]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_trait_selection/src/traits/select/mod.rs
New upstream version 1.57.0+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / select / mod.rs
1 //! Candidate selection. See the [rustc dev guide] for more information on how this works.
2 //!
3 //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::const_evaluatable;
10 use super::project;
11 use super::project::normalize_with_depth_to;
12 use super::project::ProjectionTyObligation;
13 use super::util;
14 use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
15 use super::wf;
16 use super::DerivedObligationCause;
17 use super::Normalized;
18 use super::Obligation;
19 use super::ObligationCauseCode;
20 use super::Selection;
21 use super::SelectionResult;
22 use super::TraitQueryMode;
23 use super::{ErrorReporting, Overflow, SelectionError, Unimplemented};
24 use super::{ObligationCause, PredicateObligation, TraitObligation};
25
26 use crate::infer::{InferCtxt, InferOk, TypeFreshener};
27 use crate::traits::error_reporting::InferCtxtExt;
28 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
29 use rustc_data_structures::stack::ensure_sufficient_stack;
30 use rustc_data_structures::sync::Lrc;
31 use rustc_errors::ErrorReported;
32 use rustc_hir as hir;
33 use rustc_hir::def_id::DefId;
34 use rustc_infer::infer::LateBoundRegionConversionTime;
35 use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
36 use rustc_middle::mir::interpret::ErrorHandled;
37 use rustc_middle::thir::abstract_const::NotConstEvaluatable;
38 use rustc_middle::ty::fast_reject;
39 use rustc_middle::ty::print::with_no_trimmed_paths;
40 use rustc_middle::ty::relate::TypeRelation;
41 use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
42 use rustc_middle::ty::WithConstness;
43 use rustc_middle::ty::{self, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
44 use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable};
45 use rustc_span::symbol::sym;
46
47 use std::cell::{Cell, RefCell};
48 use std::cmp;
49 use std::fmt::{self, Display};
50 use std::iter;
51
52 pub use rustc_middle::traits::select::*;
53
54 mod candidate_assembly;
55 mod confirmation;
56
57 #[derive(Clone, Debug)]
58 pub enum IntercrateAmbiguityCause {
59 DownstreamCrate { trait_desc: String, self_desc: Option<String> },
60 UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
61 ReservationImpl { message: String },
62 }
63
64 impl IntercrateAmbiguityCause {
65 /// Emits notes when the overlap is caused by complex intercrate ambiguities.
66 /// See #23980 for details.
67 pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
68 err.note(&self.intercrate_ambiguity_hint());
69 }
70
71 pub fn intercrate_ambiguity_hint(&self) -> String {
72 match self {
73 IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc } => {
74 let self_desc = if let Some(ty) = self_desc {
75 format!(" for type `{}`", ty)
76 } else {
77 String::new()
78 };
79 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
80 }
81 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc } => {
82 let self_desc = if let Some(ty) = self_desc {
83 format!(" for type `{}`", ty)
84 } else {
85 String::new()
86 };
87 format!(
88 "upstream crates may add a new impl of trait `{}`{} \
89 in future versions",
90 trait_desc, self_desc
91 )
92 }
93 IntercrateAmbiguityCause::ReservationImpl { message } => message.clone(),
94 }
95 }
96 }
97
98 pub struct SelectionContext<'cx, 'tcx> {
99 infcx: &'cx InferCtxt<'cx, 'tcx>,
100
101 /// Freshener used specifically for entries on the obligation
102 /// stack. This ensures that all entries on the stack at one time
103 /// will have the same set of placeholder entries, which is
104 /// important for checking for trait bounds that recursively
105 /// require themselves.
106 freshener: TypeFreshener<'cx, 'tcx>,
107
108 /// If `true`, indicates that the evaluation should be conservative
109 /// and consider the possibility of types outside this crate.
110 /// This comes up primarily when resolving ambiguity. Imagine
111 /// there is some trait reference `$0: Bar` where `$0` is an
112 /// inference variable. If `intercrate` is true, then we can never
113 /// say for sure that this reference is not implemented, even if
114 /// there are *no impls at all for `Bar`*, because `$0` could be
115 /// bound to some type that in a downstream crate that implements
116 /// `Bar`. This is the suitable mode for coherence. Elsewhere,
117 /// though, we set this to false, because we are only interested
118 /// in types that the user could actually have written --- in
119 /// other words, we consider `$0: Bar` to be unimplemented if
120 /// there is no type that the user could *actually name* that
121 /// would satisfy it. This avoids crippling inference, basically.
122 intercrate: bool,
123
124 intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
125
126 /// Controls whether or not to filter out negative impls when selecting.
127 /// This is used in librustdoc to distinguish between the lack of an impl
128 /// and a negative impl
129 allow_negative_impls: bool,
130
131 /// Are we in a const context that needs `~const` bounds to be const?
132 is_in_const_context: bool,
133
134 /// The mode that trait queries run in, which informs our error handling
135 /// policy. In essence, canonicalized queries need their errors propagated
136 /// rather than immediately reported because we do not have accurate spans.
137 query_mode: TraitQueryMode,
138 }
139
140 // A stack that walks back up the stack frame.
141 struct TraitObligationStack<'prev, 'tcx> {
142 obligation: &'prev TraitObligation<'tcx>,
143
144 /// The trait ref from `obligation` but "freshened" with the
145 /// selection-context's freshener. Used to check for recursion.
146 fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
147
148 /// Starts out equal to `depth` -- if, during evaluation, we
149 /// encounter a cycle, then we will set this flag to the minimum
150 /// depth of that cycle for all participants in the cycle. These
151 /// participants will then forego caching their results. This is
152 /// not the most efficient solution, but it addresses #60010. The
153 /// problem we are trying to prevent:
154 ///
155 /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
156 /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
157 /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
158 ///
159 /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
160 /// is `EvaluatedToOk`; this is because they were only considered
161 /// ok on the premise that if `A: AutoTrait` held, but we indeed
162 /// encountered a problem (later on) with `A: AutoTrait. So we
163 /// currently set a flag on the stack node for `B: AutoTrait` (as
164 /// well as the second instance of `A: AutoTrait`) to suppress
165 /// caching.
166 ///
167 /// This is a simple, targeted fix. A more-performant fix requires
168 /// deeper changes, but would permit more caching: we could
169 /// basically defer caching until we have fully evaluated the
170 /// tree, and then cache the entire tree at once. In any case, the
171 /// performance impact here shouldn't be so horrible: every time
172 /// this is hit, we do cache at least one trait, so we only
173 /// evaluate each member of a cycle up to N times, where N is the
174 /// length of the cycle. This means the performance impact is
175 /// bounded and we shouldn't have any terrible worst-cases.
176 reached_depth: Cell<usize>,
177
178 previous: TraitObligationStackList<'prev, 'tcx>,
179
180 /// The number of parent frames plus one (thus, the topmost frame has depth 1).
181 depth: usize,
182
183 /// The depth-first number of this node in the search graph -- a
184 /// pre-order index. Basically, a freshly incremented counter.
185 dfn: usize,
186 }
187
188 struct SelectionCandidateSet<'tcx> {
189 // A list of candidates that definitely apply to the current
190 // obligation (meaning: types unify).
191 vec: Vec<SelectionCandidate<'tcx>>,
192
193 // If `true`, then there were candidates that might or might
194 // not have applied, but we couldn't tell. This occurs when some
195 // of the input types are type variables, in which case there are
196 // various "builtin" rules that might or might not trigger.
197 ambiguous: bool,
198 }
199
200 #[derive(PartialEq, Eq, Debug, Clone)]
201 struct EvaluatedCandidate<'tcx> {
202 candidate: SelectionCandidate<'tcx>,
203 evaluation: EvaluationResult,
204 }
205
206 /// When does the builtin impl for `T: Trait` apply?
207 enum BuiltinImplConditions<'tcx> {
208 /// The impl is conditional on `T1, T2, ...: Trait`.
209 Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
210 /// There is no built-in impl. There may be some other
211 /// candidate (a where-clause or user-defined impl).
212 None,
213 /// It is unknown whether there is an impl.
214 Ambiguous,
215 }
216
217 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
218 pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
219 SelectionContext {
220 infcx,
221 freshener: infcx.freshener_keep_static(),
222 intercrate: false,
223 intercrate_ambiguity_causes: None,
224 allow_negative_impls: false,
225 is_in_const_context: false,
226 query_mode: TraitQueryMode::Standard,
227 }
228 }
229
230 pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
231 SelectionContext {
232 infcx,
233 freshener: infcx.freshener_keep_static(),
234 intercrate: true,
235 intercrate_ambiguity_causes: None,
236 allow_negative_impls: false,
237 is_in_const_context: false,
238 query_mode: TraitQueryMode::Standard,
239 }
240 }
241
242 pub fn with_negative(
243 infcx: &'cx InferCtxt<'cx, 'tcx>,
244 allow_negative_impls: bool,
245 ) -> SelectionContext<'cx, 'tcx> {
246 debug!(?allow_negative_impls, "with_negative");
247 SelectionContext {
248 infcx,
249 freshener: infcx.freshener_keep_static(),
250 intercrate: false,
251 intercrate_ambiguity_causes: None,
252 allow_negative_impls,
253 is_in_const_context: false,
254 query_mode: TraitQueryMode::Standard,
255 }
256 }
257
258 pub fn with_query_mode(
259 infcx: &'cx InferCtxt<'cx, 'tcx>,
260 query_mode: TraitQueryMode,
261 ) -> SelectionContext<'cx, 'tcx> {
262 debug!(?query_mode, "with_query_mode");
263 SelectionContext {
264 infcx,
265 freshener: infcx.freshener_keep_static(),
266 intercrate: false,
267 intercrate_ambiguity_causes: None,
268 allow_negative_impls: false,
269 is_in_const_context: false,
270 query_mode,
271 }
272 }
273
274 pub fn with_constness(
275 infcx: &'cx InferCtxt<'cx, 'tcx>,
276 constness: hir::Constness,
277 ) -> SelectionContext<'cx, 'tcx> {
278 SelectionContext {
279 infcx,
280 freshener: infcx.freshener_keep_static(),
281 intercrate: false,
282 intercrate_ambiguity_causes: None,
283 allow_negative_impls: false,
284 is_in_const_context: matches!(constness, hir::Constness::Const),
285 query_mode: TraitQueryMode::Standard,
286 }
287 }
288
289 /// Enables tracking of intercrate ambiguity causes. These are
290 /// used in coherence to give improved diagnostics. We don't do
291 /// this until we detect a coherence error because it can lead to
292 /// false overflow results (#47139) and because it costs
293 /// computation time.
294 pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
295 assert!(self.intercrate);
296 assert!(self.intercrate_ambiguity_causes.is_none());
297 self.intercrate_ambiguity_causes = Some(vec![]);
298 debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
299 }
300
301 /// Gets the intercrate ambiguity causes collected since tracking
302 /// was enabled and disables tracking at the same time. If
303 /// tracking is not enabled, just returns an empty vector.
304 pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
305 assert!(self.intercrate);
306 self.intercrate_ambiguity_causes.take().unwrap_or_default()
307 }
308
309 pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
310 self.infcx
311 }
312
313 pub fn tcx(&self) -> TyCtxt<'tcx> {
314 self.infcx.tcx
315 }
316
317 pub fn is_intercrate(&self) -> bool {
318 self.intercrate
319 }
320
321 /// Returns `true` if the trait predicate is considerd `const` to this selection context.
322 pub fn is_trait_predicate_const(&self, pred: ty::TraitPredicate<'_>) -> bool {
323 match pred.constness {
324 ty::BoundConstness::ConstIfConst if self.is_in_const_context => true,
325 _ => false,
326 }
327 }
328
329 /// Returns `true` if the predicate is considered `const` to
330 /// this selection context.
331 pub fn is_predicate_const(&self, pred: ty::Predicate<'_>) -> bool {
332 match pred.kind().skip_binder() {
333 ty::PredicateKind::Trait(pred) => self.is_trait_predicate_const(pred),
334 _ => false,
335 }
336 }
337
338 ///////////////////////////////////////////////////////////////////////////
339 // Selection
340 //
341 // The selection phase tries to identify *how* an obligation will
342 // be resolved. For example, it will identify which impl or
343 // parameter bound is to be used. The process can be inconclusive
344 // if the self type in the obligation is not fully inferred. Selection
345 // can result in an error in one of two ways:
346 //
347 // 1. If no applicable impl or parameter bound can be found.
348 // 2. If the output type parameters in the obligation do not match
349 // those specified by the impl/bound. For example, if the obligation
350 // is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
351 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
352
353 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
354 /// type environment by performing unification.
355 #[instrument(level = "debug", skip(self))]
356 pub fn select(
357 &mut self,
358 obligation: &TraitObligation<'tcx>,
359 ) -> SelectionResult<'tcx, Selection<'tcx>> {
360 debug_assert!(!obligation.predicate.has_escaping_bound_vars());
361
362 let pec = &ProvisionalEvaluationCache::default();
363 let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
364
365 let candidate = match self.candidate_from_obligation(&stack) {
366 Err(SelectionError::Overflow) => {
367 // In standard mode, overflow must have been caught and reported
368 // earlier.
369 assert!(self.query_mode == TraitQueryMode::Canonical);
370 return Err(SelectionError::Overflow);
371 }
372 Err(e) => {
373 return Err(e);
374 }
375 Ok(None) => {
376 return Ok(None);
377 }
378 Ok(Some(candidate)) => candidate,
379 };
380
381 match self.confirm_candidate(obligation, candidate) {
382 Err(SelectionError::Overflow) => {
383 assert!(self.query_mode == TraitQueryMode::Canonical);
384 Err(SelectionError::Overflow)
385 }
386 Err(e) => Err(e),
387 Ok(candidate) => {
388 debug!(?candidate);
389 Ok(Some(candidate))
390 }
391 }
392 }
393
394 ///////////////////////////////////////////////////////////////////////////
395 // EVALUATION
396 //
397 // Tests whether an obligation can be selected or whether an impl
398 // can be applied to particular types. It skips the "confirmation"
399 // step and hence completely ignores output type parameters.
400 //
401 // The result is "true" if the obligation *may* hold and "false" if
402 // we can be sure it does not.
403
404 /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
405 pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
406 debug!(?obligation, "predicate_may_hold_fatal");
407
408 // This fatal query is a stopgap that should only be used in standard mode,
409 // where we do not expect overflow to be propagated.
410 assert!(self.query_mode == TraitQueryMode::Standard);
411
412 self.evaluate_root_obligation(obligation)
413 .expect("Overflow should be caught earlier in standard query mode")
414 .may_apply()
415 }
416
417 /// Evaluates whether the obligation `obligation` can be satisfied
418 /// and returns an `EvaluationResult`. This is meant for the
419 /// *initial* call.
420 pub fn evaluate_root_obligation(
421 &mut self,
422 obligation: &PredicateObligation<'tcx>,
423 ) -> Result<EvaluationResult, OverflowError> {
424 self.evaluation_probe(|this| {
425 this.evaluate_predicate_recursively(
426 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
427 obligation.clone(),
428 )
429 })
430 }
431
432 fn evaluation_probe(
433 &mut self,
434 op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
435 ) -> Result<EvaluationResult, OverflowError> {
436 self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
437 let result = op(self)?;
438
439 match self.infcx.leak_check(true, snapshot) {
440 Ok(()) => {}
441 Err(_) => return Ok(EvaluatedToErr),
442 }
443
444 match self.infcx.region_constraints_added_in_snapshot(snapshot) {
445 None => Ok(result),
446 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
447 }
448 })
449 }
450
451 /// Evaluates the predicates in `predicates` recursively. Note that
452 /// this applies projections in the predicates, and therefore
453 /// is run within an inference probe.
454 #[instrument(skip(self, stack), level = "debug")]
455 fn evaluate_predicates_recursively<'o, I>(
456 &mut self,
457 stack: TraitObligationStackList<'o, 'tcx>,
458 predicates: I,
459 ) -> Result<EvaluationResult, OverflowError>
460 where
461 I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
462 {
463 let mut result = EvaluatedToOk;
464 for obligation in predicates {
465 let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
466 if let EvaluatedToErr = eval {
467 // fast-path - EvaluatedToErr is the top of the lattice,
468 // so we don't need to look on the other predicates.
469 return Ok(EvaluatedToErr);
470 } else {
471 result = cmp::max(result, eval);
472 }
473 }
474 Ok(result)
475 }
476
477 #[instrument(
478 level = "debug",
479 skip(self, previous_stack),
480 fields(previous_stack = ?previous_stack.head())
481 )]
482 fn evaluate_predicate_recursively<'o>(
483 &mut self,
484 previous_stack: TraitObligationStackList<'o, 'tcx>,
485 obligation: PredicateObligation<'tcx>,
486 ) -> Result<EvaluationResult, OverflowError> {
487 // `previous_stack` stores a `TraitObligation`, while `obligation` is
488 // a `PredicateObligation`. These are distinct types, so we can't
489 // use any `Option` combinator method that would force them to be
490 // the same.
491 match previous_stack.head() {
492 Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
493 None => self.check_recursion_limit(&obligation, &obligation)?,
494 }
495
496 let result = ensure_sufficient_stack(|| {
497 let bound_predicate = obligation.predicate.kind();
498 match bound_predicate.skip_binder() {
499 ty::PredicateKind::Trait(t) => {
500 let t = bound_predicate.rebind(t);
501 debug_assert!(!t.has_escaping_bound_vars());
502 let obligation = obligation.with(t);
503 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
504 }
505
506 ty::PredicateKind::Subtype(p) => {
507 let p = bound_predicate.rebind(p);
508 // Does this code ever run?
509 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
510 Some(Ok(InferOk { mut obligations, .. })) => {
511 self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
512 self.evaluate_predicates_recursively(
513 previous_stack,
514 obligations.into_iter(),
515 )
516 }
517 Some(Err(_)) => Ok(EvaluatedToErr),
518 None => Ok(EvaluatedToAmbig),
519 }
520 }
521
522 ty::PredicateKind::Coerce(p) => {
523 let p = bound_predicate.rebind(p);
524 // Does this code ever run?
525 match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
526 Some(Ok(InferOk { mut obligations, .. })) => {
527 self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
528 self.evaluate_predicates_recursively(
529 previous_stack,
530 obligations.into_iter(),
531 )
532 }
533 Some(Err(_)) => Ok(EvaluatedToErr),
534 None => Ok(EvaluatedToAmbig),
535 }
536 }
537
538 ty::PredicateKind::WellFormed(arg) => match wf::obligations(
539 self.infcx,
540 obligation.param_env,
541 obligation.cause.body_id,
542 obligation.recursion_depth + 1,
543 arg,
544 obligation.cause.span,
545 ) {
546 Some(mut obligations) => {
547 self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
548 self.evaluate_predicates_recursively(previous_stack, obligations)
549 }
550 None => Ok(EvaluatedToAmbig),
551 },
552
553 ty::PredicateKind::TypeOutlives(pred) => {
554 if pred.0.is_known_global() {
555 Ok(EvaluatedToOk)
556 } else {
557 Ok(EvaluatedToOkModuloRegions)
558 }
559 }
560
561 ty::PredicateKind::RegionOutlives(..) => {
562 // We do not consider region relationships when evaluating trait matches.
563 Ok(EvaluatedToOkModuloRegions)
564 }
565
566 ty::PredicateKind::ObjectSafe(trait_def_id) => {
567 if self.tcx().is_object_safe(trait_def_id) {
568 Ok(EvaluatedToOk)
569 } else {
570 Ok(EvaluatedToErr)
571 }
572 }
573
574 ty::PredicateKind::Projection(data) => {
575 let data = bound_predicate.rebind(data);
576 let project_obligation = obligation.with(data);
577 match project::poly_project_and_unify_type(self, &project_obligation) {
578 Ok(Ok(Some(mut subobligations))) => {
579 self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
580 self.evaluate_predicates_recursively(previous_stack, subobligations)
581 }
582 Ok(Ok(None)) => Ok(EvaluatedToAmbig),
583 Ok(Err(project::InProgress)) => Ok(EvaluatedToRecur),
584 Err(_) => Ok(EvaluatedToErr),
585 }
586 }
587
588 ty::PredicateKind::ClosureKind(_, closure_substs, kind) => {
589 match self.infcx.closure_kind(closure_substs) {
590 Some(closure_kind) => {
591 if closure_kind.extends(kind) {
592 Ok(EvaluatedToOk)
593 } else {
594 Ok(EvaluatedToErr)
595 }
596 }
597 None => Ok(EvaluatedToAmbig),
598 }
599 }
600
601 ty::PredicateKind::ConstEvaluatable(uv) => {
602 match const_evaluatable::is_const_evaluatable(
603 self.infcx,
604 uv,
605 obligation.param_env,
606 obligation.cause.span,
607 ) {
608 Ok(()) => Ok(EvaluatedToOk),
609 Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
610 Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
611 Err(_) => Ok(EvaluatedToErr),
612 }
613 }
614
615 ty::PredicateKind::ConstEquate(c1, c2) => {
616 debug!(?c1, ?c2, "evaluate_predicate_recursively: equating consts");
617
618 if self.tcx().features().generic_const_exprs {
619 // FIXME: we probably should only try to unify abstract constants
620 // if the constants depend on generic parameters.
621 //
622 // Let's just see where this breaks :shrug:
623 if let (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b)) =
624 (c1.val, c2.val)
625 {
626 if self.infcx.try_unify_abstract_consts(a.shrink(), b.shrink()) {
627 return Ok(EvaluatedToOk);
628 }
629 }
630 }
631
632 let evaluate = |c: &'tcx ty::Const<'tcx>| {
633 if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
634 self.infcx
635 .const_eval_resolve(
636 obligation.param_env,
637 unevaluated,
638 Some(obligation.cause.span),
639 )
640 .map(|val| ty::Const::from_value(self.tcx(), val, c.ty))
641 } else {
642 Ok(c)
643 }
644 };
645
646 match (evaluate(c1), evaluate(c2)) {
647 (Ok(c1), Ok(c2)) => {
648 match self
649 .infcx()
650 .at(&obligation.cause, obligation.param_env)
651 .eq(c1, c2)
652 {
653 Ok(_) => Ok(EvaluatedToOk),
654 Err(_) => Ok(EvaluatedToErr),
655 }
656 }
657 (Err(ErrorHandled::Reported(ErrorReported)), _)
658 | (_, Err(ErrorHandled::Reported(ErrorReported))) => Ok(EvaluatedToErr),
659 (Err(ErrorHandled::Linted), _) | (_, Err(ErrorHandled::Linted)) => {
660 span_bug!(
661 obligation.cause.span(self.tcx()),
662 "ConstEquate: const_eval_resolve returned an unexpected error"
663 )
664 }
665 (Err(ErrorHandled::TooGeneric), _) | (_, Err(ErrorHandled::TooGeneric)) => {
666 if c1.has_infer_types_or_consts() || c2.has_infer_types_or_consts() {
667 Ok(EvaluatedToAmbig)
668 } else {
669 // Two different constants using generic parameters ~> error.
670 Ok(EvaluatedToErr)
671 }
672 }
673 }
674 }
675 ty::PredicateKind::TypeWellFormedFromEnv(..) => {
676 bug!("TypeWellFormedFromEnv is only used for chalk")
677 }
678 }
679 });
680
681 debug!("finished: {:?} from {:?}", result, obligation);
682
683 result
684 }
685
686 #[instrument(skip(self, previous_stack), level = "debug")]
687 fn evaluate_trait_predicate_recursively<'o>(
688 &mut self,
689 previous_stack: TraitObligationStackList<'o, 'tcx>,
690 mut obligation: TraitObligation<'tcx>,
691 ) -> Result<EvaluationResult, OverflowError> {
692 if !self.intercrate
693 && obligation.is_global(self.tcx())
694 && obligation
695 .param_env
696 .caller_bounds()
697 .iter()
698 .all(|bound| bound.definitely_needs_subst(self.tcx()))
699 {
700 // If a param env has no global bounds, global obligations do not
701 // depend on its particular value in order to work, so we can clear
702 // out the param env and get better caching.
703 debug!("in global");
704 obligation.param_env = obligation.param_env.without_caller_bounds();
705 }
706
707 let stack = self.push_stack(previous_stack, &obligation);
708 let fresh_trait_ref = stack.fresh_trait_ref;
709
710 debug!(?fresh_trait_ref);
711
712 if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
713 debug!(?result, "CACHE HIT");
714 return Ok(result);
715 }
716
717 if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
718 debug!(?result, "PROVISIONAL CACHE HIT");
719 stack.update_reached_depth(result.reached_depth);
720 return Ok(result.result);
721 }
722
723 // Check if this is a match for something already on the
724 // stack. If so, we don't want to insert the result into the
725 // main cache (it is cycle dependent) nor the provisional
726 // cache (which is meant for things that have completed but
727 // for a "backedge" -- this result *is* the backedge).
728 if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
729 return Ok(cycle_result);
730 }
731
732 let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
733 let result = result?;
734
735 if !result.must_apply_modulo_regions() {
736 stack.cache().on_failure(stack.dfn);
737 }
738
739 let reached_depth = stack.reached_depth.get();
740 if reached_depth >= stack.depth {
741 debug!(?result, "CACHE MISS");
742 self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
743
744 stack.cache().on_completion(stack.dfn, |fresh_trait_ref, provisional_result| {
745 self.insert_evaluation_cache(
746 obligation.param_env,
747 fresh_trait_ref,
748 dep_node,
749 provisional_result.max(result),
750 );
751 });
752 } else {
753 debug!(?result, "PROVISIONAL");
754 debug!(
755 "caching provisionally because {:?} \
756 is a cycle participant (at depth {}, reached depth {})",
757 fresh_trait_ref, stack.depth, reached_depth,
758 );
759
760 stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
761 }
762
763 Ok(result)
764 }
765
766 /// If there is any previous entry on the stack that precisely
767 /// matches this obligation, then we can assume that the
768 /// obligation is satisfied for now (still all other conditions
769 /// must be met of course). One obvious case this comes up is
770 /// marker traits like `Send`. Think of a linked list:
771 ///
772 /// struct List<T> { data: T, next: Option<Box<List<T>>> }
773 ///
774 /// `Box<List<T>>` will be `Send` if `T` is `Send` and
775 /// `Option<Box<List<T>>>` is `Send`, and in turn
776 /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
777 /// `Send`.
778 ///
779 /// Note that we do this comparison using the `fresh_trait_ref`
780 /// fields. Because these have all been freshened using
781 /// `self.freshener`, we can be sure that (a) this will not
782 /// affect the inferencer state and (b) that if we see two
783 /// fresh regions with the same index, they refer to the same
784 /// unbound type variable.
785 fn check_evaluation_cycle(
786 &mut self,
787 stack: &TraitObligationStack<'_, 'tcx>,
788 ) -> Option<EvaluationResult> {
789 if let Some(cycle_depth) = stack
790 .iter()
791 .skip(1) // Skip top-most frame.
792 .find(|prev| {
793 stack.obligation.param_env == prev.obligation.param_env
794 && stack.fresh_trait_ref == prev.fresh_trait_ref
795 })
796 .map(|stack| stack.depth)
797 {
798 debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
799
800 // If we have a stack like `A B C D E A`, where the top of
801 // the stack is the final `A`, then this will iterate over
802 // `A, E, D, C, B` -- i.e., all the participants apart
803 // from the cycle head. We mark them as participating in a
804 // cycle. This suppresses caching for those nodes. See
805 // `in_cycle` field for more details.
806 stack.update_reached_depth(cycle_depth);
807
808 // Subtle: when checking for a coinductive cycle, we do
809 // not compare using the "freshened trait refs" (which
810 // have erased regions) but rather the fully explicit
811 // trait refs. This is important because it's only a cycle
812 // if the regions match exactly.
813 let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
814 let tcx = self.tcx();
815 let cycle = cycle.map(|stack| stack.obligation.predicate.to_predicate(tcx));
816 if self.coinductive_match(cycle) {
817 debug!("evaluate_stack --> recursive, coinductive");
818 Some(EvaluatedToOk)
819 } else {
820 debug!("evaluate_stack --> recursive, inductive");
821 Some(EvaluatedToRecur)
822 }
823 } else {
824 None
825 }
826 }
827
828 fn evaluate_stack<'o>(
829 &mut self,
830 stack: &TraitObligationStack<'o, 'tcx>,
831 ) -> Result<EvaluationResult, OverflowError> {
832 // In intercrate mode, whenever any of the generics are unbound,
833 // there can always be an impl. Even if there are no impls in
834 // this crate, perhaps the type would be unified with
835 // something from another crate that does provide an impl.
836 //
837 // In intra mode, we must still be conservative. The reason is
838 // that we want to avoid cycles. Imagine an impl like:
839 //
840 // impl<T:Eq> Eq for Vec<T>
841 //
842 // and a trait reference like `$0 : Eq` where `$0` is an
843 // unbound variable. When we evaluate this trait-reference, we
844 // will unify `$0` with `Vec<$1>` (for some fresh variable
845 // `$1`), on the condition that `$1 : Eq`. We will then wind
846 // up with many candidates (since that are other `Eq` impls
847 // that apply) and try to winnow things down. This results in
848 // a recursive evaluation that `$1 : Eq` -- as you can
849 // imagine, this is just where we started. To avoid that, we
850 // check for unbound variables and return an ambiguous (hence possible)
851 // match if we've seen this trait before.
852 //
853 // This suffices to allow chains like `FnMut` implemented in
854 // terms of `Fn` etc, but we could probably make this more
855 // precise still.
856 let unbound_input_types =
857 stack.fresh_trait_ref.value.skip_binder().substs.types().any(|ty| ty.is_fresh());
858 // This check was an imperfect workaround for a bug in the old
859 // intercrate mode; it should be removed when that goes away.
860 if unbound_input_types && self.intercrate {
861 debug!("evaluate_stack --> unbound argument, intercrate --> ambiguous",);
862 // Heuristics: show the diagnostics when there are no candidates in crate.
863 if self.intercrate_ambiguity_causes.is_some() {
864 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
865 if let Ok(candidate_set) = self.assemble_candidates(stack) {
866 if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
867 let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
868 let self_ty = trait_ref.self_ty();
869 let cause =
870 with_no_trimmed_paths(|| IntercrateAmbiguityCause::DownstreamCrate {
871 trait_desc: trait_ref.print_only_trait_path().to_string(),
872 self_desc: if self_ty.has_concrete_skeleton() {
873 Some(self_ty.to_string())
874 } else {
875 None
876 },
877 });
878
879 debug!(?cause, "evaluate_stack: pushing cause");
880 self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
881 }
882 }
883 }
884 return Ok(EvaluatedToAmbig);
885 }
886 if unbound_input_types
887 && stack.iter().skip(1).any(|prev| {
888 stack.obligation.param_env == prev.obligation.param_env
889 && self.match_fresh_trait_refs(
890 stack.fresh_trait_ref,
891 prev.fresh_trait_ref,
892 prev.obligation.param_env,
893 )
894 })
895 {
896 debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
897 return Ok(EvaluatedToUnknown);
898 }
899
900 match self.candidate_from_obligation(stack) {
901 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
902 Ok(None) => Ok(EvaluatedToAmbig),
903 Err(Overflow) => Err(OverflowError::Canonical),
904 Err(ErrorReporting) => Err(OverflowError::ErrorReporting),
905 Err(..) => Ok(EvaluatedToErr),
906 }
907 }
908
909 /// For defaulted traits, we use a co-inductive strategy to solve, so
910 /// that recursion is ok. This routine returns `true` if the top of the
911 /// stack (`cycle[0]`):
912 ///
913 /// - is a defaulted trait,
914 /// - it also appears in the backtrace at some position `X`,
915 /// - all the predicates at positions `X..` between `X` and the top are
916 /// also defaulted traits.
917 pub fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
918 where
919 I: Iterator<Item = ty::Predicate<'tcx>>,
920 {
921 cycle.all(|predicate| self.coinductive_predicate(predicate))
922 }
923
924 fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
925 let result = match predicate.kind().skip_binder() {
926 ty::PredicateKind::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
927 _ => false,
928 };
929 debug!(?predicate, ?result, "coinductive_predicate");
930 result
931 }
932
933 /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
934 /// obligations are met. Returns whether `candidate` remains viable after this further
935 /// scrutiny.
936 #[instrument(
937 level = "debug",
938 skip(self, stack),
939 fields(depth = stack.obligation.recursion_depth)
940 )]
941 fn evaluate_candidate<'o>(
942 &mut self,
943 stack: &TraitObligationStack<'o, 'tcx>,
944 candidate: &SelectionCandidate<'tcx>,
945 ) -> Result<EvaluationResult, OverflowError> {
946 let mut result = self.evaluation_probe(|this| {
947 let candidate = (*candidate).clone();
948 match this.confirm_candidate(stack.obligation, candidate) {
949 Ok(selection) => {
950 debug!(?selection);
951 this.evaluate_predicates_recursively(
952 stack.list(),
953 selection.nested_obligations().into_iter(),
954 )
955 }
956 Err(..) => Ok(EvaluatedToErr),
957 }
958 })?;
959
960 // If we erased any lifetimes, then we want to use
961 // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
962 // as your final result. The result will be cached using
963 // the freshened trait predicate as a key, so we need
964 // our result to be correct by *any* choice of original lifetimes,
965 // not just the lifetime choice for this particular (non-erased)
966 // predicate.
967 // See issue #80691
968 if stack.fresh_trait_ref.has_erased_regions() {
969 result = result.max(EvaluatedToOkModuloRegions);
970 }
971
972 debug!(?result);
973 Ok(result)
974 }
975
976 fn check_evaluation_cache(
977 &self,
978 param_env: ty::ParamEnv<'tcx>,
979 trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
980 ) -> Option<EvaluationResult> {
981 // Neither the global nor local cache is aware of intercrate
982 // mode, so don't do any caching. In particular, we might
983 // re-use the same `InferCtxt` with both an intercrate
984 // and non-intercrate `SelectionContext`
985 if self.intercrate {
986 return None;
987 }
988
989 let tcx = self.tcx();
990 if self.can_use_global_caches(param_env) {
991 if let Some(res) = tcx.evaluation_cache.get(&param_env.and(trait_ref), tcx) {
992 return Some(res);
993 }
994 }
995 self.infcx.evaluation_cache.get(&param_env.and(trait_ref), tcx)
996 }
997
998 fn insert_evaluation_cache(
999 &mut self,
1000 param_env: ty::ParamEnv<'tcx>,
1001 trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
1002 dep_node: DepNodeIndex,
1003 result: EvaluationResult,
1004 ) {
1005 // Avoid caching results that depend on more than just the trait-ref
1006 // - the stack can create recursion.
1007 if result.is_stack_dependent() {
1008 return;
1009 }
1010
1011 // Neither the global nor local cache is aware of intercrate
1012 // mode, so don't do any caching. In particular, we might
1013 // re-use the same `InferCtxt` with both an intercrate
1014 // and non-intercrate `SelectionContext`
1015 if self.intercrate {
1016 return;
1017 }
1018
1019 if self.can_use_global_caches(param_env) {
1020 if !trait_ref.needs_infer() {
1021 debug!(?trait_ref, ?result, "insert_evaluation_cache global");
1022 // This may overwrite the cache with the same value
1023 // FIXME: Due to #50507 this overwrites the different values
1024 // This should be changed to use HashMapExt::insert_same
1025 // when that is fixed
1026 self.tcx().evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
1027 return;
1028 }
1029 }
1030
1031 debug!(?trait_ref, ?result, "insert_evaluation_cache");
1032 self.infcx.evaluation_cache.insert(param_env.and(trait_ref), dep_node, result);
1033 }
1034
1035 /// For various reasons, it's possible for a subobligation
1036 /// to have a *lower* recursion_depth than the obligation used to create it.
1037 /// Projection sub-obligations may be returned from the projection cache,
1038 /// which results in obligations with an 'old' `recursion_depth`.
1039 /// Additionally, methods like `InferCtxt.subtype_predicate` produce
1040 /// subobligations without taking in a 'parent' depth, causing the
1041 /// generated subobligations to have a `recursion_depth` of `0`.
1042 ///
1043 /// To ensure that obligation_depth never decreases, we force all subobligations
1044 /// to have at least the depth of the original obligation.
1045 fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
1046 &self,
1047 it: I,
1048 min_depth: usize,
1049 ) {
1050 it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1051 }
1052
1053 fn check_recursion_depth<T: Display + TypeFoldable<'tcx>>(
1054 &self,
1055 depth: usize,
1056 error_obligation: &Obligation<'tcx, T>,
1057 ) -> Result<(), OverflowError> {
1058 if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1059 match self.query_mode {
1060 TraitQueryMode::Standard => {
1061 if self.infcx.is_tainted_by_errors() {
1062 return Err(OverflowError::ErrorReporting);
1063 }
1064 self.infcx.report_overflow_error(error_obligation, true);
1065 }
1066 TraitQueryMode::Canonical => {
1067 return Err(OverflowError::Canonical);
1068 }
1069 }
1070 }
1071 Ok(())
1072 }
1073
1074 /// Checks that the recursion limit has not been exceeded.
1075 ///
1076 /// The weird return type of this function allows it to be used with the `try` (`?`)
1077 /// operator within certain functions.
1078 #[inline(always)]
1079 fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1080 &self,
1081 obligation: &Obligation<'tcx, T>,
1082 error_obligation: &Obligation<'tcx, V>,
1083 ) -> Result<(), OverflowError> {
1084 self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1085 }
1086
1087 fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1088 where
1089 OP: FnOnce(&mut Self) -> R,
1090 {
1091 let (result, dep_node) =
1092 self.tcx().dep_graph.with_anon_task(self.tcx(), DepKind::TraitSelect, || op(self));
1093 self.tcx().dep_graph.read_index(dep_node);
1094 (result, dep_node)
1095 }
1096
1097 #[instrument(level = "debug", skip(self))]
1098 fn filter_impls(
1099 &mut self,
1100 candidate: SelectionCandidate<'tcx>,
1101 obligation: &TraitObligation<'tcx>,
1102 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1103 let tcx = self.tcx();
1104 // Respect const trait obligations
1105 if self.is_trait_predicate_const(obligation.predicate.skip_binder()) {
1106 match candidate {
1107 // const impl
1108 ImplCandidate(def_id) if tcx.impl_constness(def_id) == hir::Constness::Const => {}
1109 // const param
1110 ParamCandidate(ty::ConstnessAnd {
1111 constness: ty::BoundConstness::ConstIfConst,
1112 ..
1113 }) => {}
1114 // auto trait impl
1115 AutoImplCandidate(..) => {}
1116 // generator, this will raise error in other places
1117 // or ignore error with const_async_blocks feature
1118 GeneratorCandidate => {}
1119 // FnDef where the function is const
1120 FnPointerCandidate { is_const: true } => {}
1121 ConstDropCandidate => {}
1122 _ => {
1123 // reject all other types of candidates
1124 return Err(Unimplemented);
1125 }
1126 }
1127 }
1128 // Treat negative impls as unimplemented, and reservation impls as ambiguity.
1129 if let ImplCandidate(def_id) = candidate {
1130 match tcx.impl_polarity(def_id) {
1131 ty::ImplPolarity::Negative if !self.allow_negative_impls => {
1132 return Err(Unimplemented);
1133 }
1134 ty::ImplPolarity::Reservation => {
1135 if let Some(intercrate_ambiguity_clauses) =
1136 &mut self.intercrate_ambiguity_causes
1137 {
1138 let attrs = tcx.get_attrs(def_id);
1139 let attr = tcx.sess.find_by_name(&attrs, sym::rustc_reservation_impl);
1140 let value = attr.and_then(|a| a.value_str());
1141 if let Some(value) = value {
1142 debug!(
1143 "filter_impls: \
1144 reservation impl ambiguity on {:?}",
1145 def_id
1146 );
1147 intercrate_ambiguity_clauses.push(
1148 IntercrateAmbiguityCause::ReservationImpl {
1149 message: value.to_string(),
1150 },
1151 );
1152 }
1153 }
1154 return Ok(None);
1155 }
1156 _ => {}
1157 };
1158 }
1159 Ok(Some(candidate))
1160 }
1161
1162 fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1163 debug!("is_knowable(intercrate={:?})", self.intercrate);
1164
1165 if !self.intercrate {
1166 return None;
1167 }
1168
1169 let obligation = &stack.obligation;
1170 let predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1171
1172 // Okay to skip binder because of the nature of the
1173 // trait-ref-is-knowable check, which does not care about
1174 // bound regions.
1175 let trait_ref = predicate.skip_binder().trait_ref;
1176
1177 coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
1178 }
1179
1180 /// Returns `true` if the global caches can be used.
1181 fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1182 // If there are any inference variables in the `ParamEnv`, then we
1183 // always use a cache local to this particular scope. Otherwise, we
1184 // switch to a global cache.
1185 if param_env.needs_infer() {
1186 return false;
1187 }
1188
1189 // Avoid using the master cache during coherence and just rely
1190 // on the local cache. This effectively disables caching
1191 // during coherence. It is really just a simplification to
1192 // avoid us having to fear that coherence results "pollute"
1193 // the master cache. Since coherence executes pretty quickly,
1194 // it's not worth going to more trouble to increase the
1195 // hit-rate, I don't think.
1196 if self.intercrate {
1197 return false;
1198 }
1199
1200 // Otherwise, we can use the global cache.
1201 true
1202 }
1203
1204 fn check_candidate_cache(
1205 &mut self,
1206 param_env: ty::ParamEnv<'tcx>,
1207 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1208 ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1209 // Neither the global nor local cache is aware of intercrate
1210 // mode, so don't do any caching. In particular, we might
1211 // re-use the same `InferCtxt` with both an intercrate
1212 // and non-intercrate `SelectionContext`
1213 if self.intercrate {
1214 return None;
1215 }
1216 let tcx = self.tcx();
1217 let pred = &cache_fresh_trait_pred.skip_binder();
1218 let trait_ref = pred.trait_ref;
1219 if self.can_use_global_caches(param_env) {
1220 if let Some(res) = tcx
1221 .selection_cache
1222 .get(&param_env.and(trait_ref).with_constness(pred.constness), tcx)
1223 {
1224 return Some(res);
1225 }
1226 }
1227 self.infcx
1228 .selection_cache
1229 .get(&param_env.and(trait_ref).with_constness(pred.constness), tcx)
1230 }
1231
1232 /// Determines whether can we safely cache the result
1233 /// of selecting an obligation. This is almost always `true`,
1234 /// except when dealing with certain `ParamCandidate`s.
1235 ///
1236 /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1237 /// since it was usually produced directly from a `DefId`. However,
1238 /// certain cases (currently only librustdoc's blanket impl finder),
1239 /// a `ParamEnv` may be explicitly constructed with inference types.
1240 /// When this is the case, we do *not* want to cache the resulting selection
1241 /// candidate. This is due to the fact that it might not always be possible
1242 /// to equate the obligation's trait ref and the candidate's trait ref,
1243 /// if more constraints end up getting added to an inference variable.
1244 ///
1245 /// Because of this, we always want to re-run the full selection
1246 /// process for our obligation the next time we see it, since
1247 /// we might end up picking a different `SelectionCandidate` (or none at all).
1248 fn can_cache_candidate(
1249 &self,
1250 result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1251 ) -> bool {
1252 // Neither the global nor local cache is aware of intercrate
1253 // mode, so don't do any caching. In particular, we might
1254 // re-use the same `InferCtxt` with both an intercrate
1255 // and non-intercrate `SelectionContext`
1256 if self.intercrate {
1257 return false;
1258 }
1259 match result {
1260 Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.needs_infer(),
1261 _ => true,
1262 }
1263 }
1264
1265 fn insert_candidate_cache(
1266 &mut self,
1267 param_env: ty::ParamEnv<'tcx>,
1268 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1269 dep_node: DepNodeIndex,
1270 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1271 ) {
1272 let tcx = self.tcx();
1273 let pred = cache_fresh_trait_pred.skip_binder();
1274 let trait_ref = pred.trait_ref;
1275
1276 if !self.can_cache_candidate(&candidate) {
1277 debug!(?trait_ref, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1278 return;
1279 }
1280
1281 if self.can_use_global_caches(param_env) {
1282 if let Err(Overflow) = candidate {
1283 // Don't cache overflow globally; we only produce this in certain modes.
1284 } else if !trait_ref.needs_infer() {
1285 if !candidate.needs_infer() {
1286 debug!(?trait_ref, ?candidate, "insert_candidate_cache global");
1287 // This may overwrite the cache with the same value.
1288 tcx.selection_cache.insert(
1289 param_env.and(trait_ref).with_constness(pred.constness),
1290 dep_node,
1291 candidate,
1292 );
1293 return;
1294 }
1295 }
1296 }
1297
1298 debug!(?trait_ref, ?candidate, "insert_candidate_cache local");
1299 self.infcx.selection_cache.insert(
1300 param_env.and(trait_ref).with_constness(pred.constness),
1301 dep_node,
1302 candidate,
1303 );
1304 }
1305
1306 /// Matches a predicate against the bounds of its self type.
1307 ///
1308 /// Given an obligation like `<T as Foo>::Bar: Baz` where the self type is
1309 /// a projection, look at the bounds of `T::Bar`, see if we can find a
1310 /// `Baz` bound. We return indexes into the list returned by
1311 /// `tcx.item_bounds` for any applicable bounds.
1312 fn match_projection_obligation_against_definition_bounds(
1313 &mut self,
1314 obligation: &TraitObligation<'tcx>,
1315 ) -> smallvec::SmallVec<[usize; 2]> {
1316 let poly_trait_predicate = self.infcx().resolve_vars_if_possible(obligation.predicate);
1317 let placeholder_trait_predicate =
1318 self.infcx().replace_bound_vars_with_placeholders(poly_trait_predicate);
1319 debug!(
1320 ?placeholder_trait_predicate,
1321 "match_projection_obligation_against_definition_bounds"
1322 );
1323
1324 let tcx = self.infcx.tcx;
1325 let (def_id, substs) = match *placeholder_trait_predicate.trait_ref.self_ty().kind() {
1326 ty::Projection(ref data) => (data.item_def_id, data.substs),
1327 ty::Opaque(def_id, substs) => (def_id, substs),
1328 _ => {
1329 span_bug!(
1330 obligation.cause.span,
1331 "match_projection_obligation_against_definition_bounds() called \
1332 but self-ty is not a projection: {:?}",
1333 placeholder_trait_predicate.trait_ref.self_ty()
1334 );
1335 }
1336 };
1337 let bounds = tcx.item_bounds(def_id).subst(tcx, substs);
1338
1339 // The bounds returned by `item_bounds` may contain duplicates after
1340 // normalization, so try to deduplicate when possible to avoid
1341 // unnecessary ambiguity.
1342 let mut distinct_normalized_bounds = FxHashSet::default();
1343
1344 let matching_bounds = bounds
1345 .iter()
1346 .enumerate()
1347 .filter_map(|(idx, bound)| {
1348 let bound_predicate = bound.kind();
1349 if let ty::PredicateKind::Trait(pred) = bound_predicate.skip_binder() {
1350 let bound = bound_predicate.rebind(pred.trait_ref);
1351 if self.infcx.probe(|_| {
1352 match self.match_normalize_trait_ref(
1353 obligation,
1354 bound,
1355 placeholder_trait_predicate.trait_ref,
1356 ) {
1357 Ok(None) => true,
1358 Ok(Some(normalized_trait))
1359 if distinct_normalized_bounds.insert(normalized_trait) =>
1360 {
1361 true
1362 }
1363 _ => false,
1364 }
1365 }) {
1366 return Some(idx);
1367 }
1368 }
1369 None
1370 })
1371 .collect();
1372
1373 debug!(?matching_bounds, "match_projection_obligation_against_definition_bounds");
1374 matching_bounds
1375 }
1376
1377 /// Equates the trait in `obligation` with trait bound. If the two traits
1378 /// can be equated and the normalized trait bound doesn't contain inference
1379 /// variables or placeholders, the normalized bound is returned.
1380 fn match_normalize_trait_ref(
1381 &mut self,
1382 obligation: &TraitObligation<'tcx>,
1383 trait_bound: ty::PolyTraitRef<'tcx>,
1384 placeholder_trait_ref: ty::TraitRef<'tcx>,
1385 ) -> Result<Option<ty::PolyTraitRef<'tcx>>, ()> {
1386 debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1387 if placeholder_trait_ref.def_id != trait_bound.def_id() {
1388 // Avoid unnecessary normalization
1389 return Err(());
1390 }
1391
1392 let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1393 project::normalize_with_depth(
1394 self,
1395 obligation.param_env,
1396 obligation.cause.clone(),
1397 obligation.recursion_depth + 1,
1398 trait_bound,
1399 )
1400 });
1401 self.infcx
1402 .at(&obligation.cause, obligation.param_env)
1403 .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1404 .map(|InferOk { obligations: _, value: () }| {
1405 // This method is called within a probe, so we can't have
1406 // inference variables and placeholders escape.
1407 if !trait_bound.needs_infer() && !trait_bound.has_placeholders() {
1408 Some(trait_bound)
1409 } else {
1410 None
1411 }
1412 })
1413 .map_err(|_| ())
1414 }
1415
1416 fn evaluate_where_clause<'o>(
1417 &mut self,
1418 stack: &TraitObligationStack<'o, 'tcx>,
1419 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1420 ) -> Result<EvaluationResult, OverflowError> {
1421 self.evaluation_probe(|this| {
1422 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1423 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1424 Err(()) => Ok(EvaluatedToErr),
1425 }
1426 })
1427 }
1428
1429 pub(super) fn match_projection_projections(
1430 &mut self,
1431 obligation: &ProjectionTyObligation<'tcx>,
1432 env_predicate: PolyProjectionPredicate<'tcx>,
1433 potentially_unnormalized_candidates: bool,
1434 ) -> bool {
1435 let mut nested_obligations = Vec::new();
1436 let (infer_predicate, _) = self.infcx.replace_bound_vars_with_fresh_vars(
1437 obligation.cause.span,
1438 LateBoundRegionConversionTime::HigherRankedType,
1439 env_predicate,
1440 );
1441 let infer_projection = if potentially_unnormalized_candidates {
1442 ensure_sufficient_stack(|| {
1443 project::normalize_with_depth_to(
1444 self,
1445 obligation.param_env,
1446 obligation.cause.clone(),
1447 obligation.recursion_depth + 1,
1448 infer_predicate.projection_ty,
1449 &mut nested_obligations,
1450 )
1451 })
1452 } else {
1453 infer_predicate.projection_ty
1454 };
1455
1456 self.infcx
1457 .at(&obligation.cause, obligation.param_env)
1458 .sup(obligation.predicate, infer_projection)
1459 .map_or(false, |InferOk { obligations, value: () }| {
1460 self.evaluate_predicates_recursively(
1461 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1462 nested_obligations.into_iter().chain(obligations),
1463 )
1464 .map_or(false, |res| res.may_apply())
1465 })
1466 }
1467
1468 ///////////////////////////////////////////////////////////////////////////
1469 // WINNOW
1470 //
1471 // Winnowing is the process of attempting to resolve ambiguity by
1472 // probing further. During the winnowing process, we unify all
1473 // type variables and then we also attempt to evaluate recursive
1474 // bounds to see if they are satisfied.
1475
1476 /// Returns `true` if `victim` should be dropped in favor of
1477 /// `other`. Generally speaking we will drop duplicate
1478 /// candidates and prefer where-clause candidates.
1479 ///
1480 /// See the comment for "SelectionCandidate" for more details.
1481 fn candidate_should_be_dropped_in_favor_of(
1482 &mut self,
1483 victim: &EvaluatedCandidate<'tcx>,
1484 other: &EvaluatedCandidate<'tcx>,
1485 needs_infer: bool,
1486 ) -> bool {
1487 if victim.candidate == other.candidate {
1488 return true;
1489 }
1490
1491 // Check if a bound would previously have been removed when normalizing
1492 // the param_env so that it can be given the lowest priority. See
1493 // #50825 for the motivation for this.
1494 let is_global =
1495 |cand: &ty::PolyTraitRef<'_>| cand.is_known_global() && !cand.has_late_bound_regions();
1496
1497 // (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
1498 // and `DiscriminantKindCandidate` to anything else.
1499 //
1500 // This is a fix for #53123 and prevents winnowing from accidentally extending the
1501 // lifetime of a variable.
1502 match (&other.candidate, &victim.candidate) {
1503 (_, AutoImplCandidate(..)) | (AutoImplCandidate(..), _) => {
1504 bug!(
1505 "default implementations shouldn't be recorded \
1506 when there are other valid candidates"
1507 );
1508 }
1509
1510 // (*)
1511 (
1512 BuiltinCandidate { has_nested: false }
1513 | DiscriminantKindCandidate
1514 | PointeeCandidate
1515 | ConstDropCandidate,
1516 _,
1517 ) => true,
1518 (
1519 _,
1520 BuiltinCandidate { has_nested: false }
1521 | DiscriminantKindCandidate
1522 | PointeeCandidate
1523 | ConstDropCandidate,
1524 ) => false,
1525
1526 (ParamCandidate(other), ParamCandidate(victim)) => {
1527 let same_except_bound_vars = other.value.skip_binder()
1528 == victim.value.skip_binder()
1529 && other.constness == victim.constness
1530 && !other.value.skip_binder().has_escaping_bound_vars();
1531 if same_except_bound_vars {
1532 // See issue #84398. In short, we can generate multiple ParamCandidates which are
1533 // the same except for unused bound vars. Just pick the one with the fewest bound vars
1534 // or the current one if tied (they should both evaluate to the same answer). This is
1535 // probably best characterized as a "hack", since we might prefer to just do our
1536 // best to *not* create essentially duplicate candidates in the first place.
1537 other.value.bound_vars().len() <= victim.value.bound_vars().len()
1538 } else if other.value == victim.value
1539 && victim.constness == ty::BoundConstness::NotConst
1540 {
1541 // Drop otherwise equivalent non-const candidates in favor of const candidates.
1542 true
1543 } else {
1544 false
1545 }
1546 }
1547
1548 // Drop otherwise equivalent non-const fn pointer candidates
1549 (FnPointerCandidate { .. }, FnPointerCandidate { is_const: false }) => true,
1550
1551 // Global bounds from the where clause should be ignored
1552 // here (see issue #50825). Otherwise, we have a where
1553 // clause so don't go around looking for impls.
1554 // Arbitrarily give param candidates priority
1555 // over projection and object candidates.
1556 (
1557 ParamCandidate(ref cand),
1558 ImplCandidate(..)
1559 | ClosureCandidate
1560 | GeneratorCandidate
1561 | FnPointerCandidate { .. }
1562 | BuiltinObjectCandidate
1563 | BuiltinUnsizeCandidate
1564 | TraitUpcastingUnsizeCandidate(_)
1565 | BuiltinCandidate { .. }
1566 | TraitAliasCandidate(..)
1567 | ObjectCandidate(_)
1568 | ProjectionCandidate(_),
1569 ) => !is_global(&cand.value),
1570 (ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(ref cand)) => {
1571 // Prefer these to a global where-clause bound
1572 // (see issue #50825).
1573 is_global(&cand.value)
1574 }
1575 (
1576 ImplCandidate(_)
1577 | ClosureCandidate
1578 | GeneratorCandidate
1579 | FnPointerCandidate { .. }
1580 | BuiltinObjectCandidate
1581 | BuiltinUnsizeCandidate
1582 | TraitUpcastingUnsizeCandidate(_)
1583 | BuiltinCandidate { has_nested: true }
1584 | TraitAliasCandidate(..),
1585 ParamCandidate(ref cand),
1586 ) => {
1587 // Prefer these to a global where-clause bound
1588 // (see issue #50825).
1589 is_global(&cand.value) && other.evaluation.must_apply_modulo_regions()
1590 }
1591
1592 (ProjectionCandidate(i), ProjectionCandidate(j))
1593 | (ObjectCandidate(i), ObjectCandidate(j)) => {
1594 // Arbitrarily pick the lower numbered candidate for backwards
1595 // compatibility reasons. Don't let this affect inference.
1596 i < j && !needs_infer
1597 }
1598 (ObjectCandidate(_), ProjectionCandidate(_))
1599 | (ProjectionCandidate(_), ObjectCandidate(_)) => {
1600 bug!("Have both object and projection candidate")
1601 }
1602
1603 // Arbitrarily give projection and object candidates priority.
1604 (
1605 ObjectCandidate(_) | ProjectionCandidate(_),
1606 ImplCandidate(..)
1607 | ClosureCandidate
1608 | GeneratorCandidate
1609 | FnPointerCandidate { .. }
1610 | BuiltinObjectCandidate
1611 | BuiltinUnsizeCandidate
1612 | TraitUpcastingUnsizeCandidate(_)
1613 | BuiltinCandidate { .. }
1614 | TraitAliasCandidate(..),
1615 ) => true,
1616
1617 (
1618 ImplCandidate(..)
1619 | ClosureCandidate
1620 | GeneratorCandidate
1621 | FnPointerCandidate { .. }
1622 | BuiltinObjectCandidate
1623 | BuiltinUnsizeCandidate
1624 | TraitUpcastingUnsizeCandidate(_)
1625 | BuiltinCandidate { .. }
1626 | TraitAliasCandidate(..),
1627 ObjectCandidate(_) | ProjectionCandidate(_),
1628 ) => false,
1629
1630 (&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
1631 // See if we can toss out `victim` based on specialization.
1632 // This requires us to know *for sure* that the `other` impl applies
1633 // i.e., `EvaluatedToOk`.
1634 //
1635 // FIXME(@lcnr): Using `modulo_regions` here seems kind of scary
1636 // to me but is required for `std` to compile, so I didn't change it
1637 // for now.
1638 let tcx = self.tcx();
1639 if other.evaluation.must_apply_modulo_regions() {
1640 if tcx.specializes((other_def, victim_def)) {
1641 return true;
1642 }
1643 }
1644
1645 if other.evaluation.must_apply_considering_regions() {
1646 match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
1647 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
1648 // Subtle: If the predicate we are evaluating has inference
1649 // variables, do *not* allow discarding candidates due to
1650 // marker trait impls.
1651 //
1652 // Without this restriction, we could end up accidentally
1653 // constrainting inference variables based on an arbitrarily
1654 // chosen trait impl.
1655 //
1656 // Imagine we have the following code:
1657 //
1658 // ```rust
1659 // #[marker] trait MyTrait {}
1660 // impl MyTrait for u8 {}
1661 // impl MyTrait for bool {}
1662 // ```
1663 //
1664 // And we are evaluating the predicate `<_#0t as MyTrait>`.
1665 //
1666 // During selection, we will end up with one candidate for each
1667 // impl of `MyTrait`. If we were to discard one impl in favor
1668 // of the other, we would be left with one candidate, causing
1669 // us to "successfully" select the predicate, unifying
1670 // _#0t with (for example) `u8`.
1671 //
1672 // However, we have no reason to believe that this unification
1673 // is correct - we've essentially just picked an arbitrary
1674 // *possibility* for _#0t, and required that this be the *only*
1675 // possibility.
1676 //
1677 // Eventually, we will either:
1678 // 1) Unify all inference variables in the predicate through
1679 // some other means (e.g. type-checking of a function). We will
1680 // then be in a position to drop marker trait candidates
1681 // without constraining inference variables (since there are
1682 // none left to constrin)
1683 // 2) Be left with some unconstrained inference variables. We
1684 // will then correctly report an inference error, since the
1685 // existence of multiple marker trait impls tells us nothing
1686 // about which one should actually apply.
1687 !needs_infer
1688 }
1689 Some(_) => true,
1690 None => false,
1691 }
1692 } else {
1693 false
1694 }
1695 }
1696
1697 // Everything else is ambiguous
1698 (
1699 ImplCandidate(_)
1700 | ClosureCandidate
1701 | GeneratorCandidate
1702 | FnPointerCandidate { .. }
1703 | BuiltinObjectCandidate
1704 | BuiltinUnsizeCandidate
1705 | TraitUpcastingUnsizeCandidate(_)
1706 | BuiltinCandidate { has_nested: true }
1707 | TraitAliasCandidate(..),
1708 ImplCandidate(_)
1709 | ClosureCandidate
1710 | GeneratorCandidate
1711 | FnPointerCandidate { .. }
1712 | BuiltinObjectCandidate
1713 | BuiltinUnsizeCandidate
1714 | TraitUpcastingUnsizeCandidate(_)
1715 | BuiltinCandidate { has_nested: true }
1716 | TraitAliasCandidate(..),
1717 ) => false,
1718 }
1719 }
1720
1721 fn sized_conditions(
1722 &mut self,
1723 obligation: &TraitObligation<'tcx>,
1724 ) -> BuiltinImplConditions<'tcx> {
1725 use self::BuiltinImplConditions::{Ambiguous, None, Where};
1726
1727 // NOTE: binder moved to (*)
1728 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1729
1730 match self_ty.kind() {
1731 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1732 | ty::Uint(_)
1733 | ty::Int(_)
1734 | ty::Bool
1735 | ty::Float(_)
1736 | ty::FnDef(..)
1737 | ty::FnPtr(_)
1738 | ty::RawPtr(..)
1739 | ty::Char
1740 | ty::Ref(..)
1741 | ty::Generator(..)
1742 | ty::GeneratorWitness(..)
1743 | ty::Array(..)
1744 | ty::Closure(..)
1745 | ty::Never
1746 | ty::Error(_) => {
1747 // safe for everything
1748 Where(ty::Binder::dummy(Vec::new()))
1749 }
1750
1751 ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
1752
1753 ty::Tuple(tys) => Where(
1754 obligation
1755 .predicate
1756 .rebind(tys.last().into_iter().map(|k| k.expect_ty()).collect()),
1757 ),
1758
1759 ty::Adt(def, substs) => {
1760 let sized_crit = def.sized_constraint(self.tcx());
1761 // (*) binder moved here
1762 Where(
1763 obligation.predicate.rebind({
1764 sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
1765 }),
1766 )
1767 }
1768
1769 ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
1770 ty::Infer(ty::TyVar(_)) => Ambiguous,
1771
1772 ty::Placeholder(..)
1773 | ty::Bound(..)
1774 | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1775 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1776 }
1777 }
1778 }
1779
1780 fn copy_clone_conditions(
1781 &mut self,
1782 obligation: &TraitObligation<'tcx>,
1783 ) -> BuiltinImplConditions<'tcx> {
1784 // NOTE: binder moved to (*)
1785 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
1786
1787 use self::BuiltinImplConditions::{Ambiguous, None, Where};
1788
1789 match *self_ty.kind() {
1790 ty::Infer(ty::IntVar(_))
1791 | ty::Infer(ty::FloatVar(_))
1792 | ty::FnDef(..)
1793 | ty::FnPtr(_)
1794 | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
1795
1796 ty::Uint(_)
1797 | ty::Int(_)
1798 | ty::Bool
1799 | ty::Float(_)
1800 | ty::Char
1801 | ty::RawPtr(..)
1802 | ty::Never
1803 | ty::Ref(_, _, hir::Mutability::Not) => {
1804 // Implementations provided in libcore
1805 None
1806 }
1807
1808 ty::Dynamic(..)
1809 | ty::Str
1810 | ty::Slice(..)
1811 | ty::Generator(..)
1812 | ty::GeneratorWitness(..)
1813 | ty::Foreign(..)
1814 | ty::Ref(_, _, hir::Mutability::Mut) => None,
1815
1816 ty::Array(element_ty, _) => {
1817 // (*) binder moved here
1818 Where(obligation.predicate.rebind(vec![element_ty]))
1819 }
1820
1821 ty::Tuple(tys) => {
1822 // (*) binder moved here
1823 Where(obligation.predicate.rebind(tys.iter().map(|k| k.expect_ty()).collect()))
1824 }
1825
1826 ty::Closure(_, substs) => {
1827 // (*) binder moved here
1828 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1829 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
1830 // Not yet resolved.
1831 Ambiguous
1832 } else {
1833 Where(obligation.predicate.rebind(substs.as_closure().upvar_tys().collect()))
1834 }
1835 }
1836
1837 ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
1838 // Fallback to whatever user-defined impls exist in this case.
1839 None
1840 }
1841
1842 ty::Infer(ty::TyVar(_)) => {
1843 // Unbound type variable. Might or might not have
1844 // applicable impls and so forth, depending on what
1845 // those type variables wind up being bound to.
1846 Ambiguous
1847 }
1848
1849 ty::Placeholder(..)
1850 | ty::Bound(..)
1851 | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1852 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
1853 }
1854 }
1855 }
1856
1857 /// For default impls, we need to break apart a type into its
1858 /// "constituent types" -- meaning, the types that it contains.
1859 ///
1860 /// Here are some (simple) examples:
1861 ///
1862 /// ```
1863 /// (i32, u32) -> [i32, u32]
1864 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
1865 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
1866 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
1867 /// ```
1868 fn constituent_types_for_ty(
1869 &self,
1870 t: ty::Binder<'tcx, Ty<'tcx>>,
1871 ) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
1872 match *t.skip_binder().kind() {
1873 ty::Uint(_)
1874 | ty::Int(_)
1875 | ty::Bool
1876 | ty::Float(_)
1877 | ty::FnDef(..)
1878 | ty::FnPtr(_)
1879 | ty::Str
1880 | ty::Error(_)
1881 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1882 | ty::Never
1883 | ty::Char => ty::Binder::dummy(Vec::new()),
1884
1885 ty::Placeholder(..)
1886 | ty::Dynamic(..)
1887 | ty::Param(..)
1888 | ty::Foreign(..)
1889 | ty::Projection(..)
1890 | ty::Bound(..)
1891 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1892 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
1893 }
1894
1895 ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
1896 t.rebind(vec![element_ty])
1897 }
1898
1899 ty::Array(element_ty, _) | ty::Slice(element_ty) => t.rebind(vec![element_ty]),
1900
1901 ty::Tuple(ref tys) => {
1902 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
1903 t.rebind(tys.iter().map(|k| k.expect_ty()).collect())
1904 }
1905
1906 ty::Closure(_, ref substs) => {
1907 let ty = self.infcx.shallow_resolve(substs.as_closure().tupled_upvars_ty());
1908 t.rebind(vec![ty])
1909 }
1910
1911 ty::Generator(_, ref substs, _) => {
1912 let ty = self.infcx.shallow_resolve(substs.as_generator().tupled_upvars_ty());
1913 let witness = substs.as_generator().witness();
1914 t.rebind(vec![ty].into_iter().chain(iter::once(witness)).collect())
1915 }
1916
1917 ty::GeneratorWitness(types) => {
1918 debug_assert!(!types.has_escaping_bound_vars());
1919 types.map_bound(|types| types.to_vec())
1920 }
1921
1922 // For `PhantomData<T>`, we pass `T`.
1923 ty::Adt(def, substs) if def.is_phantom_data() => t.rebind(substs.types().collect()),
1924
1925 ty::Adt(def, substs) => {
1926 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect())
1927 }
1928
1929 ty::Opaque(def_id, substs) => {
1930 // We can resolve the `impl Trait` to its concrete type,
1931 // which enforces a DAG between the functions requiring
1932 // the auto trait bounds in question.
1933 t.rebind(vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)])
1934 }
1935 }
1936 }
1937
1938 fn collect_predicates_for_types(
1939 &mut self,
1940 param_env: ty::ParamEnv<'tcx>,
1941 cause: ObligationCause<'tcx>,
1942 recursion_depth: usize,
1943 trait_def_id: DefId,
1944 types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
1945 ) -> Vec<PredicateObligation<'tcx>> {
1946 // Because the types were potentially derived from
1947 // higher-ranked obligations they may reference late-bound
1948 // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
1949 // yield a type like `for<'a> &'a i32`. In general, we
1950 // maintain the invariant that we never manipulate bound
1951 // regions, so we have to process these bound regions somehow.
1952 //
1953 // The strategy is to:
1954 //
1955 // 1. Instantiate those regions to placeholder regions (e.g.,
1956 // `for<'a> &'a i32` becomes `&0 i32`.
1957 // 2. Produce something like `&'0 i32 : Copy`
1958 // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
1959
1960 types
1961 .as_ref()
1962 .skip_binder() // binder moved -\
1963 .iter()
1964 .flat_map(|ty| {
1965 let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(ty); // <----/
1966
1967 self.infcx.commit_unconditionally(|_| {
1968 let placeholder_ty = self.infcx.replace_bound_vars_with_placeholders(ty);
1969 let Normalized { value: normalized_ty, mut obligations } =
1970 ensure_sufficient_stack(|| {
1971 project::normalize_with_depth(
1972 self,
1973 param_env,
1974 cause.clone(),
1975 recursion_depth,
1976 placeholder_ty,
1977 )
1978 });
1979 let placeholder_obligation = predicate_for_trait_def(
1980 self.tcx(),
1981 param_env,
1982 cause.clone(),
1983 trait_def_id,
1984 recursion_depth,
1985 normalized_ty,
1986 &[],
1987 );
1988 obligations.push(placeholder_obligation);
1989 obligations
1990 })
1991 })
1992 .collect()
1993 }
1994
1995 ///////////////////////////////////////////////////////////////////////////
1996 // Matching
1997 //
1998 // Matching is a common path used for both evaluation and
1999 // confirmation. It basically unifies types that appear in impls
2000 // and traits. This does affect the surrounding environment;
2001 // therefore, when used during evaluation, match routines must be
2002 // run inside of a `probe()` so that their side-effects are
2003 // contained.
2004
2005 fn rematch_impl(
2006 &mut self,
2007 impl_def_id: DefId,
2008 obligation: &TraitObligation<'tcx>,
2009 ) -> Normalized<'tcx, SubstsRef<'tcx>> {
2010 match self.match_impl(impl_def_id, obligation) {
2011 Ok(substs) => substs,
2012 Err(()) => {
2013 bug!(
2014 "Impl {:?} was matchable against {:?} but now is not",
2015 impl_def_id,
2016 obligation
2017 );
2018 }
2019 }
2020 }
2021
2022 #[tracing::instrument(level = "debug", skip(self))]
2023 fn match_impl(
2024 &mut self,
2025 impl_def_id: DefId,
2026 obligation: &TraitObligation<'tcx>,
2027 ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
2028 let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
2029
2030 // Before we create the substitutions and everything, first
2031 // consider a "quick reject". This avoids creating more types
2032 // and so forth that we need to.
2033 if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
2034 return Err(());
2035 }
2036
2037 let placeholder_obligation =
2038 self.infcx().replace_bound_vars_with_placeholders(obligation.predicate);
2039 let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2040
2041 let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
2042
2043 let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
2044
2045 debug!(?impl_trait_ref);
2046
2047 let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2048 ensure_sufficient_stack(|| {
2049 project::normalize_with_depth(
2050 self,
2051 obligation.param_env,
2052 obligation.cause.clone(),
2053 obligation.recursion_depth + 1,
2054 impl_trait_ref,
2055 )
2056 });
2057
2058 debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2059
2060 let cause = ObligationCause::new(
2061 obligation.cause.span,
2062 obligation.cause.body_id,
2063 ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2064 );
2065
2066 let InferOk { obligations, .. } = self
2067 .infcx
2068 .at(&cause, obligation.param_env)
2069 .eq(placeholder_obligation_trait_ref, impl_trait_ref)
2070 .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
2071 nested_obligations.extend(obligations);
2072
2073 if !self.intercrate
2074 && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
2075 {
2076 debug!("match_impl: reservation impls only apply in intercrate mode");
2077 return Err(());
2078 }
2079
2080 debug!(?impl_substs, ?nested_obligations, "match_impl: success");
2081 Ok(Normalized { value: impl_substs, obligations: nested_obligations })
2082 }
2083
2084 fn fast_reject_trait_refs(
2085 &mut self,
2086 obligation: &TraitObligation<'_>,
2087 impl_trait_ref: &ty::TraitRef<'_>,
2088 ) -> bool {
2089 // We can avoid creating type variables and doing the full
2090 // substitution if we find that any of the input types, when
2091 // simplified, do not match.
2092
2093 iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs).any(
2094 |(obligation_arg, impl_arg)| {
2095 match (obligation_arg.unpack(), impl_arg.unpack()) {
2096 (GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
2097 let simplified_obligation_ty =
2098 fast_reject::simplify_type(self.tcx(), obligation_ty, true);
2099 let simplified_impl_ty =
2100 fast_reject::simplify_type(self.tcx(), impl_ty, false);
2101
2102 simplified_obligation_ty.is_some()
2103 && simplified_impl_ty.is_some()
2104 && simplified_obligation_ty != simplified_impl_ty
2105 }
2106 (GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
2107 // Lifetimes can never cause a rejection.
2108 false
2109 }
2110 (GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
2111 // Conservatively ignore consts (i.e. assume they might
2112 // unify later) until we have `fast_reject` support for
2113 // them (if we'll ever need it, even).
2114 false
2115 }
2116 _ => unreachable!(),
2117 }
2118 },
2119 )
2120 }
2121
2122 /// Normalize `where_clause_trait_ref` and try to match it against
2123 /// `obligation`. If successful, return any predicates that
2124 /// result from the normalization.
2125 fn match_where_clause_trait_ref(
2126 &mut self,
2127 obligation: &TraitObligation<'tcx>,
2128 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2129 ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2130 self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2131 }
2132
2133 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2134 /// obligation is satisfied.
2135 #[instrument(skip(self), level = "debug")]
2136 fn match_poly_trait_ref(
2137 &mut self,
2138 obligation: &TraitObligation<'tcx>,
2139 poly_trait_ref: ty::PolyTraitRef<'tcx>,
2140 ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
2141 self.infcx
2142 .at(&obligation.cause, obligation.param_env)
2143 .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
2144 .map(|InferOk { obligations, .. }| obligations)
2145 .map_err(|_| ())
2146 }
2147
2148 ///////////////////////////////////////////////////////////////////////////
2149 // Miscellany
2150
2151 fn match_fresh_trait_refs(
2152 &self,
2153 previous: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2154 current: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2155 param_env: ty::ParamEnv<'tcx>,
2156 ) -> bool {
2157 let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
2158 matcher.relate(previous, current).is_ok()
2159 }
2160
2161 fn push_stack<'o>(
2162 &mut self,
2163 previous_stack: TraitObligationStackList<'o, 'tcx>,
2164 obligation: &'o TraitObligation<'tcx>,
2165 ) -> TraitObligationStack<'o, 'tcx> {
2166 let fresh_trait_ref = obligation
2167 .predicate
2168 .to_poly_trait_ref()
2169 .fold_with(&mut self.freshener)
2170 .with_constness(obligation.predicate.skip_binder().constness);
2171
2172 let dfn = previous_stack.cache.next_dfn();
2173 let depth = previous_stack.depth() + 1;
2174 TraitObligationStack {
2175 obligation,
2176 fresh_trait_ref,
2177 reached_depth: Cell::new(depth),
2178 previous: previous_stack,
2179 dfn,
2180 depth,
2181 }
2182 }
2183
2184 #[instrument(skip(self), level = "debug")]
2185 fn closure_trait_ref_unnormalized(
2186 &mut self,
2187 obligation: &TraitObligation<'tcx>,
2188 substs: SubstsRef<'tcx>,
2189 ) -> ty::PolyTraitRef<'tcx> {
2190 let closure_sig = substs.as_closure().sig();
2191
2192 debug!(?closure_sig);
2193
2194 // (1) Feels icky to skip the binder here, but OTOH we know
2195 // that the self-type is an unboxed closure type and hence is
2196 // in fact unparameterized (or at least does not reference any
2197 // regions bound in the obligation). Still probably some
2198 // refactoring could make this nicer.
2199 closure_trait_ref_and_return_type(
2200 self.tcx(),
2201 obligation.predicate.def_id(),
2202 obligation.predicate.skip_binder().self_ty(), // (1)
2203 closure_sig,
2204 util::TupleArgumentsFlag::No,
2205 )
2206 .map_bound(|(trait_ref, _)| trait_ref)
2207 }
2208
2209 fn generator_trait_ref_unnormalized(
2210 &mut self,
2211 obligation: &TraitObligation<'tcx>,
2212 substs: SubstsRef<'tcx>,
2213 ) -> ty::PolyTraitRef<'tcx> {
2214 let gen_sig = substs.as_generator().poly_sig();
2215
2216 // (1) Feels icky to skip the binder here, but OTOH we know
2217 // that the self-type is an generator type and hence is
2218 // in fact unparameterized (or at least does not reference any
2219 // regions bound in the obligation). Still probably some
2220 // refactoring could make this nicer.
2221
2222 super::util::generator_trait_ref_and_outputs(
2223 self.tcx(),
2224 obligation.predicate.def_id(),
2225 obligation.predicate.skip_binder().self_ty(), // (1)
2226 gen_sig,
2227 )
2228 .map_bound(|(trait_ref, ..)| trait_ref)
2229 }
2230
2231 /// Returns the obligations that are implied by instantiating an
2232 /// impl or trait. The obligations are substituted and fully
2233 /// normalized. This is used when confirming an impl or default
2234 /// impl.
2235 #[tracing::instrument(level = "debug", skip(self, cause, param_env))]
2236 fn impl_or_trait_obligations(
2237 &mut self,
2238 cause: ObligationCause<'tcx>,
2239 recursion_depth: usize,
2240 param_env: ty::ParamEnv<'tcx>,
2241 def_id: DefId, // of impl or trait
2242 substs: SubstsRef<'tcx>, // for impl or trait
2243 ) -> Vec<PredicateObligation<'tcx>> {
2244 let tcx = self.tcx();
2245
2246 // To allow for one-pass evaluation of the nested obligation,
2247 // each predicate must be preceded by the obligations required
2248 // to normalize it.
2249 // for example, if we have:
2250 // impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2251 // the impl will have the following predicates:
2252 // <V as Iterator>::Item = U,
2253 // U: Iterator, U: Sized,
2254 // V: Iterator, V: Sized,
2255 // <U as Iterator>::Item: Copy
2256 // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
2257 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2258 // `$1: Copy`, so we must ensure the obligations are emitted in
2259 // that order.
2260 let predicates = tcx.predicates_of(def_id);
2261 debug!(?predicates);
2262 assert_eq!(predicates.parent, None);
2263 let mut obligations = Vec::with_capacity(predicates.predicates.len());
2264 for (predicate, _) in predicates.predicates {
2265 debug!(?predicate);
2266 let predicate = normalize_with_depth_to(
2267 self,
2268 param_env,
2269 cause.clone(),
2270 recursion_depth,
2271 predicate.subst(tcx, substs),
2272 &mut obligations,
2273 );
2274 obligations.push(Obligation {
2275 cause: cause.clone(),
2276 recursion_depth,
2277 param_env,
2278 predicate,
2279 });
2280 }
2281
2282 // We are performing deduplication here to avoid exponential blowups
2283 // (#38528) from happening, but the real cause of the duplication is
2284 // unknown. What we know is that the deduplication avoids exponential
2285 // amount of predicates being propagated when processing deeply nested
2286 // types.
2287 //
2288 // This code is hot enough that it's worth avoiding the allocation
2289 // required for the FxHashSet when possible. Special-casing lengths 0,
2290 // 1 and 2 covers roughly 75-80% of the cases.
2291 if obligations.len() <= 1 {
2292 // No possibility of duplicates.
2293 } else if obligations.len() == 2 {
2294 // Only two elements. Drop the second if they are equal.
2295 if obligations[0] == obligations[1] {
2296 obligations.truncate(1);
2297 }
2298 } else {
2299 // Three or more elements. Use a general deduplication process.
2300 let mut seen = FxHashSet::default();
2301 obligations.retain(|i| seen.insert(i.clone()));
2302 }
2303
2304 obligations
2305 }
2306 }
2307
2308 trait TraitObligationExt<'tcx> {
2309 fn derived_cause(
2310 &self,
2311 variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2312 ) -> ObligationCause<'tcx>;
2313 }
2314
2315 impl<'tcx> TraitObligationExt<'tcx> for TraitObligation<'tcx> {
2316 fn derived_cause(
2317 &self,
2318 variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
2319 ) -> ObligationCause<'tcx> {
2320 /*!
2321 * Creates a cause for obligations that are derived from
2322 * `obligation` by a recursive search (e.g., for a builtin
2323 * bound, or eventually a `auto trait Foo`). If `obligation`
2324 * is itself a derived obligation, this is just a clone, but
2325 * otherwise we create a "derived obligation" cause so as to
2326 * keep track of the original root obligation for error
2327 * reporting.
2328 */
2329
2330 let obligation = self;
2331
2332 // NOTE(flaper87): As of now, it keeps track of the whole error
2333 // chain. Ideally, we should have a way to configure this either
2334 // by using -Z verbose or just a CLI argument.
2335 let derived_cause = DerivedObligationCause {
2336 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
2337 parent_code: Lrc::new(obligation.cause.code.clone()),
2338 };
2339 let derived_code = variant(derived_cause);
2340 ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
2341 }
2342 }
2343
2344 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2345 fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2346 TraitObligationStackList::with(self)
2347 }
2348
2349 fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2350 self.previous.cache
2351 }
2352
2353 fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2354 self.list()
2355 }
2356
2357 /// Indicates that attempting to evaluate this stack entry
2358 /// required accessing something from the stack at depth `reached_depth`.
2359 fn update_reached_depth(&self, reached_depth: usize) {
2360 assert!(
2361 self.depth >= reached_depth,
2362 "invoked `update_reached_depth` with something under this stack: \
2363 self.depth={} reached_depth={}",
2364 self.depth,
2365 reached_depth,
2366 );
2367 debug!(reached_depth, "update_reached_depth");
2368 let mut p = self;
2369 while reached_depth < p.depth {
2370 debug!(?p.fresh_trait_ref, "update_reached_depth: marking as cycle participant");
2371 p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2372 p = p.previous.head.unwrap();
2373 }
2374 }
2375 }
2376
2377 /// The "provisional evaluation cache" is used to store intermediate cache results
2378 /// when solving auto traits. Auto traits are unusual in that they can support
2379 /// cycles. So, for example, a "proof tree" like this would be ok:
2380 ///
2381 /// - `Foo<T>: Send` :-
2382 /// - `Bar<T>: Send` :-
2383 /// - `Foo<T>: Send` -- cycle, but ok
2384 /// - `Baz<T>: Send`
2385 ///
2386 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2387 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2388 /// For non-auto traits, this cycle would be an error, but for auto traits (because
2389 /// they are coinductive) it is considered ok.
2390 ///
2391 /// However, there is a complication: at the point where we have
2392 /// "proven" `Bar<T>: Send`, we have in fact only proven it
2393 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
2394 /// *under the assumption* that `Foo<T>: Send`. But what if we later
2395 /// find out this assumption is wrong? Specifically, we could
2396 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
2397 /// `Bar<T>: Send` didn't turn out to be true.
2398 ///
2399 /// In Issue #60010, we found a bug in rustc where it would cache
2400 /// these intermediate results. This was fixed in #60444 by disabling
2401 /// *all* caching for things involved in a cycle -- in our example,
2402 /// that would mean we don't cache that `Bar<T>: Send`. But this led
2403 /// to large slowdowns.
2404 ///
2405 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2406 /// first requires proving `Bar<T>: Send` (which is true:
2407 ///
2408 /// - `Foo<T>: Send` :-
2409 /// - `Bar<T>: Send` :-
2410 /// - `Foo<T>: Send` -- cycle, but ok
2411 /// - `Baz<T>: Send`
2412 /// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2413 /// - `*const T: Send` -- but what if we later encounter an error?
2414 ///
2415 /// The *provisional evaluation cache* resolves this issue. It stores
2416 /// cache results that we've proven but which were involved in a cycle
2417 /// in some way. We track the minimal stack depth (i.e., the
2418 /// farthest from the top of the stack) that we are dependent on.
2419 /// The idea is that the cache results within are all valid -- so long as
2420 /// none of the nodes in between the current node and the node at that minimum
2421 /// depth result in an error (in which case the cached results are just thrown away).
2422 ///
2423 /// During evaluation, we consult this provisional cache and rely on
2424 /// it. Accessing a cached value is considered equivalent to accessing
2425 /// a result at `reached_depth`, so it marks the *current* solution as
2426 /// provisional as well. If an error is encountered, we toss out any
2427 /// provisional results added from the subtree that encountered the
2428 /// error. When we pop the node at `reached_depth` from the stack, we
2429 /// can commit all the things that remain in the provisional cache.
2430 struct ProvisionalEvaluationCache<'tcx> {
2431 /// next "depth first number" to issue -- just a counter
2432 dfn: Cell<usize>,
2433
2434 /// Map from cache key to the provisionally evaluated thing.
2435 /// The cache entries contain the result but also the DFN in which they
2436 /// were added. The DFN is used to clear out values on failure.
2437 ///
2438 /// Imagine we have a stack like:
2439 ///
2440 /// - `A B C` and we add a cache for the result of C (DFN 2)
2441 /// - Then we have a stack `A B D` where `D` has DFN 3
2442 /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2443 /// - `E` generates various cache entries which have cyclic dependices on `B`
2444 /// - `A B D E F` and so forth
2445 /// - the DFN of `F` for example would be 5
2446 /// - then we determine that `E` is in error -- we will then clear
2447 /// all cache values whose DFN is >= 4 -- in this case, that
2448 /// means the cached value for `F`.
2449 map: RefCell<FxHashMap<ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, ProvisionalEvaluation>>,
2450 }
2451
2452 /// A cache value for the provisional cache: contains the depth-first
2453 /// number (DFN) and result.
2454 #[derive(Copy, Clone, Debug)]
2455 struct ProvisionalEvaluation {
2456 from_dfn: usize,
2457 reached_depth: usize,
2458 result: EvaluationResult,
2459 }
2460
2461 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2462 fn default() -> Self {
2463 Self { dfn: Cell::new(0), map: Default::default() }
2464 }
2465 }
2466
2467 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2468 /// Get the next DFN in sequence (basically a counter).
2469 fn next_dfn(&self) -> usize {
2470 let result = self.dfn.get();
2471 self.dfn.set(result + 1);
2472 result
2473 }
2474
2475 /// Check the provisional cache for any result for
2476 /// `fresh_trait_ref`. If there is a hit, then you must consider
2477 /// it an access to the stack slots at depth
2478 /// `reached_depth` (from the returned value).
2479 fn get_provisional(
2480 &self,
2481 fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2482 ) -> Option<ProvisionalEvaluation> {
2483 debug!(
2484 ?fresh_trait_ref,
2485 "get_provisional = {:#?}",
2486 self.map.borrow().get(&fresh_trait_ref),
2487 );
2488 Some(*self.map.borrow().get(&fresh_trait_ref)?)
2489 }
2490
2491 /// Insert a provisional result into the cache. The result came
2492 /// from the node with the given DFN. It accessed a minimum depth
2493 /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
2494 /// and resulted in `result`.
2495 fn insert_provisional(
2496 &self,
2497 from_dfn: usize,
2498 reached_depth: usize,
2499 fresh_trait_ref: ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>,
2500 result: EvaluationResult,
2501 ) {
2502 debug!(?from_dfn, ?fresh_trait_ref, ?result, "insert_provisional");
2503
2504 let mut map = self.map.borrow_mut();
2505
2506 // Subtle: when we complete working on the DFN `from_dfn`, anything
2507 // that remains in the provisional cache must be dependent on some older
2508 // stack entry than `from_dfn`. We have to update their depth with our transitive
2509 // depth in that case or else it would be referring to some popped note.
2510 //
2511 // Example:
2512 // A (reached depth 0)
2513 // ...
2514 // B // depth 1 -- reached depth = 0
2515 // C // depth 2 -- reached depth = 1 (should be 0)
2516 // B
2517 // A // depth 0
2518 // D (reached depth 1)
2519 // C (cache -- reached depth = 2)
2520 for (_k, v) in &mut *map {
2521 if v.from_dfn >= from_dfn {
2522 v.reached_depth = reached_depth.min(v.reached_depth);
2523 }
2524 }
2525
2526 map.insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, reached_depth, result });
2527 }
2528
2529 /// Invoked when the node with dfn `dfn` does not get a successful
2530 /// result. This will clear out any provisional cache entries
2531 /// that were added since `dfn` was created. This is because the
2532 /// provisional entries are things which must assume that the
2533 /// things on the stack at the time of their creation succeeded --
2534 /// since the failing node is presently at the top of the stack,
2535 /// these provisional entries must either depend on it or some
2536 /// ancestor of it.
2537 fn on_failure(&self, dfn: usize) {
2538 debug!(?dfn, "on_failure");
2539 self.map.borrow_mut().retain(|key, eval| {
2540 if !eval.from_dfn >= dfn {
2541 debug!("on_failure: removing {:?}", key);
2542 false
2543 } else {
2544 true
2545 }
2546 });
2547 }
2548
2549 /// Invoked when the node at depth `depth` completed without
2550 /// depending on anything higher in the stack (if that completion
2551 /// was a failure, then `on_failure` should have been invoked
2552 /// already). The callback `op` will be invoked for each
2553 /// provisional entry that we can now confirm.
2554 ///
2555 /// Note that we may still have provisional cache items remaining
2556 /// in the cache when this is done. For example, if there is a
2557 /// cycle:
2558 ///
2559 /// * A depends on...
2560 /// * B depends on A
2561 /// * C depends on...
2562 /// * D depends on C
2563 /// * ...
2564 ///
2565 /// Then as we complete the C node we will have a provisional cache
2566 /// with results for A, B, C, and D. This method would clear out
2567 /// the C and D results, but leave A and B provisional.
2568 ///
2569 /// This is determined based on the DFN: we remove any provisional
2570 /// results created since `dfn` started (e.g., in our example, dfn
2571 /// would be 2, representing the C node, and hence we would
2572 /// remove the result for D, which has DFN 3, but not the results for
2573 /// A and B, which have DFNs 0 and 1 respectively).
2574 fn on_completion(
2575 &self,
2576 dfn: usize,
2577 mut op: impl FnMut(ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>, EvaluationResult),
2578 ) {
2579 debug!(?dfn, "on_completion");
2580
2581 for (fresh_trait_ref, eval) in
2582 self.map.borrow_mut().drain_filter(|_k, eval| eval.from_dfn >= dfn)
2583 {
2584 debug!(?fresh_trait_ref, ?eval, "on_completion");
2585
2586 op(fresh_trait_ref, eval.result);
2587 }
2588 }
2589 }
2590
2591 #[derive(Copy, Clone)]
2592 struct TraitObligationStackList<'o, 'tcx> {
2593 cache: &'o ProvisionalEvaluationCache<'tcx>,
2594 head: Option<&'o TraitObligationStack<'o, 'tcx>>,
2595 }
2596
2597 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
2598 fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2599 TraitObligationStackList { cache, head: None }
2600 }
2601
2602 fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
2603 TraitObligationStackList { cache: r.cache(), head: Some(r) }
2604 }
2605
2606 fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2607 self.head
2608 }
2609
2610 fn depth(&self) -> usize {
2611 if let Some(head) = self.head { head.depth } else { 0 }
2612 }
2613 }
2614
2615 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
2616 type Item = &'o TraitObligationStack<'o, 'tcx>;
2617
2618 fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
2619 let o = self.head?;
2620 *self = o.previous;
2621 Some(o)
2622 }
2623 }
2624
2625 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
2626 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2627 write!(f, "TraitObligationStack({:?})", self.obligation)
2628 }
2629 }