]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/check/compare_method.rs
New upstream version 1.63.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / check / compare_method.rs
1 use crate::errors::LifetimesOrBoundsMismatchOnTrait;
2 use rustc_data_structures::stable_set::FxHashSet;
3 use rustc_errors::{pluralize, struct_span_err, Applicability, DiagnosticId, ErrorGuaranteed};
4 use rustc_hir as hir;
5 use rustc_hir::def::{DefKind, Res};
6 use rustc_hir::intravisit;
7 use rustc_hir::{GenericParamKind, ImplItemKind, TraitItemKind};
8 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
9 use rustc_infer::traits::util;
10 use rustc_middle::ty::error::{ExpectedFound, TypeError};
11 use rustc_middle::ty::subst::{InternalSubsts, Subst};
12 use rustc_middle::ty::util::ExplicitSelf;
13 use rustc_middle::ty::{self, DefIdTree};
14 use rustc_middle::ty::{GenericParamDefKind, ToPredicate, TyCtxt};
15 use rustc_span::Span;
16 use rustc_trait_selection::traits::error_reporting::InferCtxtExt;
17 use rustc_trait_selection::traits::{self, ObligationCause, ObligationCauseCode, Reveal};
18 use std::iter;
19
20 use super::{potentially_plural_count, FnCtxt, Inherited};
21
22 /// Checks that a method from an impl conforms to the signature of
23 /// the same method as declared in the trait.
24 ///
25 /// # Parameters
26 ///
27 /// - `impl_m`: type of the method we are checking
28 /// - `impl_m_span`: span to use for reporting errors
29 /// - `trait_m`: the method in the trait
30 /// - `impl_trait_ref`: the TraitRef corresponding to the trait implementation
31 pub(crate) fn compare_impl_method<'tcx>(
32 tcx: TyCtxt<'tcx>,
33 impl_m: &ty::AssocItem,
34 impl_m_span: Span,
35 trait_m: &ty::AssocItem,
36 impl_trait_ref: ty::TraitRef<'tcx>,
37 trait_item_span: Option<Span>,
38 ) {
39 debug!("compare_impl_method(impl_trait_ref={:?})", impl_trait_ref);
40
41 let impl_m_span = tcx.sess.source_map().guess_head_span(impl_m_span);
42
43 if let Err(_) = compare_self_type(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref) {
44 return;
45 }
46
47 if let Err(_) = compare_number_of_generics(tcx, impl_m, impl_m_span, trait_m, trait_item_span) {
48 return;
49 }
50
51 if let Err(_) = compare_generic_param_kinds(tcx, impl_m, trait_m) {
52 return;
53 }
54
55 if let Err(_) =
56 compare_number_of_method_arguments(tcx, impl_m, impl_m_span, trait_m, trait_item_span)
57 {
58 return;
59 }
60
61 if let Err(_) = compare_synthetic_generics(tcx, impl_m, trait_m) {
62 return;
63 }
64
65 if let Err(_) = compare_predicate_entailment(tcx, impl_m, impl_m_span, trait_m, impl_trait_ref)
66 {
67 return;
68 }
69 }
70
71 fn compare_predicate_entailment<'tcx>(
72 tcx: TyCtxt<'tcx>,
73 impl_m: &ty::AssocItem,
74 impl_m_span: Span,
75 trait_m: &ty::AssocItem,
76 impl_trait_ref: ty::TraitRef<'tcx>,
77 ) -> Result<(), ErrorGuaranteed> {
78 let trait_to_impl_substs = impl_trait_ref.substs;
79
80 // This node-id should be used for the `body_id` field on each
81 // `ObligationCause` (and the `FnCtxt`). This is what
82 // `regionck_item` expects.
83 let impl_m_hir_id = tcx.hir().local_def_id_to_hir_id(impl_m.def_id.expect_local());
84
85 // We sometimes modify the span further down.
86 let mut cause = ObligationCause::new(
87 impl_m_span,
88 impl_m_hir_id,
89 ObligationCauseCode::CompareImplMethodObligation {
90 impl_item_def_id: impl_m.def_id.expect_local(),
91 trait_item_def_id: trait_m.def_id,
92 },
93 );
94
95 // This code is best explained by example. Consider a trait:
96 //
97 // trait Trait<'t, T> {
98 // fn method<'a, M>(t: &'t T, m: &'a M) -> Self;
99 // }
100 //
101 // And an impl:
102 //
103 // impl<'i, 'j, U> Trait<'j, &'i U> for Foo {
104 // fn method<'b, N>(t: &'j &'i U, m: &'b N) -> Foo;
105 // }
106 //
107 // We wish to decide if those two method types are compatible.
108 //
109 // We start out with trait_to_impl_substs, that maps the trait
110 // type parameters to impl type parameters. This is taken from the
111 // impl trait reference:
112 //
113 // trait_to_impl_substs = {'t => 'j, T => &'i U, Self => Foo}
114 //
115 // We create a mapping `dummy_substs` that maps from the impl type
116 // parameters to fresh types and regions. For type parameters,
117 // this is the identity transform, but we could as well use any
118 // placeholder types. For regions, we convert from bound to free
119 // regions (Note: but only early-bound regions, i.e., those
120 // declared on the impl or used in type parameter bounds).
121 //
122 // impl_to_placeholder_substs = {'i => 'i0, U => U0, N => N0 }
123 //
124 // Now we can apply placeholder_substs to the type of the impl method
125 // to yield a new function type in terms of our fresh, placeholder
126 // types:
127 //
128 // <'b> fn(t: &'i0 U0, m: &'b) -> Foo
129 //
130 // We now want to extract and substitute the type of the *trait*
131 // method and compare it. To do so, we must create a compound
132 // substitution by combining trait_to_impl_substs and
133 // impl_to_placeholder_substs, and also adding a mapping for the method
134 // type parameters. We extend the mapping to also include
135 // the method parameters.
136 //
137 // trait_to_placeholder_substs = { T => &'i0 U0, Self => Foo, M => N0 }
138 //
139 // Applying this to the trait method type yields:
140 //
141 // <'a> fn(t: &'i0 U0, m: &'a) -> Foo
142 //
143 // This type is also the same but the name of the bound region ('a
144 // vs 'b). However, the normal subtyping rules on fn types handle
145 // this kind of equivalency just fine.
146 //
147 // We now use these substitutions to ensure that all declared bounds are
148 // satisfied by the implementation's method.
149 //
150 // We do this by creating a parameter environment which contains a
151 // substitution corresponding to impl_to_placeholder_substs. We then build
152 // trait_to_placeholder_substs and use it to convert the predicates contained
153 // in the trait_m.generics to the placeholder form.
154 //
155 // Finally we register each of these predicates as an obligation in
156 // a fresh FulfillmentCtxt, and invoke select_all_or_error.
157
158 // Create mapping from impl to placeholder.
159 let impl_to_placeholder_substs = InternalSubsts::identity_for_item(tcx, impl_m.def_id);
160
161 // Create mapping from trait to placeholder.
162 let trait_to_placeholder_substs =
163 impl_to_placeholder_substs.rebase_onto(tcx, impl_m.container.id(), trait_to_impl_substs);
164 debug!("compare_impl_method: trait_to_placeholder_substs={:?}", trait_to_placeholder_substs);
165
166 let impl_m_generics = tcx.generics_of(impl_m.def_id);
167 let trait_m_generics = tcx.generics_of(trait_m.def_id);
168 let impl_m_predicates = tcx.predicates_of(impl_m.def_id);
169 let trait_m_predicates = tcx.predicates_of(trait_m.def_id);
170
171 // Check region bounds.
172 check_region_bounds_on_impl_item(
173 tcx,
174 impl_m_span,
175 impl_m,
176 trait_m,
177 &trait_m_generics,
178 &impl_m_generics,
179 )?;
180
181 // Create obligations for each predicate declared by the impl
182 // definition in the context of the trait's parameter
183 // environment. We can't just use `impl_env.caller_bounds`,
184 // however, because we want to replace all late-bound regions with
185 // region variables.
186 let impl_predicates = tcx.predicates_of(impl_m_predicates.parent.unwrap());
187 let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
188
189 debug!("compare_impl_method: impl_bounds={:?}", hybrid_preds);
190
191 // This is the only tricky bit of the new way we check implementation methods
192 // We need to build a set of predicates where only the method-level bounds
193 // are from the trait and we assume all other bounds from the implementation
194 // to be previously satisfied.
195 //
196 // We then register the obligations from the impl_m and check to see
197 // if all constraints hold.
198 hybrid_preds
199 .predicates
200 .extend(trait_m_predicates.instantiate_own(tcx, trait_to_placeholder_substs).predicates);
201
202 // Construct trait parameter environment and then shift it into the placeholder viewpoint.
203 // The key step here is to update the caller_bounds's predicates to be
204 // the new hybrid bounds we computed.
205 let normalize_cause = traits::ObligationCause::misc(impl_m_span, impl_m_hir_id);
206 let param_env = ty::ParamEnv::new(
207 tcx.intern_predicates(&hybrid_preds.predicates),
208 Reveal::UserFacing,
209 hir::Constness::NotConst,
210 );
211 let param_env =
212 traits::normalize_param_env_or_error(tcx, impl_m.def_id, param_env, normalize_cause);
213
214 tcx.infer_ctxt().enter(|infcx| {
215 let inh = Inherited::new(infcx, impl_m.def_id.expect_local());
216 let infcx = &inh.infcx;
217
218 debug!("compare_impl_method: caller_bounds={:?}", param_env.caller_bounds());
219
220 let mut selcx = traits::SelectionContext::new(&infcx);
221
222 let impl_m_own_bounds = impl_m_predicates.instantiate_own(tcx, impl_to_placeholder_substs);
223 for (predicate, span) in iter::zip(impl_m_own_bounds.predicates, impl_m_own_bounds.spans) {
224 let normalize_cause = traits::ObligationCause::misc(span, impl_m_hir_id);
225 let traits::Normalized { value: predicate, obligations } =
226 traits::normalize(&mut selcx, param_env, normalize_cause, predicate);
227
228 inh.register_predicates(obligations);
229 let cause = ObligationCause::new(
230 span,
231 impl_m_hir_id,
232 ObligationCauseCode::CompareImplMethodObligation {
233 impl_item_def_id: impl_m.def_id.expect_local(),
234 trait_item_def_id: trait_m.def_id,
235 },
236 );
237 inh.register_predicate(traits::Obligation::new(cause, param_env, predicate));
238 }
239
240 // We now need to check that the signature of the impl method is
241 // compatible with that of the trait method. We do this by
242 // checking that `impl_fty <: trait_fty`.
243 //
244 // FIXME. Unfortunately, this doesn't quite work right now because
245 // associated type normalization is not integrated into subtype
246 // checks. For the comparison to be valid, we need to
247 // normalize the associated types in the impl/trait methods
248 // first. However, because function types bind regions, just
249 // calling `normalize_associated_types_in` would have no effect on
250 // any associated types appearing in the fn arguments or return
251 // type.
252
253 // Compute placeholder form of impl and trait method tys.
254 let tcx = infcx.tcx;
255
256 let mut wf_tys = FxHashSet::default();
257
258 let impl_sig = infcx.replace_bound_vars_with_fresh_vars(
259 impl_m_span,
260 infer::HigherRankedType,
261 tcx.fn_sig(impl_m.def_id),
262 );
263 let impl_sig =
264 inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, impl_sig);
265 let impl_fty = tcx.mk_fn_ptr(ty::Binder::dummy(impl_sig));
266 debug!("compare_impl_method: impl_fty={:?}", impl_fty);
267
268 let trait_sig = tcx.bound_fn_sig(trait_m.def_id).subst(tcx, trait_to_placeholder_substs);
269 let trait_sig = tcx.liberate_late_bound_regions(impl_m.def_id, trait_sig);
270 let trait_sig =
271 inh.normalize_associated_types_in(impl_m_span, impl_m_hir_id, param_env, trait_sig);
272 // Add the resulting inputs and output as well-formed.
273 wf_tys.extend(trait_sig.inputs_and_output.iter());
274 let trait_fty = tcx.mk_fn_ptr(ty::Binder::dummy(trait_sig));
275
276 debug!("compare_impl_method: trait_fty={:?}", trait_fty);
277
278 let sub_result = infcx.at(&cause, param_env).sup(trait_fty, impl_fty).map(
279 |InferOk { obligations, .. }| {
280 // FIXME: We'd want to keep more accurate spans than "the method signature" when
281 // processing the comparison between the trait and impl fn, but we sadly lose them
282 // and point at the whole signature when a trait bound or specific input or output
283 // type would be more appropriate. In other places we have a `Vec<Span>`
284 // corresponding to their `Vec<Predicate>`, but we don't have that here.
285 // Fixing this would improve the output of test `issue-83765.rs`.
286 inh.register_predicates(obligations);
287 },
288 );
289
290 if let Err(terr) = sub_result {
291 debug!("sub_types failed: impl ty {:?}, trait ty {:?}", impl_fty, trait_fty);
292
293 let (impl_err_span, trait_err_span) =
294 extract_spans_for_error_reporting(&infcx, &terr, &cause, impl_m, trait_m);
295
296 cause.span = impl_err_span;
297
298 let mut diag = struct_span_err!(
299 tcx.sess,
300 cause.span(tcx),
301 E0053,
302 "method `{}` has an incompatible type for trait",
303 trait_m.name
304 );
305 match &terr {
306 TypeError::ArgumentMutability(0) | TypeError::ArgumentSorts(_, 0)
307 if trait_m.fn_has_self_parameter =>
308 {
309 let ty = trait_sig.inputs()[0];
310 let sugg = match ExplicitSelf::determine(ty, |_| ty == impl_trait_ref.self_ty())
311 {
312 ExplicitSelf::ByValue => "self".to_owned(),
313 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
314 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => {
315 "&mut self".to_owned()
316 }
317 _ => format!("self: {ty}"),
318 };
319
320 // When the `impl` receiver is an arbitrary self type, like `self: Box<Self>`, the
321 // span points only at the type `Box<Self`>, but we want to cover the whole
322 // argument pattern and type.
323 let span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
324 ImplItemKind::Fn(ref sig, body) => tcx
325 .hir()
326 .body_param_names(body)
327 .zip(sig.decl.inputs.iter())
328 .map(|(param, ty)| param.span.to(ty.span))
329 .next()
330 .unwrap_or(impl_err_span),
331 _ => bug!("{:?} is not a method", impl_m),
332 };
333
334 diag.span_suggestion(
335 span,
336 "change the self-receiver type to match the trait",
337 sugg,
338 Applicability::MachineApplicable,
339 );
340 }
341 TypeError::ArgumentMutability(i) | TypeError::ArgumentSorts(_, i) => {
342 if trait_sig.inputs().len() == *i {
343 // Suggestion to change output type. We do not suggest in `async` functions
344 // to avoid complex logic or incorrect output.
345 match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
346 ImplItemKind::Fn(ref sig, _)
347 if sig.header.asyncness == hir::IsAsync::NotAsync =>
348 {
349 let msg = "change the output type to match the trait";
350 let ap = Applicability::MachineApplicable;
351 match sig.decl.output {
352 hir::FnRetTy::DefaultReturn(sp) => {
353 let sugg = format!("-> {} ", trait_sig.output());
354 diag.span_suggestion_verbose(sp, msg, sugg, ap);
355 }
356 hir::FnRetTy::Return(hir_ty) => {
357 let sugg = trait_sig.output();
358 diag.span_suggestion(hir_ty.span, msg, sugg, ap);
359 }
360 };
361 }
362 _ => {}
363 };
364 } else if let Some(trait_ty) = trait_sig.inputs().get(*i) {
365 diag.span_suggestion(
366 impl_err_span,
367 "change the parameter type to match the trait",
368 trait_ty,
369 Applicability::MachineApplicable,
370 );
371 }
372 }
373 _ => {}
374 }
375
376 infcx.note_type_err(
377 &mut diag,
378 &cause,
379 trait_err_span.map(|sp| (sp, "type in trait".to_owned())),
380 Some(infer::ValuePairs::Terms(ExpectedFound {
381 expected: trait_fty.into(),
382 found: impl_fty.into(),
383 })),
384 &terr,
385 false,
386 false,
387 );
388
389 return Err(diag.emit());
390 }
391
392 // Check that all obligations are satisfied by the implementation's
393 // version.
394 let errors = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx);
395 if !errors.is_empty() {
396 let reported = infcx.report_fulfillment_errors(&errors, None, false);
397 return Err(reported);
398 }
399
400 // Finally, resolve all regions. This catches wily misuses of
401 // lifetime parameters.
402 let fcx = FnCtxt::new(&inh, param_env, impl_m_hir_id);
403 fcx.regionck_item(impl_m_hir_id, impl_m_span, wf_tys);
404
405 Ok(())
406 })
407 }
408
409 fn check_region_bounds_on_impl_item<'tcx>(
410 tcx: TyCtxt<'tcx>,
411 span: Span,
412 impl_m: &ty::AssocItem,
413 trait_m: &ty::AssocItem,
414 trait_generics: &ty::Generics,
415 impl_generics: &ty::Generics,
416 ) -> Result<(), ErrorGuaranteed> {
417 let trait_params = trait_generics.own_counts().lifetimes;
418 let impl_params = impl_generics.own_counts().lifetimes;
419
420 debug!(
421 "check_region_bounds_on_impl_item: \
422 trait_generics={:?} \
423 impl_generics={:?}",
424 trait_generics, impl_generics
425 );
426
427 // Must have same number of early-bound lifetime parameters.
428 // Unfortunately, if the user screws up the bounds, then this
429 // will change classification between early and late. E.g.,
430 // if in trait we have `<'a,'b:'a>`, and in impl we just have
431 // `<'a,'b>`, then we have 2 early-bound lifetime parameters
432 // in trait but 0 in the impl. But if we report "expected 2
433 // but found 0" it's confusing, because it looks like there
434 // are zero. Since I don't quite know how to phrase things at
435 // the moment, give a kind of vague error message.
436 if trait_params != impl_params {
437 let item_kind = assoc_item_kind_str(impl_m);
438 let def_span = tcx.sess.source_map().guess_head_span(span);
439 let span = impl_m
440 .def_id
441 .as_local()
442 .and_then(|did| tcx.hir().get_generics(did))
443 .map_or(def_span, |g| g.span);
444 let generics_span = tcx.hir().span_if_local(trait_m.def_id).map(|sp| {
445 let def_sp = tcx.sess.source_map().guess_head_span(sp);
446 trait_m
447 .def_id
448 .as_local()
449 .and_then(|did| tcx.hir().get_generics(did))
450 .map_or(def_sp, |g| g.span)
451 });
452
453 let reported = tcx.sess.emit_err(LifetimesOrBoundsMismatchOnTrait {
454 span,
455 item_kind,
456 ident: impl_m.ident(tcx),
457 generics_span,
458 });
459 return Err(reported);
460 }
461
462 Ok(())
463 }
464
465 #[instrument(level = "debug", skip(infcx))]
466 fn extract_spans_for_error_reporting<'a, 'tcx>(
467 infcx: &infer::InferCtxt<'a, 'tcx>,
468 terr: &TypeError<'_>,
469 cause: &ObligationCause<'tcx>,
470 impl_m: &ty::AssocItem,
471 trait_m: &ty::AssocItem,
472 ) -> (Span, Option<Span>) {
473 let tcx = infcx.tcx;
474 let mut impl_args = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
475 ImplItemKind::Fn(ref sig, _) => {
476 sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
477 }
478 _ => bug!("{:?} is not a method", impl_m),
479 };
480 let trait_args =
481 trait_m.def_id.as_local().map(|def_id| match tcx.hir().expect_trait_item(def_id).kind {
482 TraitItemKind::Fn(ref sig, _) => {
483 sig.decl.inputs.iter().map(|t| t.span).chain(iter::once(sig.decl.output.span()))
484 }
485 _ => bug!("{:?} is not a TraitItemKind::Fn", trait_m),
486 });
487
488 match *terr {
489 TypeError::ArgumentMutability(i) => {
490 (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
491 }
492 TypeError::ArgumentSorts(ExpectedFound { .. }, i) => {
493 (impl_args.nth(i).unwrap(), trait_args.and_then(|mut args| args.nth(i)))
494 }
495 _ => (cause.span(tcx), tcx.hir().span_if_local(trait_m.def_id)),
496 }
497 }
498
499 fn compare_self_type<'tcx>(
500 tcx: TyCtxt<'tcx>,
501 impl_m: &ty::AssocItem,
502 impl_m_span: Span,
503 trait_m: &ty::AssocItem,
504 impl_trait_ref: ty::TraitRef<'tcx>,
505 ) -> Result<(), ErrorGuaranteed> {
506 // Try to give more informative error messages about self typing
507 // mismatches. Note that any mismatch will also be detected
508 // below, where we construct a canonical function type that
509 // includes the self parameter as a normal parameter. It's just
510 // that the error messages you get out of this code are a bit more
511 // inscrutable, particularly for cases where one method has no
512 // self.
513
514 let self_string = |method: &ty::AssocItem| {
515 let untransformed_self_ty = match method.container {
516 ty::ImplContainer(_) => impl_trait_ref.self_ty(),
517 ty::TraitContainer(_) => tcx.types.self_param,
518 };
519 let self_arg_ty = tcx.fn_sig(method.def_id).input(0);
520 let param_env = ty::ParamEnv::reveal_all();
521
522 tcx.infer_ctxt().enter(|infcx| {
523 let self_arg_ty = tcx.liberate_late_bound_regions(method.def_id, self_arg_ty);
524 let can_eq_self = |ty| infcx.can_eq(param_env, untransformed_self_ty, ty).is_ok();
525 match ExplicitSelf::determine(self_arg_ty, can_eq_self) {
526 ExplicitSelf::ByValue => "self".to_owned(),
527 ExplicitSelf::ByReference(_, hir::Mutability::Not) => "&self".to_owned(),
528 ExplicitSelf::ByReference(_, hir::Mutability::Mut) => "&mut self".to_owned(),
529 _ => format!("self: {self_arg_ty}"),
530 }
531 })
532 };
533
534 match (trait_m.fn_has_self_parameter, impl_m.fn_has_self_parameter) {
535 (false, false) | (true, true) => {}
536
537 (false, true) => {
538 let self_descr = self_string(impl_m);
539 let mut err = struct_span_err!(
540 tcx.sess,
541 impl_m_span,
542 E0185,
543 "method `{}` has a `{}` declaration in the impl, but not in the trait",
544 trait_m.name,
545 self_descr
546 );
547 err.span_label(impl_m_span, format!("`{self_descr}` used in impl"));
548 if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
549 err.span_label(span, format!("trait method declared without `{self_descr}`"));
550 } else {
551 err.note_trait_signature(trait_m.name.to_string(), trait_m.signature(tcx));
552 }
553 let reported = err.emit();
554 return Err(reported);
555 }
556
557 (true, false) => {
558 let self_descr = self_string(trait_m);
559 let mut err = struct_span_err!(
560 tcx.sess,
561 impl_m_span,
562 E0186,
563 "method `{}` has a `{}` declaration in the trait, but not in the impl",
564 trait_m.name,
565 self_descr
566 );
567 err.span_label(impl_m_span, format!("expected `{self_descr}` in impl"));
568 if let Some(span) = tcx.hir().span_if_local(trait_m.def_id) {
569 err.span_label(span, format!("`{self_descr}` used in trait"));
570 } else {
571 err.note_trait_signature(trait_m.name.to_string(), trait_m.signature(tcx));
572 }
573 let reported = err.emit();
574 return Err(reported);
575 }
576 }
577
578 Ok(())
579 }
580
581 /// Checks that the number of generics on a given assoc item in a trait impl is the same
582 /// as the number of generics on the respective assoc item in the trait definition.
583 ///
584 /// For example this code emits the errors in the following code:
585 /// ```
586 /// trait Trait {
587 /// fn foo();
588 /// type Assoc<T>;
589 /// }
590 ///
591 /// impl Trait for () {
592 /// fn foo<T>() {}
593 /// //~^ error
594 /// type Assoc = u32;
595 /// //~^ error
596 /// }
597 /// ```
598 ///
599 /// Notably this does not error on `foo<T>` implemented as `foo<const N: u8>` or
600 /// `foo<const N: u8>` implemented as `foo<const N: u32>`. This is handled in
601 /// [`compare_generic_param_kinds`]. This function also does not handle lifetime parameters
602 fn compare_number_of_generics<'tcx>(
603 tcx: TyCtxt<'tcx>,
604 impl_: &ty::AssocItem,
605 _impl_span: Span,
606 trait_: &ty::AssocItem,
607 trait_span: Option<Span>,
608 ) -> Result<(), ErrorGuaranteed> {
609 let trait_own_counts = tcx.generics_of(trait_.def_id).own_counts();
610 let impl_own_counts = tcx.generics_of(impl_.def_id).own_counts();
611
612 // This avoids us erroring on `foo<T>` implemented as `foo<const N: u8>` as this is implemented
613 // in `compare_generic_param_kinds` which will give a nicer error message than something like:
614 // "expected 1 type parameter, found 0 type parameters"
615 if (trait_own_counts.types + trait_own_counts.consts)
616 == (impl_own_counts.types + impl_own_counts.consts)
617 {
618 return Ok(());
619 }
620
621 let matchings = [
622 ("type", trait_own_counts.types, impl_own_counts.types),
623 ("const", trait_own_counts.consts, impl_own_counts.consts),
624 ];
625
626 let item_kind = assoc_item_kind_str(impl_);
627
628 let mut err_occurred = None;
629 for (kind, trait_count, impl_count) in matchings {
630 if impl_count != trait_count {
631 let arg_spans = |kind: ty::AssocKind, generics: &hir::Generics<'_>| {
632 let mut spans = generics
633 .params
634 .iter()
635 .filter(|p| match p.kind {
636 hir::GenericParamKind::Lifetime {
637 kind: hir::LifetimeParamKind::Elided,
638 } => {
639 // A fn can have an arbitrary number of extra elided lifetimes for the
640 // same signature.
641 !matches!(kind, ty::AssocKind::Fn)
642 }
643 _ => true,
644 })
645 .map(|p| p.span)
646 .collect::<Vec<Span>>();
647 if spans.is_empty() {
648 spans = vec![generics.span]
649 }
650 spans
651 };
652 let (trait_spans, impl_trait_spans) = if let Some(def_id) = trait_.def_id.as_local() {
653 let trait_item = tcx.hir().expect_trait_item(def_id);
654 let arg_spans: Vec<Span> = arg_spans(trait_.kind, trait_item.generics);
655 let impl_trait_spans: Vec<Span> = trait_item
656 .generics
657 .params
658 .iter()
659 .filter_map(|p| match p.kind {
660 GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
661 _ => None,
662 })
663 .collect();
664 (Some(arg_spans), impl_trait_spans)
665 } else {
666 (trait_span.map(|s| vec![s]), vec![])
667 };
668
669 let impl_item = tcx.hir().expect_impl_item(impl_.def_id.expect_local());
670 let impl_item_impl_trait_spans: Vec<Span> = impl_item
671 .generics
672 .params
673 .iter()
674 .filter_map(|p| match p.kind {
675 GenericParamKind::Type { synthetic: true, .. } => Some(p.span),
676 _ => None,
677 })
678 .collect();
679 let spans = arg_spans(impl_.kind, impl_item.generics);
680 let span = spans.first().copied();
681
682 let mut err = tcx.sess.struct_span_err_with_code(
683 spans,
684 &format!(
685 "{} `{}` has {} {kind} parameter{} but its trait \
686 declaration has {} {kind} parameter{}",
687 item_kind,
688 trait_.name,
689 impl_count,
690 pluralize!(impl_count),
691 trait_count,
692 pluralize!(trait_count),
693 kind = kind,
694 ),
695 DiagnosticId::Error("E0049".into()),
696 );
697
698 let mut suffix = None;
699
700 if let Some(spans) = trait_spans {
701 let mut spans = spans.iter();
702 if let Some(span) = spans.next() {
703 err.span_label(
704 *span,
705 format!(
706 "expected {} {} parameter{}",
707 trait_count,
708 kind,
709 pluralize!(trait_count),
710 ),
711 );
712 }
713 for span in spans {
714 err.span_label(*span, "");
715 }
716 } else {
717 suffix = Some(format!(", expected {trait_count}"));
718 }
719
720 if let Some(span) = span {
721 err.span_label(
722 span,
723 format!(
724 "found {} {} parameter{}{}",
725 impl_count,
726 kind,
727 pluralize!(impl_count),
728 suffix.unwrap_or_else(String::new),
729 ),
730 );
731 }
732
733 for span in impl_trait_spans.iter().chain(impl_item_impl_trait_spans.iter()) {
734 err.span_label(*span, "`impl Trait` introduces an implicit type parameter");
735 }
736
737 let reported = err.emit();
738 err_occurred = Some(reported);
739 }
740 }
741
742 if let Some(reported) = err_occurred { Err(reported) } else { Ok(()) }
743 }
744
745 fn compare_number_of_method_arguments<'tcx>(
746 tcx: TyCtxt<'tcx>,
747 impl_m: &ty::AssocItem,
748 impl_m_span: Span,
749 trait_m: &ty::AssocItem,
750 trait_item_span: Option<Span>,
751 ) -> Result<(), ErrorGuaranteed> {
752 let impl_m_fty = tcx.fn_sig(impl_m.def_id);
753 let trait_m_fty = tcx.fn_sig(trait_m.def_id);
754 let trait_number_args = trait_m_fty.inputs().skip_binder().len();
755 let impl_number_args = impl_m_fty.inputs().skip_binder().len();
756 if trait_number_args != impl_number_args {
757 let trait_span = if let Some(def_id) = trait_m.def_id.as_local() {
758 match tcx.hir().expect_trait_item(def_id).kind {
759 TraitItemKind::Fn(ref trait_m_sig, _) => {
760 let pos = if trait_number_args > 0 { trait_number_args - 1 } else { 0 };
761 if let Some(arg) = trait_m_sig.decl.inputs.get(pos) {
762 Some(if pos == 0 {
763 arg.span
764 } else {
765 arg.span.with_lo(trait_m_sig.decl.inputs[0].span.lo())
766 })
767 } else {
768 trait_item_span
769 }
770 }
771 _ => bug!("{:?} is not a method", impl_m),
772 }
773 } else {
774 trait_item_span
775 };
776 let impl_span = match tcx.hir().expect_impl_item(impl_m.def_id.expect_local()).kind {
777 ImplItemKind::Fn(ref impl_m_sig, _) => {
778 let pos = if impl_number_args > 0 { impl_number_args - 1 } else { 0 };
779 if let Some(arg) = impl_m_sig.decl.inputs.get(pos) {
780 if pos == 0 {
781 arg.span
782 } else {
783 arg.span.with_lo(impl_m_sig.decl.inputs[0].span.lo())
784 }
785 } else {
786 impl_m_span
787 }
788 }
789 _ => bug!("{:?} is not a method", impl_m),
790 };
791 let mut err = struct_span_err!(
792 tcx.sess,
793 impl_span,
794 E0050,
795 "method `{}` has {} but the declaration in trait `{}` has {}",
796 trait_m.name,
797 potentially_plural_count(impl_number_args, "parameter"),
798 tcx.def_path_str(trait_m.def_id),
799 trait_number_args
800 );
801 if let Some(trait_span) = trait_span {
802 err.span_label(
803 trait_span,
804 format!(
805 "trait requires {}",
806 potentially_plural_count(trait_number_args, "parameter")
807 ),
808 );
809 } else {
810 err.note_trait_signature(trait_m.name.to_string(), trait_m.signature(tcx));
811 }
812 err.span_label(
813 impl_span,
814 format!(
815 "expected {}, found {}",
816 potentially_plural_count(trait_number_args, "parameter"),
817 impl_number_args
818 ),
819 );
820 let reported = err.emit();
821 return Err(reported);
822 }
823
824 Ok(())
825 }
826
827 fn compare_synthetic_generics<'tcx>(
828 tcx: TyCtxt<'tcx>,
829 impl_m: &ty::AssocItem,
830 trait_m: &ty::AssocItem,
831 ) -> Result<(), ErrorGuaranteed> {
832 // FIXME(chrisvittal) Clean up this function, list of FIXME items:
833 // 1. Better messages for the span labels
834 // 2. Explanation as to what is going on
835 // If we get here, we already have the same number of generics, so the zip will
836 // be okay.
837 let mut error_found = None;
838 let impl_m_generics = tcx.generics_of(impl_m.def_id);
839 let trait_m_generics = tcx.generics_of(trait_m.def_id);
840 let impl_m_type_params = impl_m_generics.params.iter().filter_map(|param| match param.kind {
841 GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
842 GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
843 });
844 let trait_m_type_params = trait_m_generics.params.iter().filter_map(|param| match param.kind {
845 GenericParamDefKind::Type { synthetic, .. } => Some((param.def_id, synthetic)),
846 GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => None,
847 });
848 for ((impl_def_id, impl_synthetic), (trait_def_id, trait_synthetic)) in
849 iter::zip(impl_m_type_params, trait_m_type_params)
850 {
851 if impl_synthetic != trait_synthetic {
852 let impl_def_id = impl_def_id.expect_local();
853 let impl_hir_id = tcx.hir().local_def_id_to_hir_id(impl_def_id);
854 let impl_span = tcx.hir().span(impl_hir_id);
855 let trait_span = tcx.def_span(trait_def_id);
856 let mut err = struct_span_err!(
857 tcx.sess,
858 impl_span,
859 E0643,
860 "method `{}` has incompatible signature for trait",
861 trait_m.name
862 );
863 err.span_label(trait_span, "declaration in trait here");
864 match (impl_synthetic, trait_synthetic) {
865 // The case where the impl method uses `impl Trait` but the trait method uses
866 // explicit generics
867 (true, false) => {
868 err.span_label(impl_span, "expected generic parameter, found `impl Trait`");
869 (|| {
870 // try taking the name from the trait impl
871 // FIXME: this is obviously suboptimal since the name can already be used
872 // as another generic argument
873 let new_name = tcx.sess.source_map().span_to_snippet(trait_span).ok()?;
874 let trait_m = trait_m.def_id.as_local()?;
875 let trait_m = tcx.hir().trait_item(hir::TraitItemId { def_id: trait_m });
876
877 let impl_m = impl_m.def_id.as_local()?;
878 let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
879
880 // in case there are no generics, take the spot between the function name
881 // and the opening paren of the argument list
882 let new_generics_span =
883 tcx.sess.source_map().generate_fn_name_span(impl_span)?.shrink_to_hi();
884 // in case there are generics, just replace them
885 let generics_span =
886 impl_m.generics.span.substitute_dummy(new_generics_span);
887 // replace with the generics from the trait
888 let new_generics =
889 tcx.sess.source_map().span_to_snippet(trait_m.generics.span).ok()?;
890
891 err.multipart_suggestion(
892 "try changing the `impl Trait` argument to a generic parameter",
893 vec![
894 // replace `impl Trait` with `T`
895 (impl_span, new_name),
896 // replace impl method generics with trait method generics
897 // This isn't quite right, as users might have changed the names
898 // of the generics, but it works for the common case
899 (generics_span, new_generics),
900 ],
901 Applicability::MaybeIncorrect,
902 );
903 Some(())
904 })();
905 }
906 // The case where the trait method uses `impl Trait`, but the impl method uses
907 // explicit generics.
908 (false, true) => {
909 err.span_label(impl_span, "expected `impl Trait`, found generic parameter");
910 (|| {
911 let impl_m = impl_m.def_id.as_local()?;
912 let impl_m = tcx.hir().impl_item(hir::ImplItemId { def_id: impl_m });
913 let input_tys = match impl_m.kind {
914 hir::ImplItemKind::Fn(ref sig, _) => sig.decl.inputs,
915 _ => unreachable!(),
916 };
917 struct Visitor(Option<Span>, hir::def_id::LocalDefId);
918 impl<'v> intravisit::Visitor<'v> for Visitor {
919 fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
920 intravisit::walk_ty(self, ty);
921 if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) =
922 ty.kind
923 && let Res::Def(DefKind::TyParam, def_id) = path.res
924 && def_id == self.1.to_def_id()
925 {
926 self.0 = Some(ty.span);
927 }
928 }
929 }
930 let mut visitor = Visitor(None, impl_def_id);
931 for ty in input_tys {
932 intravisit::Visitor::visit_ty(&mut visitor, ty);
933 }
934 let span = visitor.0?;
935
936 let bounds = impl_m.generics.bounds_for_param(impl_def_id).next()?.bounds;
937 let bounds = bounds.first()?.span().to(bounds.last()?.span());
938 let bounds = tcx.sess.source_map().span_to_snippet(bounds).ok()?;
939
940 err.multipart_suggestion(
941 "try removing the generic parameter and using `impl Trait` instead",
942 vec![
943 // delete generic parameters
944 (impl_m.generics.span, String::new()),
945 // replace param usage with `impl Trait`
946 (span, format!("impl {bounds}")),
947 ],
948 Applicability::MaybeIncorrect,
949 );
950 Some(())
951 })();
952 }
953 _ => unreachable!(),
954 }
955 let reported = err.emit();
956 error_found = Some(reported);
957 }
958 }
959 if let Some(reported) = error_found { Err(reported) } else { Ok(()) }
960 }
961
962 /// Checks that all parameters in the generics of a given assoc item in a trait impl have
963 /// the same kind as the respective generic parameter in the trait def.
964 ///
965 /// For example all 4 errors in the following code are emitted here:
966 /// ```
967 /// trait Foo {
968 /// fn foo<const N: u8>();
969 /// type bar<const N: u8>;
970 /// fn baz<const N: u32>();
971 /// type blah<T>;
972 /// }
973 ///
974 /// impl Foo for () {
975 /// fn foo<const N: u64>() {}
976 /// //~^ error
977 /// type bar<const N: u64> {}
978 /// //~^ error
979 /// fn baz<T>() {}
980 /// //~^ error
981 /// type blah<const N: i64> = u32;
982 /// //~^ error
983 /// }
984 /// ```
985 ///
986 /// This function does not handle lifetime parameters
987 fn compare_generic_param_kinds<'tcx>(
988 tcx: TyCtxt<'tcx>,
989 impl_item: &ty::AssocItem,
990 trait_item: &ty::AssocItem,
991 ) -> Result<(), ErrorGuaranteed> {
992 assert_eq!(impl_item.kind, trait_item.kind);
993
994 let ty_const_params_of = |def_id| {
995 tcx.generics_of(def_id).params.iter().filter(|param| {
996 matches!(
997 param.kind,
998 GenericParamDefKind::Const { .. } | GenericParamDefKind::Type { .. }
999 )
1000 })
1001 };
1002
1003 for (param_impl, param_trait) in
1004 iter::zip(ty_const_params_of(impl_item.def_id), ty_const_params_of(trait_item.def_id))
1005 {
1006 use GenericParamDefKind::*;
1007 if match (&param_impl.kind, &param_trait.kind) {
1008 (Const { .. }, Const { .. })
1009 if tcx.type_of(param_impl.def_id) != tcx.type_of(param_trait.def_id) =>
1010 {
1011 true
1012 }
1013 (Const { .. }, Type { .. }) | (Type { .. }, Const { .. }) => true,
1014 // this is exhaustive so that anyone adding new generic param kinds knows
1015 // to make sure this error is reported for them.
1016 (Const { .. }, Const { .. }) | (Type { .. }, Type { .. }) => false,
1017 (Lifetime { .. }, _) | (_, Lifetime { .. }) => unreachable!(),
1018 } {
1019 let param_impl_span = tcx.def_span(param_impl.def_id);
1020 let param_trait_span = tcx.def_span(param_trait.def_id);
1021
1022 let mut err = struct_span_err!(
1023 tcx.sess,
1024 param_impl_span,
1025 E0053,
1026 "{} `{}` has an incompatible generic parameter for trait `{}`",
1027 assoc_item_kind_str(&impl_item),
1028 trait_item.name,
1029 &tcx.def_path_str(tcx.parent(trait_item.def_id))
1030 );
1031
1032 let make_param_message = |prefix: &str, param: &ty::GenericParamDef| match param.kind {
1033 Const { .. } => {
1034 format!("{} const parameter of type `{}`", prefix, tcx.type_of(param.def_id))
1035 }
1036 Type { .. } => format!("{} type parameter", prefix),
1037 Lifetime { .. } => unreachable!(),
1038 };
1039
1040 let trait_header_span = tcx.def_ident_span(tcx.parent(trait_item.def_id)).unwrap();
1041 err.span_label(trait_header_span, "");
1042 err.span_label(param_trait_span, make_param_message("expected", param_trait));
1043
1044 let impl_header_span =
1045 tcx.sess.source_map().guess_head_span(tcx.def_span(tcx.parent(impl_item.def_id)));
1046 err.span_label(impl_header_span, "");
1047 err.span_label(param_impl_span, make_param_message("found", param_impl));
1048
1049 let reported = err.emit();
1050 return Err(reported);
1051 }
1052 }
1053
1054 Ok(())
1055 }
1056
1057 pub(crate) fn compare_const_impl<'tcx>(
1058 tcx: TyCtxt<'tcx>,
1059 impl_c: &ty::AssocItem,
1060 impl_c_span: Span,
1061 trait_c: &ty::AssocItem,
1062 impl_trait_ref: ty::TraitRef<'tcx>,
1063 ) {
1064 debug!("compare_const_impl(impl_trait_ref={:?})", impl_trait_ref);
1065
1066 tcx.infer_ctxt().enter(|infcx| {
1067 let param_env = tcx.param_env(impl_c.def_id);
1068 let inh = Inherited::new(infcx, impl_c.def_id.expect_local());
1069 let infcx = &inh.infcx;
1070
1071 // The below is for the most part highly similar to the procedure
1072 // for methods above. It is simpler in many respects, especially
1073 // because we shouldn't really have to deal with lifetimes or
1074 // predicates. In fact some of this should probably be put into
1075 // shared functions because of DRY violations...
1076 let trait_to_impl_substs = impl_trait_ref.substs;
1077
1078 // Create a parameter environment that represents the implementation's
1079 // method.
1080 let impl_c_hir_id = tcx.hir().local_def_id_to_hir_id(impl_c.def_id.expect_local());
1081
1082 // Compute placeholder form of impl and trait const tys.
1083 let impl_ty = tcx.type_of(impl_c.def_id);
1084 let trait_ty = tcx.bound_type_of(trait_c.def_id).subst(tcx, trait_to_impl_substs);
1085 let mut cause = ObligationCause::new(
1086 impl_c_span,
1087 impl_c_hir_id,
1088 ObligationCauseCode::CompareImplConstObligation,
1089 );
1090
1091 // There is no "body" here, so just pass dummy id.
1092 let impl_ty =
1093 inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, impl_ty);
1094
1095 debug!("compare_const_impl: impl_ty={:?}", impl_ty);
1096
1097 let trait_ty =
1098 inh.normalize_associated_types_in(impl_c_span, impl_c_hir_id, param_env, trait_ty);
1099
1100 debug!("compare_const_impl: trait_ty={:?}", trait_ty);
1101
1102 let err = infcx
1103 .at(&cause, param_env)
1104 .sup(trait_ty, impl_ty)
1105 .map(|ok| inh.register_infer_ok_obligations(ok));
1106
1107 if let Err(terr) = err {
1108 debug!(
1109 "checking associated const for compatibility: impl ty {:?}, trait ty {:?}",
1110 impl_ty, trait_ty
1111 );
1112
1113 // Locate the Span containing just the type of the offending impl
1114 match tcx.hir().expect_impl_item(impl_c.def_id.expect_local()).kind {
1115 ImplItemKind::Const(ref ty, _) => cause.span = ty.span,
1116 _ => bug!("{:?} is not a impl const", impl_c),
1117 }
1118
1119 let mut diag = struct_span_err!(
1120 tcx.sess,
1121 cause.span,
1122 E0326,
1123 "implemented const `{}` has an incompatible type for trait",
1124 trait_c.name
1125 );
1126
1127 let trait_c_span = trait_c.def_id.as_local().map(|trait_c_def_id| {
1128 // Add a label to the Span containing just the type of the const
1129 match tcx.hir().expect_trait_item(trait_c_def_id).kind {
1130 TraitItemKind::Const(ref ty, _) => ty.span,
1131 _ => bug!("{:?} is not a trait const", trait_c),
1132 }
1133 });
1134
1135 infcx.note_type_err(
1136 &mut diag,
1137 &cause,
1138 trait_c_span.map(|span| (span, "type in trait".to_owned())),
1139 Some(infer::ValuePairs::Terms(ExpectedFound {
1140 expected: trait_ty.into(),
1141 found: impl_ty.into(),
1142 })),
1143 &terr,
1144 false,
1145 false,
1146 );
1147 diag.emit();
1148 }
1149
1150 // Check that all obligations are satisfied by the implementation's
1151 // version.
1152 let errors = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx);
1153 if !errors.is_empty() {
1154 infcx.report_fulfillment_errors(&errors, None, false);
1155 return;
1156 }
1157
1158 let fcx = FnCtxt::new(&inh, param_env, impl_c_hir_id);
1159 fcx.regionck_item(impl_c_hir_id, impl_c_span, FxHashSet::default());
1160 });
1161 }
1162
1163 pub(crate) fn compare_ty_impl<'tcx>(
1164 tcx: TyCtxt<'tcx>,
1165 impl_ty: &ty::AssocItem,
1166 impl_ty_span: Span,
1167 trait_ty: &ty::AssocItem,
1168 impl_trait_ref: ty::TraitRef<'tcx>,
1169 trait_item_span: Option<Span>,
1170 ) {
1171 debug!("compare_impl_type(impl_trait_ref={:?})", impl_trait_ref);
1172
1173 let _: Result<(), ErrorGuaranteed> = (|| {
1174 compare_number_of_generics(tcx, impl_ty, impl_ty_span, trait_ty, trait_item_span)?;
1175
1176 compare_generic_param_kinds(tcx, impl_ty, trait_ty)?;
1177
1178 let sp = tcx.def_span(impl_ty.def_id);
1179 compare_type_predicate_entailment(tcx, impl_ty, sp, trait_ty, impl_trait_ref)?;
1180
1181 check_type_bounds(tcx, trait_ty, impl_ty, impl_ty_span, impl_trait_ref)
1182 })();
1183 }
1184
1185 /// The equivalent of [compare_predicate_entailment], but for associated types
1186 /// instead of associated functions.
1187 fn compare_type_predicate_entailment<'tcx>(
1188 tcx: TyCtxt<'tcx>,
1189 impl_ty: &ty::AssocItem,
1190 impl_ty_span: Span,
1191 trait_ty: &ty::AssocItem,
1192 impl_trait_ref: ty::TraitRef<'tcx>,
1193 ) -> Result<(), ErrorGuaranteed> {
1194 let impl_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1195 let trait_to_impl_substs =
1196 impl_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
1197
1198 let impl_ty_generics = tcx.generics_of(impl_ty.def_id);
1199 let trait_ty_generics = tcx.generics_of(trait_ty.def_id);
1200 let impl_ty_predicates = tcx.predicates_of(impl_ty.def_id);
1201 let trait_ty_predicates = tcx.predicates_of(trait_ty.def_id);
1202
1203 check_region_bounds_on_impl_item(
1204 tcx,
1205 impl_ty_span,
1206 impl_ty,
1207 trait_ty,
1208 &trait_ty_generics,
1209 &impl_ty_generics,
1210 )?;
1211
1212 let impl_ty_own_bounds = impl_ty_predicates.instantiate_own(tcx, impl_substs);
1213
1214 if impl_ty_own_bounds.is_empty() {
1215 // Nothing to check.
1216 return Ok(());
1217 }
1218
1219 // This `HirId` should be used for the `body_id` field on each
1220 // `ObligationCause` (and the `FnCtxt`). This is what
1221 // `regionck_item` expects.
1222 let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
1223 let cause = ObligationCause::new(
1224 impl_ty_span,
1225 impl_ty_hir_id,
1226 ObligationCauseCode::CompareImplTypeObligation {
1227 impl_item_def_id: impl_ty.def_id.expect_local(),
1228 trait_item_def_id: trait_ty.def_id,
1229 },
1230 );
1231
1232 debug!("compare_type_predicate_entailment: trait_to_impl_substs={:?}", trait_to_impl_substs);
1233
1234 // The predicates declared by the impl definition, the trait and the
1235 // associated type in the trait are assumed.
1236 let impl_predicates = tcx.predicates_of(impl_ty_predicates.parent.unwrap());
1237 let mut hybrid_preds = impl_predicates.instantiate_identity(tcx);
1238 hybrid_preds
1239 .predicates
1240 .extend(trait_ty_predicates.instantiate_own(tcx, trait_to_impl_substs).predicates);
1241
1242 debug!("compare_type_predicate_entailment: bounds={:?}", hybrid_preds);
1243
1244 let normalize_cause = traits::ObligationCause::misc(impl_ty_span, impl_ty_hir_id);
1245 let param_env = ty::ParamEnv::new(
1246 tcx.intern_predicates(&hybrid_preds.predicates),
1247 Reveal::UserFacing,
1248 hir::Constness::NotConst,
1249 );
1250 let param_env = traits::normalize_param_env_or_error(
1251 tcx,
1252 impl_ty.def_id,
1253 param_env,
1254 normalize_cause.clone(),
1255 );
1256 tcx.infer_ctxt().enter(|infcx| {
1257 let inh = Inherited::new(infcx, impl_ty.def_id.expect_local());
1258 let infcx = &inh.infcx;
1259
1260 debug!("compare_type_predicate_entailment: caller_bounds={:?}", param_env.caller_bounds());
1261
1262 let mut selcx = traits::SelectionContext::new(&infcx);
1263
1264 for predicate in impl_ty_own_bounds.predicates {
1265 let traits::Normalized { value: predicate, obligations } =
1266 traits::normalize(&mut selcx, param_env, normalize_cause.clone(), predicate);
1267
1268 inh.register_predicates(obligations);
1269 inh.register_predicate(traits::Obligation::new(cause.clone(), param_env, predicate));
1270 }
1271
1272 // Check that all obligations are satisfied by the implementation's
1273 // version.
1274 let errors = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx);
1275 if !errors.is_empty() {
1276 let reported = infcx.report_fulfillment_errors(&errors, None, false);
1277 return Err(reported);
1278 }
1279
1280 // Finally, resolve all regions. This catches wily misuses of
1281 // lifetime parameters.
1282 let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
1283 fcx.regionck_item(impl_ty_hir_id, impl_ty_span, FxHashSet::default());
1284
1285 Ok(())
1286 })
1287 }
1288
1289 /// Validate that `ProjectionCandidate`s created for this associated type will
1290 /// be valid.
1291 ///
1292 /// Usually given
1293 ///
1294 /// trait X { type Y: Copy } impl X for T { type Y = S; }
1295 ///
1296 /// We are able to normalize `<T as X>::U` to `S`, and so when we check the
1297 /// impl is well-formed we have to prove `S: Copy`.
1298 ///
1299 /// For default associated types the normalization is not possible (the value
1300 /// from the impl could be overridden). We also can't normalize generic
1301 /// associated types (yet) because they contain bound parameters.
1302 #[tracing::instrument(level = "debug", skip(tcx))]
1303 pub fn check_type_bounds<'tcx>(
1304 tcx: TyCtxt<'tcx>,
1305 trait_ty: &ty::AssocItem,
1306 impl_ty: &ty::AssocItem,
1307 impl_ty_span: Span,
1308 impl_trait_ref: ty::TraitRef<'tcx>,
1309 ) -> Result<(), ErrorGuaranteed> {
1310 // Given
1311 //
1312 // impl<A, B> Foo<u32> for (A, B) {
1313 // type Bar<C> =...
1314 // }
1315 //
1316 // - `impl_trait_ref` would be `<(A, B) as Foo<u32>>
1317 // - `impl_ty_substs` would be `[A, B, ^0.0]` (`^0.0` here is the bound var with db 0 and index 0)
1318 // - `rebased_substs` would be `[(A, B), u32, ^0.0]`, combining the substs from
1319 // the *trait* with the generic associated type parameters (as bound vars).
1320 //
1321 // A note regarding the use of bound vars here:
1322 // Imagine as an example
1323 // ```
1324 // trait Family {
1325 // type Member<C: Eq>;
1326 // }
1327 //
1328 // impl Family for VecFamily {
1329 // type Member<C: Eq> = i32;
1330 // }
1331 // ```
1332 // Here, we would generate
1333 // ```notrust
1334 // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) }
1335 // ```
1336 // when we really would like to generate
1337 // ```notrust
1338 // forall<C> { Normalize(<VecFamily as Family>::Member<C> => i32) :- Implemented(C: Eq) }
1339 // ```
1340 // But, this is probably fine, because although the first clause can be used with types C that
1341 // do not implement Eq, for it to cause some kind of problem, there would have to be a
1342 // VecFamily::Member<X> for some type X where !(X: Eq), that appears in the value of type
1343 // Member<C: Eq> = .... That type would fail a well-formedness check that we ought to be doing
1344 // elsewhere, which would check that any <T as Family>::Member<X> meets the bounds declared in
1345 // the trait (notably, that X: Eq and T: Family).
1346 let defs: &ty::Generics = tcx.generics_of(impl_ty.def_id);
1347 let mut substs = smallvec::SmallVec::with_capacity(defs.count());
1348 if let Some(def_id) = defs.parent {
1349 let parent_defs = tcx.generics_of(def_id);
1350 InternalSubsts::fill_item(&mut substs, tcx, parent_defs, &mut |param, _| {
1351 tcx.mk_param_from_def(param)
1352 });
1353 }
1354 let mut bound_vars: smallvec::SmallVec<[ty::BoundVariableKind; 8]> =
1355 smallvec::SmallVec::with_capacity(defs.count());
1356 InternalSubsts::fill_single(&mut substs, defs, &mut |param, _| match param.kind {
1357 GenericParamDefKind::Type { .. } => {
1358 let kind = ty::BoundTyKind::Param(param.name);
1359 let bound_var = ty::BoundVariableKind::Ty(kind);
1360 bound_vars.push(bound_var);
1361 tcx.mk_ty(ty::Bound(
1362 ty::INNERMOST,
1363 ty::BoundTy { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
1364 ))
1365 .into()
1366 }
1367 GenericParamDefKind::Lifetime => {
1368 let kind = ty::BoundRegionKind::BrNamed(param.def_id, param.name);
1369 let bound_var = ty::BoundVariableKind::Region(kind);
1370 bound_vars.push(bound_var);
1371 tcx.mk_region(ty::ReLateBound(
1372 ty::INNERMOST,
1373 ty::BoundRegion { var: ty::BoundVar::from_usize(bound_vars.len() - 1), kind },
1374 ))
1375 .into()
1376 }
1377 GenericParamDefKind::Const { .. } => {
1378 let bound_var = ty::BoundVariableKind::Const;
1379 bound_vars.push(bound_var);
1380 tcx.mk_const(ty::ConstS {
1381 ty: tcx.type_of(param.def_id),
1382 kind: ty::ConstKind::Bound(
1383 ty::INNERMOST,
1384 ty::BoundVar::from_usize(bound_vars.len() - 1),
1385 ),
1386 })
1387 .into()
1388 }
1389 });
1390 let bound_vars = tcx.mk_bound_variable_kinds(bound_vars.into_iter());
1391 let impl_ty_substs = tcx.intern_substs(&substs);
1392
1393 let rebased_substs =
1394 impl_ty_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
1395 let impl_ty_value = tcx.type_of(impl_ty.def_id);
1396
1397 let param_env = tcx.param_env(impl_ty.def_id);
1398
1399 // When checking something like
1400 //
1401 // trait X { type Y: PartialEq<<Self as X>::Y> }
1402 // impl X for T { default type Y = S; }
1403 //
1404 // We will have to prove the bound S: PartialEq<<T as X>::Y>. In this case
1405 // we want <T as X>::Y to normalize to S. This is valid because we are
1406 // checking the default value specifically here. Add this equality to the
1407 // ParamEnv for normalization specifically.
1408 let normalize_param_env = {
1409 let mut predicates = param_env.caller_bounds().iter().collect::<Vec<_>>();
1410 match impl_ty_value.kind() {
1411 ty::Projection(proj)
1412 if proj.item_def_id == trait_ty.def_id && proj.substs == rebased_substs =>
1413 {
1414 // Don't include this predicate if the projected type is
1415 // exactly the same as the projection. This can occur in
1416 // (somewhat dubious) code like this:
1417 //
1418 // impl<T> X for T where T: X { type Y = <T as X>::Y; }
1419 }
1420 _ => predicates.push(
1421 ty::Binder::bind_with_vars(
1422 ty::ProjectionPredicate {
1423 projection_ty: ty::ProjectionTy {
1424 item_def_id: trait_ty.def_id,
1425 substs: rebased_substs,
1426 },
1427 term: impl_ty_value.into(),
1428 },
1429 bound_vars,
1430 )
1431 .to_predicate(tcx),
1432 ),
1433 };
1434 ty::ParamEnv::new(
1435 tcx.intern_predicates(&predicates),
1436 Reveal::UserFacing,
1437 param_env.constness(),
1438 )
1439 };
1440 debug!(?normalize_param_env);
1441
1442 let impl_ty_substs = InternalSubsts::identity_for_item(tcx, impl_ty.def_id);
1443 let rebased_substs =
1444 impl_ty_substs.rebase_onto(tcx, impl_ty.container.id(), impl_trait_ref.substs);
1445
1446 tcx.infer_ctxt().enter(move |infcx| {
1447 let inh = Inherited::new(infcx, impl_ty.def_id.expect_local());
1448 let infcx = &inh.infcx;
1449 let mut selcx = traits::SelectionContext::new(&infcx);
1450
1451 let impl_ty_hir_id = tcx.hir().local_def_id_to_hir_id(impl_ty.def_id.expect_local());
1452 let normalize_cause = ObligationCause::new(
1453 impl_ty_span,
1454 impl_ty_hir_id,
1455 ObligationCauseCode::CheckAssociatedTypeBounds {
1456 impl_item_def_id: impl_ty.def_id.expect_local(),
1457 trait_item_def_id: trait_ty.def_id,
1458 },
1459 );
1460 let mk_cause = |span: Span| {
1461 let code = if span.is_dummy() {
1462 traits::MiscObligation
1463 } else {
1464 traits::BindingObligation(trait_ty.def_id, span)
1465 };
1466 ObligationCause::new(impl_ty_span, impl_ty_hir_id, code)
1467 };
1468
1469 let obligations = tcx
1470 .bound_explicit_item_bounds(trait_ty.def_id)
1471 .transpose_iter()
1472 .map(|e| e.map_bound(|e| *e).transpose_tuple2())
1473 .map(|(bound, span)| {
1474 debug!(?bound);
1475 let concrete_ty_bound = bound.subst(tcx, rebased_substs);
1476 debug!("check_type_bounds: concrete_ty_bound = {:?}", concrete_ty_bound);
1477
1478 traits::Obligation::new(mk_cause(span.0), param_env, concrete_ty_bound)
1479 })
1480 .collect();
1481 debug!("check_type_bounds: item_bounds={:?}", obligations);
1482
1483 for mut obligation in util::elaborate_obligations(tcx, obligations) {
1484 let traits::Normalized { value: normalized_predicate, obligations } = traits::normalize(
1485 &mut selcx,
1486 normalize_param_env,
1487 normalize_cause.clone(),
1488 obligation.predicate,
1489 );
1490 debug!("compare_projection_bounds: normalized predicate = {:?}", normalized_predicate);
1491 obligation.predicate = normalized_predicate;
1492
1493 inh.register_predicates(obligations);
1494 inh.register_predicate(obligation);
1495 }
1496
1497 // Check that all obligations are satisfied by the implementation's
1498 // version.
1499 let errors = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx);
1500 if !errors.is_empty() {
1501 let reported = infcx.report_fulfillment_errors(&errors, None, false);
1502 return Err(reported);
1503 }
1504
1505 // Finally, resolve all regions. This catches wily misuses of
1506 // lifetime parameters.
1507 let fcx = FnCtxt::new(&inh, param_env, impl_ty_hir_id);
1508 let implied_bounds = match impl_ty.container {
1509 ty::TraitContainer(_) => FxHashSet::default(),
1510 ty::ImplContainer(def_id) => fcx.impl_implied_bounds(def_id, impl_ty_span),
1511 };
1512 fcx.regionck_item(impl_ty_hir_id, impl_ty_span, implied_bounds);
1513
1514 Ok(())
1515 })
1516 }
1517
1518 fn assoc_item_kind_str(impl_item: &ty::AssocItem) -> &'static str {
1519 match impl_item.kind {
1520 ty::AssocKind::Const => "const",
1521 ty::AssocKind::Fn => "method",
1522 ty::AssocKind::Type => "type",
1523 }
1524 }