env)
2198 .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
2199 .map(|InferOk { obligations, .. }| obligations)
2200 .map_err(|_| ())
2201 }
2202
2203 ///////////////////////////////////////////////////////////////////////////
2204 // Miscellany
2205
2206 fn match_fresh_trait_refs(
2207 &self,
2208 previous: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2209 current: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2210 param_env: ty::ParamEnv<'tcx>,
2211 ) -> bool {
2212 let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
2213 matcher.relate(previous, current).is_ok()
2214 }
2215
2216 fn push_stack<'o>(
2217 &mut self,
2218 previous_stack: TraitObligationStackList<'o, 'tcx>,
2219 obligation: &'o TraitObligation<'tcx>,
2220 ) -> TraitObligationStack<'o, 'tcx> {
2221 let fresh_trait_ref = obligation
2222 .predicate
2223 .to_poly_trait_ref()
2224 .fold_with(&mut self.freshener)
2225 .with_constness(obligation.predicate.skip_binder().constness);
2226
2227 let dfn = previous_stack.cache.next_dfn();
2228 let depth = previous_stack.depth() + 1;
2229 TraitObligationStack {
2230 obligation,
2231 fresh_trait_ref,
2232 reached_depth: Cell::new(depth),
2233 previous: previous_stack,
2234 dfn,
2235 depth,
2236 }
2237 }
2238
2239 #[instrument(skip(self), level = "debug")]
2240 fn closure_trait_ref_unnormalized(
2241 &mut self,
2242 obligation: &TraitObligation<'tcx>,
2243 substs: SubstsRef<'tcx>,
2244 ) -> ty::PolyTraitRef<'tcx> {
2245 let closure_sig = substs.as_closure().sig();
2246
2247 debug!(?closure_sig);
2248
2249 // (1) Feels icky to skip the binder here, but OTOH we know
2250 // that the self-type is an unboxed closure type and hence is
2251 // in fact unparameterized (or at least does not reference any
2252 // regions bound in the obligation). Still probably some
2253 // refactoring could make this nicer.
2254 closure_trait_ref_and_return_type(
2255 self.tcx(),
2256 obligation.predicate.def_id(),
2257 obligation.predicate.skip_binder().self_ty(), // (1)
2258 closure_sig,
2259 util::TupleArgumentsFlag::No,
2260 )
2261 .map_bound(|(trait_ref, _)| trait_ref)
2262 }
2263
2264 fn generator_trait_ref_unnormalized(
2265 &mut self,
2266 obligation: &TraitObligation<'tcx>,
2267 substs: SubstsRef<'tcx>,
2268 ) -> ty::PolyTraitRef<'tcx> {
2269 let gen_sig = substs.as_generator().poly_sig();
2270
2271 // (1) Feels icky to skip the binder here, but OTOH we know
2272 // that the self-type is an generator type and hence is
2273 // in fact unparameterized (or at least does not reference any
2274 // regions bound in the obligation). Still probably some
2275 // refactoring could make this nicer.
2276
2277 super::util::generator_trait_ref_and_outputs(
2278 self.tcx(),
2279 obligation.predicate.def_id(),
2280 obligation.predicate.skip_binder().self_ty(), // (1)
2281 gen_sig,
2282 )
2283 .map_bound(|(trait_ref, ..)| trait_ref)
2284 }
2285
2286 /// Returns the obligations that are implied by instantiating an
2287 /// impl or trait. The obligations are substituted and fully
2288 /// normalized. This is used when confirming an impl or default
2289 /// impl.
2290 #[tracing::instrument(level = "debug", skip(self, cause, param_env))]
2291 fn impl_or_trait_obligations(
2292 &mut self,
2293 cause: ObligationCause<'tcx>,
2294 recursion_depth: usize,
2295 param_env: ty::ParamEnv<'tcx>,
2296 def_id: DefId, // of impl or trait
2297 substs: SubstsRef<'tcx>, // for impl or trait
2298 ) -> Vec<PredicateObligation<'tcx>> {
2299 let tcx = self.tcx();
2300
2301 // To allow for one-pass evaluation of the nested obligation,
2302 // each predicate must be preceded by the obligations required
2303 // to normalize it.
2304 // for example, if we have:
2305 // impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2306 // the impl will have the following predicates:
2307 // <V as Iterator>::Item = U,
2308 // U: Iterator, U: Sized,
2309 // V: Iterator, V: Sized,
2310 // <U as Iterator>::Item: Copy
2311 // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2312 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2313 // `$1: Copy`, so we must ensure the obligations are emitted in
2314 // that order.
2315 let predicates = tcx.predicates_of(def_id);
2316 debug!(?predicates);
2317 assert_eq!(predicates.parent, None);
2318 let mut obligations = Vec::with_capacity(predicates.predicates.len());
2319 for (predicate, _) in predicates.predicates {
2320 debug!(?predicate);
2321 let predicate = normalize_with_depth_to(
2322 self,
2323 param_env,
2324 cause.clone(),
2325 recursion_depth,
2326 predicate.subst(tcx, substs),
2327 &mut obligations,
2328 );
2329 obligations.push(Obligation {
2330 cause: cause.clone(),
2331 recursion_depth,
2332 param_env,
2333 predicate,
2334 });
2335 }
2336
2337 // We are performing deduplication here to avoid exponential blowups
2338 // (#38528) from happening, but the real cause of the duplication is
2339 // unknown. What we know is that the deduplication avoids exponential
2340 // amount of predicates being propagated when processing deeply nested
2341 // types.
2342 //
2343 // This code is hot enough that it's worth avoiding the allocation
2344 // required for the FxHashSet when possible. Special-casing lengths 0,
2345 // 1 and 2 covers roughly 75-80% of the cases.
2346 if obligations.len() <= 1 {
2347 // No possibility of duplicates.
2348 } else if obligations.len() == 2 {
2349 // Only two elements. Drop the second if they are equal.
2350 if obligations[0] == obligations[1] {
2351 obligations.truncate(1);
2352 }
2353 } else {
2354 // Three or more elements. Use a general deduplication process.
2355 let mut seen = FxHashSet::default();
2356 obligations.retain(|i| seen.insert(i.clone()));
2357 }
2358
2359 obligations
2360 }
2361 }
2362
2363 trait TraitObligationExt<'tcx> {
2364 fn derived_cause(
2365 &self,
2366 variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2367 ) -> ObligationCause<'tcx>;
2368 }
2369
2370 impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
2371 fn derived_cause(
2372 &self,
2373 variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2374 ) -> ObligationCause<'tcx> {
2375 /*!
2376 * Creates a cause for obligations that are derived from
2377 * `obligation` by a recursive search (e.g., for a builtin
2378 * bound, or eventually a `auto trait Foo`). If `obligation`
2379 * is itself a derived obligation, this is just a clone, but
2380 * otherwise we create a "derived obligation" cause so as to
2381 * keep track of the original root obligation for error
2382 * reporting.
2383 */
2384
2385 let obligation = self;
2386
2387 // NOTE(flaper87): As of now, it keeps track of the whole error
2388 // chain. Ideally, we should have a way to configure this either
2389 // by using -Z verbose or just a CLI argument.
2390 let derived_cause = DerivedObligationCause {
2391 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
2392 parent_code: Lrc::new(obligation.cause.code.clone()),
2393 };
2394 let derived_code = variant(derived_cause);
2395 ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2396 }
2397 }
2398
2399 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2400 fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2401 TraitObligationStackList::with(self)
2402 }
2403
2404 fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2405 self.previous.cache
2406 }
2407
2408 fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2409 self.list()
2410 }
2411
2412 /// Indicates that attempting to evaluate this stack entry
2413 /// required accessing something from the stack at depth `reached_depth`.
2414 fn update_reached_depth(&self, reached_depth: usize) {
2415 assert!(
2416 self.depth >= reached_depth,
2417 "invoked `update_reached_depth` with something under this stack: \
2418 self.depth={} reached_depth={}",
2419 self.depth,
2420 reached_depth,
2421 );
2422 debug!(reached_depth, "update_reached_depth");
2423 let mut p = self;
2424 while reached_depth < p.depth {
2425 debug!(?p.fresh_trait_ref, "update_reached_depth: marking as cycle participant");
2426 p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2427 p = p.previous.head.unwrap();
2428 }
2429 }
2430 }
2431
2432 /// The "provisional evaluation cache" is used to store intermediate cache results
2433 /// when solving auto traits. Auto traits are unusual in that they can support
2434 /// cycles. So, for example, a "proof tree" like this would be ok:
2435 ///
2436 /// - `Foo<T>: Send` :-
2437 /// - `Bar<T>: Send` :-
2438 /// - `Foo<T>: Send` -- cycle, but ok
2439 /// - `Baz<T>: Send`
2440 ///
2441 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2442 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2443 /// For non-auto traits, this cycle would be an error, but for auto traits (because
2444 /// they are coinductive) it is considered ok.
2445 ///
2446 /// However, there is a complication: at the point where we have
2447 /// "proven" `Bar<T>: Send`, we have in fact only proven it
2448 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
2449 /// *under the assumption* that `Foo<T>: Send`. But what if we later
2450 /// find out this assumption is wrong? Specifically, we could
2451 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
2452 /// `Bar<T>: Send` didn't turn out to be true.
2453 ///
2454 /// In Issue #60010, we found a bug in rustc where it would cache
2455 /// these intermediate results. This was fixed in #60444 by disabling
2456 /// *all* caching for things involved in a cycle -- in our example,
2457 /// that would mean we don't cache that `Bar<T>: Send`. But this led
2458 /// to large slowdowns.
2459 ///
2460 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2461 /// first requires proving `Bar<T>: Send` (which is true:
2462 ///
2463 /// - `Foo<T>: Send` :-
2464 /// - `Bar<T>: Send` :-
2465 /// - `Foo<T>: Send` -- cycle, but ok
2466 /// - `Baz<T>: Send`
2467 /// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2468 /// - `*const T: Send` -- but what if we later encounter an error?
2469 ///
2470 /// The *provisional evaluation cache* resolves this issue. It stores
2471 /// cache results that we've proven but which were involved in a cycle
2472 /// in some way. We track the minimal stack depth (i.e., the
2473 /// farthest from the top of the stack) that we are dependent on.
2474 /// The idea is that the cache results within are all valid -- so long as
2475 /// none of the nodes in between the current node and the node at that minimum
2476 /// depth result in an error (in which case the cached results are just thrown away).
2477 ///
2478 /// During evaluation, we consult this provisional cache and rely on
2479 /// it. Accessing a cached value is considered equivalent to accessing
2480 /// a result at `reached_depth`, so it marks the *current* solution as
2481 /// provisional as well. If an error is encountered, we toss out any
2482 /// provisional results added from the subtree that encountered the
2483 /// error. When we pop the node at `reached_depth` from the stack, we
2484 /// can commit all the things that remain in the provisional cache.
2485 struct ProvisionalEvaluationCache<'tcx> {
2486 /// next "depth first number" to issue -- just a counter
2487 dfn: Cell<usize>,
2488
2489 /// Map from cache key to the provisionally evaluated thing.
2490 /// The cache entries contain the result but also the DFN in which they
2491 /// were added. The DFN is used to clear out values on failure.
2492 ///
2493 /// Imagine we have a stack like:
2494 ///
2495 /// - `A B C` and we add a cache for the result of C (DFN 2)
2496 /// - Then we have a stack `A B D` where `D` has DFN 3
2497 /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2498 /// - `E` generates various cache entries which have cyclic dependices on `B`
2499 /// - `A B D E F` and so forth
2500 /// - the DFN of `F` for example would be 5
2501 /// - then we determine that `E` is in error -- we will then clear
2502 /// all cache values whose DFN is >= 4 -- in this case, that
2503 /// means the cached value for `F`.
2504 map: RefCell<FxHashMap<ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, ProvisionalEvaluation>>,
2505 }
2506
2507 /// A cache value for the provisional cache: contains the depth-first
2508 /// number (DFN) and result.
2509 #[derive(Copy, Clone, Debug)]
2510 struct ProvisionalEvaluation {
2511 from_dfn: usize,
2512 reached_depth: usize,
2513 result: EvaluationResult,
2514 }
2515
2516 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2517 fn default() -> Self {
2518 Self { dfn: Cell::new(0), map: Default::default() }
2519 }
2520 }
2521
2522 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2523 /// Get the next DFN in sequence (basically a counter).
2524 fn next_dfn(&self) -> usize {
2525 let result = self.dfn.get();
2526 self.dfn.set(result + 1);
2527 result
2528 }
2529
2530 /// Check the provisional cache for any result for
2531 /// `fresh_trait_ref`. If there is a hit, then you must consider
2532 /// it an access to the stack slots at depth
2533 /// `reached_depth` (from the returned value).
2534 fn get_provisional(
2535 &self,
2536 fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2537 ) -> Option<ProvisionalEvaluation> {
2538 debug!(
2539 ?fresh_trait_ref,
2540 "get_provisional = {:#?}",
2541 self.map.borrow().get(&fresh_trait_ref),
2542 );
2543 Some(*self.map.borrow().get(&fresh_trait_ref)?)
2544 }
2545
2546 /// Insert a provisional result into the cache. The result came
2547 /// from the node with the given DFN. It accessed a minimum depth
2548 /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
2549 /// and resulted in `result`.
2550 fn insert_provisional(
2551 &self,
2552 from_dfn: usize,
2553 reached_depth: usize,
2554 fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2555 result: EvaluationResult,
2556 ) {
2557 debug!(?from_dfn, ?fresh_trait_ref, ?result, "insert_provisional");
2558
2559 let mut map = self.map.borrow_mut();
2560
2561 // Subtle: when we complete working on the DFN `from_dfn`, anything
2562 // that remains in the provisional cache must be dependent on some older
2563 // stack entry than `from_dfn`. We have to update their depth with our transitive
2564 // depth in that case or else it would be referring to some popped note.
2565 //
2566 // Example:
2567 // A (reached depth 0)
2568 // ...
2569 // B // depth 1 -- reached depth = 0
2570 // C // depth 2 -- reached depth = 1 (should be 0)
2571 // B
2572 // A // depth 0
2573 // D (reached depth 1)
2574 // C (cache -- reached depth = 2)
2575 for (_k, v) in &mut *map {
2576 if v.from_dfn >= from_dfn {
2577 v.reached_depth = reached_depth.min(v.reached_depth);
2578 }
2579 }
2580
2581 map.insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, reached_depth, result });
2582 }
2583
2584 /// Invoked when the node with dfn `dfn` does not get a successful
2585 /// result. This will clear out any provisional cache entries
2586 /// that were added since `dfn` was created. This is because the
2587 /// provisional entries are things which must assume that the
2588 /// things on the stack at the time of their creation succeeded --
2589 /// since the failing node is presently at the top of the stack,
2590 /// these provisional entries must either depend on it or some
2591 /// ancestor of it.
2592 fn on_failure(&self, dfn: usize) {
2593 debug!(?dfn, "on_failure");
2594 self.map.borrow_mut().retain(|key, eval| {
2595 if !eval.from_dfn >= dfn {
2596 debug!("on_failure: removing {:?}", key);
2597 false
2598 } else {
2599 true
2600 }
2601 });
2602 }
2603
2604 /// Invoked when the node at depth `depth` completed without
2605 /// depending on anything higher in the stack (if that completion
2606 /// was a failure, then `on_failure` should have been invoked
2607 /// already). The callback `op` will be invoked for each
2608 /// provisional entry that we can now confirm.
2609 ///
2610 /// Note that we may still have provisional cache items remaining
2611 /// in the cache when this is done. For example, if there is a
2612 /// cycle:
2613 ///
2614 /// * A depends on...
2615 /// * B depends on A
2616 /// * C depends on...
2617 /// * D depends on C
2618 /// * ...
2619 ///
2620 /// Then as we complete the C node we will have a provisional cache
2621 /// with results for A, B, C, and D. This method would clear out
2622 /// the C and D results, but leave A and B provisional.
2623 ///
2624 /// This is determined based on the DFN: we remove any provisional
2625 /// results created since `dfn` started (e.g., in our example, dfn
2626 /// would be 2, representing the C node, and hence we would
2627 /// remove the result for D, which has DFN 3, but not the results for
2628 /// A and B, which have DFNs 0 and 1 respectively).
2629 fn on_completion(
2630 &self,
2631 dfn: usize,
2632 mut op: impl FnMut(ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, EvaluationResult),
2633 ) {
2634 debug!(?dfn, "on_completion");
2635
2636 for (fresh_trait_ref, eval) in
2637 self.map.borrow_mut().drain_filter(|_k, eval| eval.from_dfn >= dfn)
2638 {
2639 debug!(?fresh_trait_ref, ?eval, "on_completion");
2640
2641 op(fresh_trait_ref, eval.result);
2642 }
2643 }
2644 }
2645
2646 #[derive(Copy, Clone)]
2647 struct TraitObligationStackList<'o, 'tcx> {
2648 cache: &'o ProvisionalEvaluationCache<'tcx>,
2649 head: Option<&'o TraitObligationStack<'o, 'tcx>>,
2650 }
2651
2652 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
2653 fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2654 TraitObligationStackList { cache, head: None }
2655 }
2656
2657 fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2658 TraitObligationStackList { cache: r.cache(), head: Some(r) }
2659 }
2660
2661 fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2662 self.head
2663 }
2664
2665 fn depth(&self) -> usize {
2666 if let Some(head) = self.head { head.depth } else { 0 }
2667 }
2668 }
2669
2670 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
2671 type Item = &'o TraitObligationStack<'o, 'tcx>;
2672
2673 fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2674 let o = self.head?;
2675 *self = o.previous;
2676 Some(o)
2677 }
2678 }
2679
2680 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
2681 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2682 write!(f, "TraitObligationStack({:?})", self.obligation)
2683 }
2684 }