]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/check/closure.rs
New upstream version 1.57.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / check / closure.rs
1 //! Code for type-checking closure expressions.
2
3 use super::{check_fn, Expectation, FnCtxt, GeneratorTypes};
4
5 use crate::astconv::AstConv;
6 use rustc_hir as hir;
7 use rustc_hir::def_id::DefId;
8 use rustc_hir::lang_items::LangItem;
9 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
10 use rustc_infer::infer::LateBoundRegionConversionTime;
11 use rustc_infer::infer::{InferOk, InferResult};
12 use rustc_middle::ty::fold::TypeFoldable;
13 use rustc_middle::ty::subst::InternalSubsts;
14 use rustc_middle::ty::{self, Ty};
15 use rustc_span::source_map::Span;
16 use rustc_target::spec::abi::Abi;
17 use rustc_trait_selection::traits::error_reporting::ArgKind;
18 use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
19 use std::cmp;
20 use std::iter;
21
22 /// What signature do we *expect* the closure to have from context?
23 #[derive(Debug)]
24 struct ExpectedSig<'tcx> {
25 /// Span that gave us this expectation, if we know that.
26 cause_span: Option<Span>,
27 sig: ty::PolyFnSig<'tcx>,
28 }
29
30 struct ClosureSignatures<'tcx> {
31 bound_sig: ty::PolyFnSig<'tcx>,
32 liberated_sig: ty::FnSig<'tcx>,
33 }
34
35 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
36 #[instrument(skip(self, expr, _capture, decl, body_id), level = "debug")]
37 pub fn check_expr_closure(
38 &self,
39 expr: &hir::Expr<'_>,
40 _capture: hir::CaptureBy,
41 decl: &'tcx hir::FnDecl<'tcx>,
42 body_id: hir::BodyId,
43 gen: Option<hir::Movability>,
44 expected: Expectation<'tcx>,
45 ) -> Ty<'tcx> {
46 trace!("decl = {:#?}", decl);
47 trace!("expr = {:#?}", expr);
48
49 // It's always helpful for inference if we know the kind of
50 // closure sooner rather than later, so first examine the expected
51 // type, and see if can glean a closure kind from there.
52 let (expected_sig, expected_kind) = match expected.to_option(self) {
53 Some(ty) => self.deduce_expectations_from_expected_type(ty),
54 None => (None, None),
55 };
56 let body = self.tcx.hir().body(body_id);
57 self.check_closure(expr, expected_kind, decl, body, gen, expected_sig)
58 }
59
60 #[instrument(skip(self, expr, body, decl), level = "debug")]
61 fn check_closure(
62 &self,
63 expr: &hir::Expr<'_>,
64 opt_kind: Option<ty::ClosureKind>,
65 decl: &'tcx hir::FnDecl<'tcx>,
66 body: &'tcx hir::Body<'tcx>,
67 gen: Option<hir::Movability>,
68 expected_sig: Option<ExpectedSig<'tcx>>,
69 ) -> Ty<'tcx> {
70 trace!("decl = {:#?}", decl);
71 let expr_def_id = self.tcx.hir().local_def_id(expr.hir_id);
72 debug!(?expr_def_id);
73
74 let ClosureSignatures { bound_sig, liberated_sig } =
75 self.sig_of_closure(expr.hir_id, expr_def_id.to_def_id(), decl, body, expected_sig);
76
77 debug!(?bound_sig, ?liberated_sig);
78
79 let return_type_pre_known = !liberated_sig.output().is_ty_infer();
80
81 let generator_types = check_fn(
82 self,
83 self.param_env,
84 liberated_sig,
85 decl,
86 expr.hir_id,
87 body,
88 gen,
89 return_type_pre_known,
90 )
91 .1;
92
93 let parent_substs = InternalSubsts::identity_for_item(
94 self.tcx,
95 self.tcx.closure_base_def_id(expr_def_id.to_def_id()),
96 );
97
98 let tupled_upvars_ty = self.infcx.next_ty_var(TypeVariableOrigin {
99 kind: TypeVariableOriginKind::ClosureSynthetic,
100 span: self.tcx.hir().span(expr.hir_id),
101 });
102
103 if let Some(GeneratorTypes { resume_ty, yield_ty, interior, movability }) = generator_types
104 {
105 let generator_substs = ty::GeneratorSubsts::new(
106 self.tcx,
107 ty::GeneratorSubstsParts {
108 parent_substs,
109 resume_ty,
110 yield_ty,
111 return_ty: liberated_sig.output(),
112 witness: interior,
113 tupled_upvars_ty,
114 },
115 );
116
117 return self.tcx.mk_generator(
118 expr_def_id.to_def_id(),
119 generator_substs.substs,
120 movability,
121 );
122 }
123
124 // Tuple up the arguments and insert the resulting function type into
125 // the `closures` table.
126 let sig = bound_sig.map_bound(|sig| {
127 self.tcx.mk_fn_sig(
128 iter::once(self.tcx.intern_tup(sig.inputs())),
129 sig.output(),
130 sig.c_variadic,
131 sig.unsafety,
132 sig.abi,
133 )
134 });
135
136 debug!(?sig, ?opt_kind);
137
138 let closure_kind_ty = match opt_kind {
139 Some(kind) => kind.to_ty(self.tcx),
140
141 // Create a type variable (for now) to represent the closure kind.
142 // It will be unified during the upvar inference phase (`upvar.rs`)
143 None => self.infcx.next_ty_var(TypeVariableOrigin {
144 // FIXME(eddyb) distinguish closure kind inference variables from the rest.
145 kind: TypeVariableOriginKind::ClosureSynthetic,
146 span: expr.span,
147 }),
148 };
149
150 let closure_substs = ty::ClosureSubsts::new(
151 self.tcx,
152 ty::ClosureSubstsParts {
153 parent_substs,
154 closure_kind_ty,
155 closure_sig_as_fn_ptr_ty: self.tcx.mk_fn_ptr(sig),
156 tupled_upvars_ty,
157 },
158 );
159
160 let closure_type = self.tcx.mk_closure(expr_def_id.to_def_id(), closure_substs.substs);
161
162 debug!(?expr.hir_id, ?closure_type);
163
164 closure_type
165 }
166
167 /// Given the expected type, figures out what it can about this closure we
168 /// are about to type check:
169 #[instrument(skip(self), level = "debug")]
170 fn deduce_expectations_from_expected_type(
171 &self,
172 expected_ty: Ty<'tcx>,
173 ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
174 match *expected_ty.kind() {
175 ty::Dynamic(ref object_type, ..) => {
176 let sig = object_type.projection_bounds().find_map(|pb| {
177 let pb = pb.with_self_ty(self.tcx, self.tcx.types.trait_object_dummy_self);
178 self.deduce_sig_from_projection(None, pb)
179 });
180 let kind = object_type
181 .principal_def_id()
182 .and_then(|did| self.tcx.fn_trait_kind_from_lang_item(did));
183 (sig, kind)
184 }
185 ty::Infer(ty::TyVar(vid)) => self.deduce_expectations_from_obligations(vid),
186 ty::FnPtr(sig) => {
187 let expected_sig = ExpectedSig { cause_span: None, sig };
188 (Some(expected_sig), Some(ty::ClosureKind::Fn))
189 }
190 _ => (None, None),
191 }
192 }
193
194 fn deduce_expectations_from_obligations(
195 &self,
196 expected_vid: ty::TyVid,
197 ) -> (Option<ExpectedSig<'tcx>>, Option<ty::ClosureKind>) {
198 let expected_sig =
199 self.obligations_for_self_ty(expected_vid).find_map(|(_, obligation)| {
200 debug!(
201 "deduce_expectations_from_obligations: obligation.predicate={:?}",
202 obligation.predicate
203 );
204
205 let bound_predicate = obligation.predicate.kind();
206 if let ty::PredicateKind::Projection(proj_predicate) =
207 obligation.predicate.kind().skip_binder()
208 {
209 // Given a Projection predicate, we can potentially infer
210 // the complete signature.
211 self.deduce_sig_from_projection(
212 Some(obligation.cause.span),
213 bound_predicate.rebind(proj_predicate),
214 )
215 } else {
216 None
217 }
218 });
219
220 // Even if we can't infer the full signature, we may be able to
221 // infer the kind. This can occur when we elaborate a predicate
222 // like `F : Fn<A>`. Note that due to subtyping we could encounter
223 // many viable options, so pick the most restrictive.
224 let expected_kind = self
225 .obligations_for_self_ty(expected_vid)
226 .filter_map(|(tr, _)| self.tcx.fn_trait_kind_from_lang_item(tr.def_id()))
227 .fold(None, |best, cur| Some(best.map_or(cur, |best| cmp::min(best, cur))));
228
229 (expected_sig, expected_kind)
230 }
231
232 /// Given a projection like "<F as Fn(X)>::Result == Y", we can deduce
233 /// everything we need to know about a closure or generator.
234 ///
235 /// The `cause_span` should be the span that caused us to
236 /// have this expected signature, or `None` if we can't readily
237 /// know that.
238 fn deduce_sig_from_projection(
239 &self,
240 cause_span: Option<Span>,
241 projection: ty::PolyProjectionPredicate<'tcx>,
242 ) -> Option<ExpectedSig<'tcx>> {
243 let tcx = self.tcx;
244
245 debug!("deduce_sig_from_projection({:?})", projection);
246
247 let trait_def_id = projection.trait_def_id(tcx);
248
249 let is_fn = tcx.fn_trait_kind_from_lang_item(trait_def_id).is_some();
250 let gen_trait = tcx.require_lang_item(LangItem::Generator, cause_span);
251 let is_gen = gen_trait == trait_def_id;
252 if !is_fn && !is_gen {
253 debug!("deduce_sig_from_projection: not fn or generator");
254 return None;
255 }
256
257 if is_gen {
258 // Check that we deduce the signature from the `<_ as std::ops::Generator>::Return`
259 // associated item and not yield.
260 let return_assoc_item =
261 self.tcx.associated_items(gen_trait).in_definition_order().nth(1).unwrap().def_id;
262 if return_assoc_item != projection.projection_def_id() {
263 debug!("deduce_sig_from_projection: not return assoc item of generator");
264 return None;
265 }
266 }
267
268 let input_tys = if is_fn {
269 let arg_param_ty = projection.skip_binder().projection_ty.substs.type_at(1);
270 let arg_param_ty = self.resolve_vars_if_possible(arg_param_ty);
271 debug!("deduce_sig_from_projection: arg_param_ty={:?}", arg_param_ty);
272
273 match arg_param_ty.kind() {
274 ty::Tuple(tys) => tys.into_iter().map(|k| k.expect_ty()).collect::<Vec<_>>(),
275 _ => return None,
276 }
277 } else {
278 // Generators with a `()` resume type may be defined with 0 or 1 explicit arguments,
279 // else they must have exactly 1 argument. For now though, just give up in this case.
280 return None;
281 };
282
283 let ret_param_ty = projection.skip_binder().ty;
284 let ret_param_ty = self.resolve_vars_if_possible(ret_param_ty);
285 debug!("deduce_sig_from_projection: ret_param_ty={:?}", ret_param_ty);
286
287 let sig = projection.rebind(self.tcx.mk_fn_sig(
288 input_tys.iter(),
289 &ret_param_ty,
290 false,
291 hir::Unsafety::Normal,
292 Abi::Rust,
293 ));
294 debug!("deduce_sig_from_projection: sig={:?}", sig);
295
296 Some(ExpectedSig { cause_span, sig })
297 }
298
299 fn sig_of_closure(
300 &self,
301 hir_id: hir::HirId,
302 expr_def_id: DefId,
303 decl: &hir::FnDecl<'_>,
304 body: &hir::Body<'_>,
305 expected_sig: Option<ExpectedSig<'tcx>>,
306 ) -> ClosureSignatures<'tcx> {
307 if let Some(e) = expected_sig {
308 self.sig_of_closure_with_expectation(hir_id, expr_def_id, decl, body, e)
309 } else {
310 self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body)
311 }
312 }
313
314 /// If there is no expected signature, then we will convert the
315 /// types that the user gave into a signature.
316 #[instrument(skip(self, hir_id, expr_def_id, decl, body), level = "debug")]
317 fn sig_of_closure_no_expectation(
318 &self,
319 hir_id: hir::HirId,
320 expr_def_id: DefId,
321 decl: &hir::FnDecl<'_>,
322 body: &hir::Body<'_>,
323 ) -> ClosureSignatures<'tcx> {
324 let bound_sig = self.supplied_sig_of_closure(hir_id, expr_def_id, decl, body);
325
326 self.closure_sigs(expr_def_id, body, bound_sig)
327 }
328
329 /// Invoked to compute the signature of a closure expression. This
330 /// combines any user-provided type annotations (e.g., `|x: u32|
331 /// -> u32 { .. }`) with the expected signature.
332 ///
333 /// The approach is as follows:
334 ///
335 /// - Let `S` be the (higher-ranked) signature that we derive from the user's annotations.
336 /// - Let `E` be the (higher-ranked) signature that we derive from the expectations, if any.
337 /// - If we have no expectation `E`, then the signature of the closure is `S`.
338 /// - Otherwise, the signature of the closure is E. Moreover:
339 /// - Skolemize the late-bound regions in `E`, yielding `E'`.
340 /// - Instantiate all the late-bound regions bound in the closure within `S`
341 /// with fresh (existential) variables, yielding `S'`
342 /// - Require that `E' = S'`
343 /// - We could use some kind of subtyping relationship here,
344 /// I imagine, but equality is easier and works fine for
345 /// our purposes.
346 ///
347 /// The key intuition here is that the user's types must be valid
348 /// from "the inside" of the closure, but the expectation
349 /// ultimately drives the overall signature.
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// fn with_closure<F>(_: F)
355 /// where F: Fn(&u32) -> &u32 { .. }
356 ///
357 /// with_closure(|x: &u32| { ... })
358 /// ```
359 ///
360 /// Here:
361 /// - E would be `fn(&u32) -> &u32`.
362 /// - S would be `fn(&u32) ->
363 /// - E' is `&'!0 u32 -> &'!0 u32`
364 /// - S' is `&'?0 u32 -> ?T`
365 ///
366 /// S' can be unified with E' with `['?0 = '!0, ?T = &'!10 u32]`.
367 ///
368 /// # Arguments
369 ///
370 /// - `expr_def_id`: the `DefId` of the closure expression
371 /// - `decl`: the HIR declaration of the closure
372 /// - `body`: the body of the closure
373 /// - `expected_sig`: the expected signature (if any). Note that
374 /// this is missing a binder: that is, there may be late-bound
375 /// regions with depth 1, which are bound then by the closure.
376 #[instrument(skip(self, hir_id, expr_def_id, decl, body), level = "debug")]
377 fn sig_of_closure_with_expectation(
378 &self,
379 hir_id: hir::HirId,
380 expr_def_id: DefId,
381 decl: &hir::FnDecl<'_>,
382 body: &hir::Body<'_>,
383 expected_sig: ExpectedSig<'tcx>,
384 ) -> ClosureSignatures<'tcx> {
385 // Watch out for some surprises and just ignore the
386 // expectation if things don't see to match up with what we
387 // expect.
388 if expected_sig.sig.c_variadic() != decl.c_variadic {
389 return self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body);
390 } else if expected_sig.sig.skip_binder().inputs_and_output.len() != decl.inputs.len() + 1 {
391 return self.sig_of_closure_with_mismatched_number_of_arguments(
392 expr_def_id,
393 decl,
394 body,
395 expected_sig,
396 );
397 }
398
399 // Create a `PolyFnSig`. Note the oddity that late bound
400 // regions appearing free in `expected_sig` are now bound up
401 // in this binder we are creating.
402 assert!(!expected_sig.sig.skip_binder().has_vars_bound_above(ty::INNERMOST));
403 let bound_sig = expected_sig.sig.map_bound(|sig| {
404 self.tcx.mk_fn_sig(
405 sig.inputs().iter().cloned(),
406 sig.output(),
407 sig.c_variadic,
408 hir::Unsafety::Normal,
409 Abi::RustCall,
410 )
411 });
412
413 // `deduce_expectations_from_expected_type` introduces
414 // late-bound lifetimes defined elsewhere, which we now
415 // anonymize away, so as not to confuse the user.
416 let bound_sig = self.tcx.anonymize_late_bound_regions(bound_sig);
417
418 let closure_sigs = self.closure_sigs(expr_def_id, body, bound_sig);
419
420 // Up till this point, we have ignored the annotations that the user
421 // gave. This function will check that they unify successfully.
422 // Along the way, it also writes out entries for types that the user
423 // wrote into our typeck results, which are then later used by the privacy
424 // check.
425 match self.check_supplied_sig_against_expectation(
426 hir_id,
427 expr_def_id,
428 decl,
429 body,
430 &closure_sigs,
431 ) {
432 Ok(infer_ok) => self.register_infer_ok_obligations(infer_ok),
433 Err(_) => return self.sig_of_closure_no_expectation(hir_id, expr_def_id, decl, body),
434 }
435
436 closure_sigs
437 }
438
439 fn sig_of_closure_with_mismatched_number_of_arguments(
440 &self,
441 expr_def_id: DefId,
442 decl: &hir::FnDecl<'_>,
443 body: &hir::Body<'_>,
444 expected_sig: ExpectedSig<'tcx>,
445 ) -> ClosureSignatures<'tcx> {
446 let hir = self.tcx.hir();
447 let expr_map_node = hir.get_if_local(expr_def_id).unwrap();
448 let expected_args: Vec<_> = expected_sig
449 .sig
450 .skip_binder()
451 .inputs()
452 .iter()
453 .map(|ty| ArgKind::from_expected_ty(ty, None))
454 .collect();
455 let (closure_span, found_args) = match self.get_fn_like_arguments(expr_map_node) {
456 Some((sp, args)) => (Some(sp), args),
457 None => (None, Vec::new()),
458 };
459 let expected_span =
460 expected_sig.cause_span.unwrap_or_else(|| hir.span_if_local(expr_def_id).unwrap());
461 self.report_arg_count_mismatch(
462 expected_span,
463 closure_span,
464 expected_args,
465 found_args,
466 true,
467 )
468 .emit();
469
470 let error_sig = self.error_sig_of_closure(decl);
471
472 self.closure_sigs(expr_def_id, body, error_sig)
473 }
474
475 /// Enforce the user's types against the expectation. See
476 /// `sig_of_closure_with_expectation` for details on the overall
477 /// strategy.
478 fn check_supplied_sig_against_expectation(
479 &self,
480 hir_id: hir::HirId,
481 expr_def_id: DefId,
482 decl: &hir::FnDecl<'_>,
483 body: &hir::Body<'_>,
484 expected_sigs: &ClosureSignatures<'tcx>,
485 ) -> InferResult<'tcx, ()> {
486 // Get the signature S that the user gave.
487 //
488 // (See comment on `sig_of_closure_with_expectation` for the
489 // meaning of these letters.)
490 let supplied_sig = self.supplied_sig_of_closure(hir_id, expr_def_id, decl, body);
491
492 debug!("check_supplied_sig_against_expectation: supplied_sig={:?}", supplied_sig);
493
494 // FIXME(#45727): As discussed in [this comment][c1], naively
495 // forcing equality here actually results in suboptimal error
496 // messages in some cases. For now, if there would have been
497 // an obvious error, we fallback to declaring the type of the
498 // closure to be the one the user gave, which allows other
499 // error message code to trigger.
500 //
501 // However, I think [there is potential to do even better
502 // here][c2], since in *this* code we have the precise span of
503 // the type parameter in question in hand when we report the
504 // error.
505 //
506 // [c1]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341089706
507 // [c2]: https://github.com/rust-lang/rust/pull/45072#issuecomment-341096796
508 self.infcx.commit_if_ok(|_| {
509 let mut all_obligations = vec![];
510
511 // The liberated version of this signature should be a subtype
512 // of the liberated form of the expectation.
513 for ((hir_ty, &supplied_ty), expected_ty) in iter::zip(
514 iter::zip(
515 decl.inputs,
516 supplied_sig.inputs().skip_binder(), // binder moved to (*) below
517 ),
518 expected_sigs.liberated_sig.inputs(), // `liberated_sig` is E'.
519 ) {
520 // Instantiate (this part of..) S to S', i.e., with fresh variables.
521 let (supplied_ty, _) = self.infcx.replace_bound_vars_with_fresh_vars(
522 hir_ty.span,
523 LateBoundRegionConversionTime::FnCall,
524 supplied_sig.inputs().rebind(supplied_ty),
525 ); // recreated from (*) above
526
527 // Check that E' = S'.
528 let cause = self.misc(hir_ty.span);
529 let InferOk { value: (), obligations } =
530 self.at(&cause, self.param_env).eq(*expected_ty, supplied_ty)?;
531 all_obligations.extend(obligations);
532 }
533
534 let (supplied_output_ty, _) = self.infcx.replace_bound_vars_with_fresh_vars(
535 decl.output.span(),
536 LateBoundRegionConversionTime::FnCall,
537 supplied_sig.output(),
538 );
539 let cause = &self.misc(decl.output.span());
540 let InferOk { value: (), obligations } = self
541 .at(cause, self.param_env)
542 .eq(expected_sigs.liberated_sig.output(), supplied_output_ty)?;
543 all_obligations.extend(obligations);
544
545 Ok(InferOk { value: (), obligations: all_obligations })
546 })
547 }
548
549 /// If there is no expected signature, then we will convert the
550 /// types that the user gave into a signature.
551 ///
552 /// Also, record this closure signature for later.
553 #[instrument(skip(self, decl, body), level = "debug")]
554 fn supplied_sig_of_closure(
555 &self,
556 hir_id: hir::HirId,
557 expr_def_id: DefId,
558 decl: &hir::FnDecl<'_>,
559 body: &hir::Body<'_>,
560 ) -> ty::PolyFnSig<'tcx> {
561 let astconv: &dyn AstConv<'_> = self;
562
563 trace!("decl = {:#?}", decl);
564 debug!(?body.generator_kind);
565
566 let bound_vars = self.tcx.late_bound_vars(hir_id);
567
568 // First, convert the types that the user supplied (if any).
569 let supplied_arguments = decl.inputs.iter().map(|a| astconv.ast_ty_to_ty(a));
570 let supplied_return = match decl.output {
571 hir::FnRetTy::Return(ref output) => astconv.ast_ty_to_ty(&output),
572 hir::FnRetTy::DefaultReturn(_) => match body.generator_kind {
573 // In the case of the async block that we create for a function body,
574 // we expect the return type of the block to match that of the enclosing
575 // function.
576 Some(hir::GeneratorKind::Async(hir::AsyncGeneratorKind::Fn)) => {
577 debug!("closure is async fn body");
578 self.deduce_future_output_from_obligations(expr_def_id).unwrap_or_else(|| {
579 // AFAIK, deducing the future output
580 // always succeeds *except* in error cases
581 // like #65159. I'd like to return Error
582 // here, but I can't because I can't
583 // easily (and locally) prove that we
584 // *have* reported an
585 // error. --nikomatsakis
586 astconv.ty_infer(None, decl.output.span())
587 })
588 }
589
590 _ => astconv.ty_infer(None, decl.output.span()),
591 },
592 };
593
594 let result = ty::Binder::bind_with_vars(
595 self.tcx.mk_fn_sig(
596 supplied_arguments,
597 supplied_return,
598 decl.c_variadic,
599 hir::Unsafety::Normal,
600 Abi::RustCall,
601 ),
602 bound_vars,
603 );
604
605 debug!(?result);
606
607 let c_result = self.inh.infcx.canonicalize_response(result);
608 self.typeck_results.borrow_mut().user_provided_sigs.insert(expr_def_id, c_result);
609
610 result
611 }
612
613 /// Invoked when we are translating the generator that results
614 /// from desugaring an `async fn`. Returns the "sugared" return
615 /// type of the `async fn` -- that is, the return type that the
616 /// user specified. The "desugared" return type is an `impl
617 /// Future<Output = T>`, so we do this by searching through the
618 /// obligations to extract the `T`.
619 fn deduce_future_output_from_obligations(&self, expr_def_id: DefId) -> Option<Ty<'tcx>> {
620 debug!("deduce_future_output_from_obligations(expr_def_id={:?})", expr_def_id);
621
622 let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
623 span_bug!(self.tcx.def_span(expr_def_id), "async fn generator outside of a fn")
624 });
625
626 // In practice, the return type of the surrounding function is
627 // always a (not yet resolved) inference variable, because it
628 // is the hidden type for an `impl Trait` that we are going to
629 // be inferring.
630 let ret_ty = ret_coercion.borrow().expected_ty();
631 let ret_ty = self.inh.infcx.shallow_resolve(ret_ty);
632 let ret_vid = match *ret_ty.kind() {
633 ty::Infer(ty::TyVar(ret_vid)) => ret_vid,
634 ty::Error(_) => return None,
635 _ => span_bug!(
636 self.tcx.def_span(expr_def_id),
637 "async fn generator return type not an inference variable"
638 ),
639 };
640
641 // Search for a pending obligation like
642 //
643 // `<R as Future>::Output = T`
644 //
645 // where R is the return type we are expecting. This type `T`
646 // will be our output.
647 let output_ty = self.obligations_for_self_ty(ret_vid).find_map(|(_, obligation)| {
648 let bound_predicate = obligation.predicate.kind();
649 if let ty::PredicateKind::Projection(proj_predicate) = bound_predicate.skip_binder() {
650 self.deduce_future_output_from_projection(
651 obligation.cause.span,
652 bound_predicate.rebind(proj_predicate),
653 )
654 } else {
655 None
656 }
657 });
658
659 debug!("deduce_future_output_from_obligations: output_ty={:?}", output_ty);
660 output_ty
661 }
662
663 /// Given a projection like
664 ///
665 /// `<X as Future>::Output = T`
666 ///
667 /// where `X` is some type that has no late-bound regions, returns
668 /// `Some(T)`. If the projection is for some other trait, returns
669 /// `None`.
670 fn deduce_future_output_from_projection(
671 &self,
672 cause_span: Span,
673 predicate: ty::PolyProjectionPredicate<'tcx>,
674 ) -> Option<Ty<'tcx>> {
675 debug!("deduce_future_output_from_projection(predicate={:?})", predicate);
676
677 // We do not expect any bound regions in our predicate, so
678 // skip past the bound vars.
679 let predicate = match predicate.no_bound_vars() {
680 Some(p) => p,
681 None => {
682 debug!("deduce_future_output_from_projection: has late-bound regions");
683 return None;
684 }
685 };
686
687 // Check that this is a projection from the `Future` trait.
688 let trait_def_id = predicate.projection_ty.trait_def_id(self.tcx);
689 let future_trait = self.tcx.require_lang_item(LangItem::Future, Some(cause_span));
690 if trait_def_id != future_trait {
691 debug!("deduce_future_output_from_projection: not a future");
692 return None;
693 }
694
695 // The `Future` trait has only one associted item, `Output`,
696 // so check that this is what we see.
697 let output_assoc_item =
698 self.tcx.associated_items(future_trait).in_definition_order().next().unwrap().def_id;
699 if output_assoc_item != predicate.projection_ty.item_def_id {
700 span_bug!(
701 cause_span,
702 "projecting associated item `{:?}` from future, which is not Output `{:?}`",
703 predicate.projection_ty.item_def_id,
704 output_assoc_item,
705 );
706 }
707
708 // Extract the type from the projection. Note that there can
709 // be no bound variables in this type because the "self type"
710 // does not have any regions in it.
711 let output_ty = self.resolve_vars_if_possible(predicate.ty);
712 debug!("deduce_future_output_from_projection: output_ty={:?}", output_ty);
713 Some(output_ty)
714 }
715
716 /// Converts the types that the user supplied, in case that doing
717 /// so should yield an error, but returns back a signature where
718 /// all parameters are of type `TyErr`.
719 fn error_sig_of_closure(&self, decl: &hir::FnDecl<'_>) -> ty::PolyFnSig<'tcx> {
720 let astconv: &dyn AstConv<'_> = self;
721
722 let supplied_arguments = decl.inputs.iter().map(|a| {
723 // Convert the types that the user supplied (if any), but ignore them.
724 astconv.ast_ty_to_ty(a);
725 self.tcx.ty_error()
726 });
727
728 if let hir::FnRetTy::Return(ref output) = decl.output {
729 astconv.ast_ty_to_ty(&output);
730 }
731
732 let result = ty::Binder::dummy(self.tcx.mk_fn_sig(
733 supplied_arguments,
734 self.tcx.ty_error(),
735 decl.c_variadic,
736 hir::Unsafety::Normal,
737 Abi::RustCall,
738 ));
739
740 debug!("supplied_sig_of_closure: result={:?}", result);
741
742 result
743 }
744
745 fn closure_sigs(
746 &self,
747 expr_def_id: DefId,
748 body: &hir::Body<'_>,
749 bound_sig: ty::PolyFnSig<'tcx>,
750 ) -> ClosureSignatures<'tcx> {
751 let liberated_sig = self.tcx().liberate_late_bound_regions(expr_def_id, bound_sig);
752 let liberated_sig = self.inh.normalize_associated_types_in(
753 body.value.span,
754 body.value.hir_id,
755 self.param_env,
756 liberated_sig,
757 );
758 ClosureSignatures { bound_sig, liberated_sig }
759 }
760 }