]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_trait_selection/src/traits/wf.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / wf.rs
1 use crate::infer::InferCtxt;
2 use crate::opaque_types::required_region_bounds;
3 use crate::traits;
4 use rustc_hir as hir;
5 use rustc_hir::def_id::DefId;
6 use rustc_hir::lang_items::LangItem;
7 use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef};
8 use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness};
9 use rustc_span::Span;
10
11 use std::iter;
12 use std::rc::Rc;
13 /// Returns the set of obligations needed to make `arg` well-formed.
14 /// If `arg` contains unresolved inference variables, this may include
15 /// further WF obligations. However, if `arg` IS an unresolved
16 /// inference variable, returns `None`, because we are not able to
17 /// make any progress at all. This is to prevent "livelock" where we
18 /// say "$0 is WF if $0 is WF".
19 pub fn obligations<'a, 'tcx>(
20 infcx: &InferCtxt<'a, 'tcx>,
21 param_env: ty::ParamEnv<'tcx>,
22 body_id: hir::HirId,
23 arg: GenericArg<'tcx>,
24 span: Span,
25 ) -> Option<Vec<traits::PredicateObligation<'tcx>>> {
26 // Handle the "livelock" case (see comment above) by bailing out if necessary.
27 let arg = match arg.unpack() {
28 GenericArgKind::Type(ty) => {
29 match ty.kind() {
30 ty::Infer(ty::TyVar(_)) => {
31 let resolved_ty = infcx.shallow_resolve(ty);
32 if resolved_ty == ty {
33 // No progress, bail out to prevent "livelock".
34 return None;
35 }
36
37 resolved_ty
38 }
39 _ => ty,
40 }
41 .into()
42 }
43 GenericArgKind::Const(ct) => {
44 match ct.val {
45 ty::ConstKind::Infer(infer) => {
46 let resolved = infcx.shallow_resolve(infer);
47 if resolved == infer {
48 // No progress.
49 return None;
50 }
51
52 infcx.tcx.mk_const(ty::Const { val: ty::ConstKind::Infer(resolved), ty: ct.ty })
53 }
54 _ => ct,
55 }
56 .into()
57 }
58 // There is nothing we have to do for lifetimes.
59 GenericArgKind::Lifetime(..) => return Some(Vec::new()),
60 };
61
62 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
63 wf.compute(arg);
64 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
65
66 let result = wf.normalize();
67 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
68 Some(result)
69 }
70
71 /// Returns the obligations that make this trait reference
72 /// well-formed. For example, if there is a trait `Set` defined like
73 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
74 /// if `Bar: Eq`.
75 pub fn trait_obligations<'a, 'tcx>(
76 infcx: &InferCtxt<'a, 'tcx>,
77 param_env: ty::ParamEnv<'tcx>,
78 body_id: hir::HirId,
79 trait_ref: &ty::TraitRef<'tcx>,
80 span: Span,
81 item: Option<&'tcx hir::Item<'tcx>>,
82 ) -> Vec<traits::PredicateObligation<'tcx>> {
83 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item };
84 wf.compute_trait_ref(trait_ref, Elaborate::All);
85 wf.normalize()
86 }
87
88 pub fn predicate_obligations<'a, 'tcx>(
89 infcx: &InferCtxt<'a, 'tcx>,
90 param_env: ty::ParamEnv<'tcx>,
91 body_id: hir::HirId,
92 predicate: ty::Predicate<'tcx>,
93 span: Span,
94 ) -> Vec<traits::PredicateObligation<'tcx>> {
95 let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![], item: None };
96
97 // It's ok to skip the binder here because wf code is prepared for it
98 match predicate.skip_binders() {
99 ty::PredicateAtom::Trait(t, _) => {
100 wf.compute_trait_ref(&t.trait_ref, Elaborate::None);
101 }
102 ty::PredicateAtom::RegionOutlives(..) => {}
103 ty::PredicateAtom::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
104 wf.compute(ty.into());
105 }
106 ty::PredicateAtom::Projection(t) => {
107 wf.compute_projection(t.projection_ty);
108 wf.compute(t.ty.into());
109 }
110 ty::PredicateAtom::WellFormed(arg) => {
111 wf.compute(arg);
112 }
113 ty::PredicateAtom::ObjectSafe(_) => {}
114 ty::PredicateAtom::ClosureKind(..) => {}
115 ty::PredicateAtom::Subtype(ty::SubtypePredicate { a, b, a_is_expected: _ }) => {
116 wf.compute(a.into());
117 wf.compute(b.into());
118 }
119 ty::PredicateAtom::ConstEvaluatable(def, substs) => {
120 let obligations = wf.nominal_obligations(def.did, substs);
121 wf.out.extend(obligations);
122
123 for arg in substs.iter() {
124 wf.compute(arg);
125 }
126 }
127 ty::PredicateAtom::ConstEquate(c1, c2) => {
128 wf.compute(c1.into());
129 wf.compute(c2.into());
130 }
131 ty::PredicateAtom::TypeWellFormedFromEnv(..) => {
132 bug!("TypeWellFormedFromEnv is only used for Chalk")
133 }
134 }
135
136 wf.normalize()
137 }
138
139 struct WfPredicates<'a, 'tcx> {
140 infcx: &'a InferCtxt<'a, 'tcx>,
141 param_env: ty::ParamEnv<'tcx>,
142 body_id: hir::HirId,
143 span: Span,
144 out: Vec<traits::PredicateObligation<'tcx>>,
145 item: Option<&'tcx hir::Item<'tcx>>,
146 }
147
148 /// Controls whether we "elaborate" supertraits and so forth on the WF
149 /// predicates. This is a kind of hack to address #43784. The
150 /// underlying problem in that issue was a trait structure like:
151 ///
152 /// ```
153 /// trait Foo: Copy { }
154 /// trait Bar: Foo { }
155 /// impl<T: Bar> Foo for T { }
156 /// impl<T> Bar for T { }
157 /// ```
158 ///
159 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
160 /// we decide that this is true because `T: Bar` is in the
161 /// where-clauses (and we can elaborate that to include `T:
162 /// Copy`). This wouldn't be a problem, except that when we check the
163 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
164 /// impl. And so nowhere did we check that `T: Copy` holds!
165 ///
166 /// To resolve this, we elaborate the WF requirements that must be
167 /// proven when checking impls. This means that (e.g.) the `impl Bar
168 /// for T` will be forced to prove not only that `T: Foo` but also `T:
169 /// Copy` (which it won't be able to do, because there is no `Copy`
170 /// impl for `T`).
171 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
172 enum Elaborate {
173 All,
174 None,
175 }
176
177 fn extend_cause_with_original_assoc_item_obligation<'tcx>(
178 tcx: TyCtxt<'tcx>,
179 trait_ref: &ty::TraitRef<'tcx>,
180 item: Option<&hir::Item<'tcx>>,
181 cause: &mut traits::ObligationCause<'tcx>,
182 pred: &ty::Predicate<'tcx>,
183 mut trait_assoc_items: impl Iterator<Item = &'tcx ty::AssocItem>,
184 ) {
185 debug!(
186 "extended_cause_with_original_assoc_item_obligation {:?} {:?} {:?} {:?}",
187 trait_ref, item, cause, pred
188 );
189 let items = match item {
190 Some(hir::Item { kind: hir::ItemKind::Impl { items, .. }, .. }) => items,
191 _ => return,
192 };
193 let fix_span =
194 |impl_item_ref: &hir::ImplItemRef<'_>| match tcx.hir().impl_item(impl_item_ref.id).kind {
195 hir::ImplItemKind::Const(ty, _) | hir::ImplItemKind::TyAlias(ty) => ty.span,
196 _ => impl_item_ref.span,
197 };
198
199 // It is fine to skip the binder as we don't care about regions here.
200 match pred.skip_binders() {
201 ty::PredicateAtom::Projection(proj) => {
202 // The obligation comes not from the current `impl` nor the `trait` being implemented,
203 // but rather from a "second order" obligation, where an associated type has a
204 // projection coming from another associated type. See
205 // `src/test/ui/associated-types/point-at-type-on-obligation-failure.rs` and
206 // `traits-assoc-type-in-supertrait-bad.rs`.
207 if let ty::Projection(projection_ty) = proj.ty.kind() {
208 let trait_assoc_item = tcx.associated_item(projection_ty.item_def_id);
209 if let Some(impl_item_span) =
210 items.iter().find(|item| item.ident == trait_assoc_item.ident).map(fix_span)
211 {
212 cause.make_mut().span = impl_item_span;
213 }
214 }
215 }
216 ty::PredicateAtom::Trait(pred, _) => {
217 // An associated item obligation born out of the `trait` failed to be met. An example
218 // can be seen in `ui/associated-types/point-at-type-on-obligation-failure-2.rs`.
219 debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
220 if let ty::Projection(ty::ProjectionTy { item_def_id, .. }) = *pred.self_ty().kind() {
221 if let Some(impl_item_span) = trait_assoc_items
222 .find(|i| i.def_id == item_def_id)
223 .and_then(|trait_assoc_item| {
224 items.iter().find(|i| i.ident == trait_assoc_item.ident).map(fix_span)
225 })
226 {
227 cause.make_mut().span = impl_item_span;
228 }
229 }
230 }
231 _ => {}
232 }
233 }
234
235 impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
236 fn tcx(&self) -> TyCtxt<'tcx> {
237 self.infcx.tcx
238 }
239
240 fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
241 traits::ObligationCause::new(self.span, self.body_id, code)
242 }
243
244 fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
245 let cause = self.cause(traits::MiscObligation);
246 let infcx = &mut self.infcx;
247 let param_env = self.param_env;
248 let mut obligations = Vec::with_capacity(self.out.len());
249 for pred in &self.out {
250 assert!(!pred.has_escaping_bound_vars());
251 let mut selcx = traits::SelectionContext::new(infcx);
252 let i = obligations.len();
253 let value =
254 traits::normalize_to(&mut selcx, param_env, cause.clone(), pred, &mut obligations);
255 obligations.insert(i, value);
256 }
257 obligations
258 }
259
260 /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
261 fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
262 let tcx = self.infcx.tcx;
263 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
264
265 debug!("compute_trait_ref obligations {:?}", obligations);
266 let cause = self.cause(traits::MiscObligation);
267 let param_env = self.param_env;
268
269 let item = self.item;
270
271 let extend = |obligation: traits::PredicateObligation<'tcx>| {
272 let mut cause = cause.clone();
273 if let Some(parent_trait_ref) = obligation.predicate.to_opt_poly_trait_ref() {
274 let derived_cause = traits::DerivedObligationCause {
275 parent_trait_ref,
276 parent_code: Rc::new(obligation.cause.code.clone()),
277 };
278 cause.make_mut().code =
279 traits::ObligationCauseCode::DerivedObligation(derived_cause);
280 }
281 extend_cause_with_original_assoc_item_obligation(
282 tcx,
283 trait_ref,
284 item,
285 &mut cause,
286 &obligation.predicate,
287 tcx.associated_items(trait_ref.def_id).in_definition_order(),
288 );
289 traits::Obligation::new(cause, param_env, obligation.predicate)
290 };
291
292 if let Elaborate::All = elaborate {
293 let implied_obligations = traits::util::elaborate_obligations(tcx, obligations);
294 let implied_obligations = implied_obligations.map(extend);
295 self.out.extend(implied_obligations);
296 } else {
297 self.out.extend(obligations);
298 }
299
300 let tcx = self.tcx();
301 self.out.extend(
302 trait_ref
303 .substs
304 .iter()
305 .enumerate()
306 .filter(|(_, arg)| {
307 matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
308 })
309 .filter(|(_, arg)| !arg.has_escaping_bound_vars())
310 .map(|(i, arg)| {
311 let mut new_cause = cause.clone();
312 // The first subst is the self ty - use the correct span for it.
313 if i == 0 {
314 if let Some(hir::ItemKind::Impl { self_ty, .. }) = item.map(|i| &i.kind) {
315 new_cause.make_mut().span = self_ty.span;
316 }
317 }
318 traits::Obligation::new(
319 new_cause,
320 param_env,
321 ty::PredicateAtom::WellFormed(arg).to_predicate(tcx),
322 )
323 }),
324 );
325 }
326
327 /// Pushes the obligations required for `trait_ref::Item` to be WF
328 /// into `self.out`.
329 fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
330 // A projection is well-formed if (a) the trait ref itself is
331 // WF and (b) the trait-ref holds. (It may also be
332 // normalizable and be WF that way.)
333 let trait_ref = data.trait_ref(self.infcx.tcx);
334 self.compute_trait_ref(&trait_ref, Elaborate::None);
335
336 if !data.has_escaping_bound_vars() {
337 let predicate = trait_ref.without_const().to_predicate(self.infcx.tcx);
338 let cause = self.cause(traits::ProjectionWf(data));
339 self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
340 }
341 }
342
343 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
344 if !subty.has_escaping_bound_vars() {
345 let cause = self.cause(cause);
346 let trait_ref = ty::TraitRef {
347 def_id: self.infcx.tcx.require_lang_item(LangItem::Sized, None),
348 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
349 };
350 self.out.push(traits::Obligation::new(
351 cause,
352 self.param_env,
353 trait_ref.without_const().to_predicate(self.infcx.tcx),
354 ));
355 }
356 }
357
358 /// Pushes all the predicates needed to validate that `ty` is WF into `out`.
359 fn compute(&mut self, arg: GenericArg<'tcx>) {
360 let mut walker = arg.walk();
361 let param_env = self.param_env;
362 while let Some(arg) = walker.next() {
363 let ty = match arg.unpack() {
364 GenericArgKind::Type(ty) => ty,
365
366 // No WF constraints for lifetimes being present, any outlives
367 // obligations are handled by the parent (e.g. `ty::Ref`).
368 GenericArgKind::Lifetime(_) => continue,
369
370 GenericArgKind::Const(constant) => {
371 match constant.val {
372 ty::ConstKind::Unevaluated(def, substs, promoted) => {
373 assert!(promoted.is_none());
374
375 let obligations = self.nominal_obligations(def.did, substs);
376 self.out.extend(obligations);
377
378 let predicate = ty::PredicateAtom::ConstEvaluatable(def, substs)
379 .to_predicate(self.tcx());
380 let cause = self.cause(traits::MiscObligation);
381 self.out.push(traits::Obligation::new(
382 cause,
383 self.param_env,
384 predicate,
385 ));
386 }
387 ty::ConstKind::Infer(infer) => {
388 let resolved = self.infcx.shallow_resolve(infer);
389 // the `InferConst` changed, meaning that we made progress.
390 if resolved != infer {
391 let cause = self.cause(traits::MiscObligation);
392
393 let resolved_constant = self.infcx.tcx.mk_const(ty::Const {
394 val: ty::ConstKind::Infer(resolved),
395 ..*constant
396 });
397 self.out.push(traits::Obligation::new(
398 cause,
399 self.param_env,
400 ty::PredicateAtom::WellFormed(resolved_constant.into())
401 .to_predicate(self.tcx()),
402 ));
403 }
404 }
405 ty::ConstKind::Error(_)
406 | ty::ConstKind::Param(_)
407 | ty::ConstKind::Bound(..)
408 | ty::ConstKind::Placeholder(..) => {
409 // These variants are trivially WF, so nothing to do here.
410 }
411 ty::ConstKind::Value(..) => {
412 // FIXME: Enforce that values are structurally-matchable.
413 }
414 }
415 continue;
416 }
417 };
418
419 match *ty.kind() {
420 ty::Bool
421 | ty::Char
422 | ty::Int(..)
423 | ty::Uint(..)
424 | ty::Float(..)
425 | ty::Error(_)
426 | ty::Str
427 | ty::GeneratorWitness(..)
428 | ty::Never
429 | ty::Param(_)
430 | ty::Bound(..)
431 | ty::Placeholder(..)
432 | ty::Foreign(..) => {
433 // WfScalar, WfParameter, etc
434 }
435
436 // Can only infer to `ty::Int(_) | ty::Uint(_)`.
437 ty::Infer(ty::IntVar(_)) => {}
438
439 // Can only infer to `ty::Float(_)`.
440 ty::Infer(ty::FloatVar(_)) => {}
441
442 ty::Slice(subty) => {
443 self.require_sized(subty, traits::SliceOrArrayElem);
444 }
445
446 ty::Array(subty, _) => {
447 self.require_sized(subty, traits::SliceOrArrayElem);
448 // Note that we handle the len is implicitly checked while walking `arg`.
449 }
450
451 ty::Tuple(ref tys) => {
452 if let Some((_last, rest)) = tys.split_last() {
453 for elem in rest {
454 self.require_sized(elem.expect_ty(), traits::TupleElem);
455 }
456 }
457 }
458
459 ty::RawPtr(_) => {
460 // Simple cases that are WF if their type args are WF.
461 }
462
463 ty::Projection(data) => {
464 walker.skip_current_subtree(); // Subtree handled by compute_projection.
465 self.compute_projection(data);
466 }
467
468 ty::Adt(def, substs) => {
469 // WfNominalType
470 let obligations = self.nominal_obligations(def.did, substs);
471 self.out.extend(obligations);
472 }
473
474 ty::FnDef(did, substs) => {
475 let obligations = self.nominal_obligations(did, substs);
476 self.out.extend(obligations);
477 }
478
479 ty::Ref(r, rty, _) => {
480 // WfReference
481 if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
482 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
483 self.out.push(traits::Obligation::new(
484 cause,
485 param_env,
486 ty::PredicateAtom::TypeOutlives(ty::OutlivesPredicate(rty, r))
487 .to_predicate(self.tcx()),
488 ));
489 }
490 }
491
492 ty::Generator(..) => {
493 // Walk ALL the types in the generator: this will
494 // include the upvar types as well as the yield
495 // type. Note that this is mildly distinct from
496 // the closure case, where we have to be careful
497 // about the signature of the closure. We don't
498 // have the problem of implied bounds here since
499 // generators don't take arguments.
500 }
501
502 ty::Closure(_, substs) => {
503 // Only check the upvar types for WF, not the rest
504 // of the types within. This is needed because we
505 // capture the signature and it may not be WF
506 // without the implied bounds. Consider a closure
507 // like `|x: &'a T|` -- it may be that `T: 'a` is
508 // not known to hold in the creator's context (and
509 // indeed the closure may not be invoked by its
510 // creator, but rather turned to someone who *can*
511 // verify that).
512 //
513 // The special treatment of closures here really
514 // ought not to be necessary either; the problem
515 // is related to #25860 -- there is no way for us
516 // to express a fn type complete with the implied
517 // bounds that it is assuming. I think in reality
518 // the WF rules around fn are a bit messed up, and
519 // that is the rot problem: `fn(&'a T)` should
520 // probably always be WF, because it should be
521 // shorthand for something like `where(T: 'a) {
522 // fn(&'a T) }`, as discussed in #25860.
523 //
524 // Note that we are also skipping the generic
525 // types. This is consistent with the `outlives`
526 // code, but anyway doesn't matter: within the fn
527 // body where they are created, the generics will
528 // always be WF, and outside of that fn body we
529 // are not directly inspecting closure types
530 // anyway, except via auto trait matching (which
531 // only inspects the upvar types).
532 walker.skip_current_subtree(); // subtree handled below
533 for upvar_ty in substs.as_closure().upvar_tys() {
534 // FIXME(eddyb) add the type to `walker` instead of recursing.
535 self.compute(upvar_ty.into());
536 }
537 }
538
539 ty::FnPtr(_) => {
540 // let the loop iterate into the argument/return
541 // types appearing in the fn signature
542 }
543
544 ty::Opaque(did, substs) => {
545 // all of the requirements on type parameters
546 // should've been checked by the instantiation
547 // of whatever returned this exact `impl Trait`.
548
549 // for named opaque `impl Trait` types we still need to check them
550 if ty::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
551 let obligations = self.nominal_obligations(did, substs);
552 self.out.extend(obligations);
553 }
554 }
555
556 ty::Dynamic(data, r) => {
557 // WfObject
558 //
559 // Here, we defer WF checking due to higher-ranked
560 // regions. This is perhaps not ideal.
561 self.from_object_ty(ty, data, r);
562
563 // FIXME(#27579) RFC also considers adding trait
564 // obligations that don't refer to Self and
565 // checking those
566
567 let defer_to_coercion = self.tcx().features().object_safe_for_dispatch;
568
569 if !defer_to_coercion {
570 let cause = self.cause(traits::MiscObligation);
571 let component_traits = data.auto_traits().chain(data.principal_def_id());
572 let tcx = self.tcx();
573 self.out.extend(component_traits.map(|did| {
574 traits::Obligation::new(
575 cause.clone(),
576 param_env,
577 ty::PredicateAtom::ObjectSafe(did).to_predicate(tcx),
578 )
579 }));
580 }
581 }
582
583 // Inference variables are the complicated case, since we don't
584 // know what type they are. We do two things:
585 //
586 // 1. Check if they have been resolved, and if so proceed with
587 // THAT type.
588 // 2. If not, we've at least simplified things (e.g., we went
589 // from `Vec<$0>: WF` to `$0: WF`), so we can
590 // register a pending obligation and keep
591 // moving. (Goal is that an "inductive hypothesis"
592 // is satisfied to ensure termination.)
593 // See also the comment on `fn obligations`, describing "livelock"
594 // prevention, which happens before this can be reached.
595 ty::Infer(_) => {
596 let ty = self.infcx.shallow_resolve(ty);
597 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
598 // Not yet resolved, but we've made progress.
599 let cause = self.cause(traits::MiscObligation);
600 self.out.push(traits::Obligation::new(
601 cause,
602 param_env,
603 ty::PredicateAtom::WellFormed(ty.into()).to_predicate(self.tcx()),
604 ));
605 } else {
606 // Yes, resolved, proceed with the result.
607 // FIXME(eddyb) add the type to `walker` instead of recursing.
608 self.compute(ty.into());
609 }
610 }
611 }
612 }
613 }
614
615 fn nominal_obligations(
616 &mut self,
617 def_id: DefId,
618 substs: SubstsRef<'tcx>,
619 ) -> Vec<traits::PredicateObligation<'tcx>> {
620 let predicates = self.infcx.tcx.predicates_of(def_id);
621 let mut origins = vec![def_id; predicates.predicates.len()];
622 let mut head = predicates;
623 while let Some(parent) = head.parent {
624 head = self.infcx.tcx.predicates_of(parent);
625 origins.extend(iter::repeat(parent).take(head.predicates.len()));
626 }
627
628 let predicates = predicates.instantiate(self.infcx.tcx, substs);
629 debug_assert_eq!(predicates.predicates.len(), origins.len());
630
631 predicates
632 .predicates
633 .into_iter()
634 .zip(predicates.spans.into_iter())
635 .zip(origins.into_iter().rev())
636 .map(|((pred, span), origin_def_id)| {
637 let cause = self.cause(traits::BindingObligation(origin_def_id, span));
638 traits::Obligation::new(cause, self.param_env, pred)
639 })
640 .filter(|pred| !pred.has_escaping_bound_vars())
641 .collect()
642 }
643
644 fn from_object_ty(
645 &mut self,
646 ty: Ty<'tcx>,
647 data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
648 region: ty::Region<'tcx>,
649 ) {
650 // Imagine a type like this:
651 //
652 // trait Foo { }
653 // trait Bar<'c> : 'c { }
654 //
655 // &'b (Foo+'c+Bar<'d>)
656 // ^
657 //
658 // In this case, the following relationships must hold:
659 //
660 // 'b <= 'c
661 // 'd <= 'c
662 //
663 // The first conditions is due to the normal region pointer
664 // rules, which say that a reference cannot outlive its
665 // referent.
666 //
667 // The final condition may be a bit surprising. In particular,
668 // you may expect that it would have been `'c <= 'd`, since
669 // usually lifetimes of outer things are conservative
670 // approximations for inner things. However, it works somewhat
671 // differently with trait objects: here the idea is that if the
672 // user specifies a region bound (`'c`, in this case) it is the
673 // "master bound" that *implies* that bounds from other traits are
674 // all met. (Remember that *all bounds* in a type like
675 // `Foo+Bar+Zed` must be met, not just one, hence if we write
676 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
677 // 'y.)
678 //
679 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
680 // am looking forward to the future here.
681 if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
682 let implicit_bounds = object_region_bounds(self.infcx.tcx, data);
683
684 let explicit_bound = region;
685
686 self.out.reserve(implicit_bounds.len());
687 for implicit_bound in implicit_bounds {
688 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
689 let outlives =
690 ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
691 self.out.push(traits::Obligation::new(
692 cause,
693 self.param_env,
694 outlives.to_predicate(self.infcx.tcx),
695 ));
696 }
697 }
698 }
699 }
700
701 /// Given an object type like `SomeTrait + Send`, computes the lifetime
702 /// bounds that must hold on the elided self type. These are derived
703 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
704 /// they declare `trait SomeTrait : 'static`, for example, then
705 /// `'static` would appear in the list. The hard work is done by
706 /// `infer::required_region_bounds`, see that for more information.
707 pub fn object_region_bounds<'tcx>(
708 tcx: TyCtxt<'tcx>,
709 existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
710 ) -> Vec<ty::Region<'tcx>> {
711 // Since we don't actually *know* the self type for an object,
712 // this "open(err)" serves as a kind of dummy standin -- basically
713 // a placeholder type.
714 let open_ty = tcx.mk_ty_infer(ty::FreshTy(0));
715
716 let predicates = existential_predicates.iter().filter_map(|predicate| {
717 if let ty::ExistentialPredicate::Projection(_) = predicate.skip_binder() {
718 None
719 } else {
720 Some(predicate.with_self_ty(tcx, open_ty))
721 }
722 });
723
724 required_region_bounds(tcx, open_ty, predicates)
725 }