]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/check/method/probe.rs
Merge branch 'mr/1.60.0-1' into 'debian/sid'
[rustc.git] / compiler / rustc_typeck / src / check / method / probe.rs
1 use super::suggest;
2 use super::MethodError;
3 use super::NoMatchData;
4 use super::{CandidateSource, ImplSource, TraitSource};
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_errors::Applicability;
13 use rustc_hir as hir;
14 use rustc_hir::def::Namespace;
15 use rustc_infer::infer::canonical::OriginalQueryValues;
16 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
17 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
18 use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
19 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
20 use rustc_middle::middle::stability;
21 use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
22 use rustc_middle::ty::GenericParamDefKind;
23 use rustc_middle::ty::{self, ParamEnvAnd, ToPredicate, Ty, TyCtxt, TypeFoldable};
24 use rustc_session::lint;
25 use rustc_span::def_id::LocalDefId;
26 use rustc_span::lev_distance::{find_best_match_for_name, lev_distance};
27 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
28 use rustc_trait_selection::autoderef::{self, Autoderef};
29 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
30 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
31 use rustc_trait_selection::traits::query::method_autoderef::{
32 CandidateStep, MethodAutoderefStepsResult,
33 };
34 use rustc_trait_selection::traits::query::CanonicalTyGoal;
35 use rustc_trait_selection::traits::{self, ObligationCause};
36 use std::cmp::max;
37 use std::iter;
38 use std::mem;
39 use std::ops::Deref;
40
41 use smallvec::{smallvec, SmallVec};
42
43 use self::CandidateKind::*;
44 pub use self::PickKind::*;
45
46 /// Boolean flag used to indicate if this search is for a suggestion
47 /// or not. If true, we can allow ambiguity and so forth.
48 #[derive(Clone, Copy, Debug)]
49 pub struct IsSuggestion(pub bool);
50
51 struct ProbeContext<'a, 'tcx> {
52 fcx: &'a FnCtxt<'a, 'tcx>,
53 span: Span,
54 mode: Mode,
55 method_name: Option<Ident>,
56 return_type: Option<Ty<'tcx>>,
57
58 /// This is the OriginalQueryValues for the steps queries
59 /// that are answered in steps.
60 orig_steps_var_values: OriginalQueryValues<'tcx>,
61 steps: &'tcx [CandidateStep<'tcx>],
62
63 inherent_candidates: Vec<Candidate<'tcx>>,
64 extension_candidates: Vec<Candidate<'tcx>>,
65 impl_dups: FxHashSet<DefId>,
66
67 /// Collects near misses when the candidate functions are missing a `self` keyword and is only
68 /// used for error reporting
69 static_candidates: Vec<CandidateSource>,
70
71 /// When probing for names, include names that are close to the
72 /// requested name (by Levensthein distance)
73 allow_similar_names: bool,
74
75 /// Some(candidate) if there is a private candidate
76 private_candidate: Option<(DefKind, DefId)>,
77
78 /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
79 /// for error reporting
80 unsatisfied_predicates:
81 Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>, Option<ObligationCause<'tcx>>)>,
82
83 is_suggestion: IsSuggestion,
84
85 scope_expr_id: hir::HirId,
86 }
87
88 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
89 type Target = FnCtxt<'a, 'tcx>;
90 fn deref(&self) -> &Self::Target {
91 self.fcx
92 }
93 }
94
95 #[derive(Debug, Clone)]
96 struct Candidate<'tcx> {
97 // Candidates are (I'm not quite sure, but they are mostly) basically
98 // some metadata on top of a `ty::AssocItem` (without substs).
99 //
100 // However, method probing wants to be able to evaluate the predicates
101 // for a function with the substs applied - for example, if a function
102 // has `where Self: Sized`, we don't want to consider it unless `Self`
103 // is actually `Sized`, and similarly, return-type suggestions want
104 // to consider the "actual" return type.
105 //
106 // The way this is handled is through `xform_self_ty`. It contains
107 // the receiver type of this candidate, but `xform_self_ty`,
108 // `xform_ret_ty` and `kind` (which contains the predicates) have the
109 // generic parameters of this candidate substituted with the *same set*
110 // of inference variables, which acts as some weird sort of "query".
111 //
112 // When we check out a candidate, we require `xform_self_ty` to be
113 // a subtype of the passed-in self-type, and this equates the type
114 // variables in the rest of the fields.
115 //
116 // For example, if we have this candidate:
117 // ```
118 // trait Foo {
119 // fn foo(&self) where Self: Sized;
120 // }
121 // ```
122 //
123 // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
124 // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
125 // the receiver `&T`, we'll do the subtyping which will make `?X`
126 // get the right value, then when we evaluate the predicate we'll check
127 // if `T: Sized`.
128 xform_self_ty: Ty<'tcx>,
129 xform_ret_ty: Option<Ty<'tcx>>,
130 item: ty::AssocItem,
131 kind: CandidateKind<'tcx>,
132 import_ids: SmallVec<[LocalDefId; 1]>,
133 }
134
135 #[derive(Debug, Clone)]
136 enum CandidateKind<'tcx> {
137 InherentImplCandidate(
138 SubstsRef<'tcx>,
139 // Normalize obligations
140 Vec<traits::PredicateObligation<'tcx>>,
141 ),
142 ObjectCandidate,
143 TraitCandidate(ty::TraitRef<'tcx>),
144 WhereClauseCandidate(
145 // Trait
146 ty::PolyTraitRef<'tcx>,
147 ),
148 }
149
150 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
151 enum ProbeResult {
152 NoMatch,
153 BadReturnType,
154 Match,
155 }
156
157 /// When adjusting a receiver we often want to do one of
158 ///
159 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
160 /// - If the receiver has type `*mut T`, convert it to `*const T`
161 ///
162 /// This type tells us which one to do.
163 ///
164 /// Note that in principle we could do both at the same time. For example, when the receiver has
165 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
166 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
167 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
168 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
169 #[derive(Debug, PartialEq, Copy, Clone)]
170 pub enum AutorefOrPtrAdjustment {
171 /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
172 /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
173 Autoref {
174 mutbl: hir::Mutability,
175
176 /// Indicates that the source expression should be "unsized" to a target type.
177 /// This is special-cased for just arrays unsizing to slices.
178 unsize: bool,
179 },
180 /// Receiver has type `*mut T`, convert to `*const T`
181 ToConstPtr,
182 }
183
184 impl AutorefOrPtrAdjustment {
185 fn get_unsize(&self) -> bool {
186 match self {
187 AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
188 AutorefOrPtrAdjustment::ToConstPtr => false,
189 }
190 }
191 }
192
193 #[derive(Debug, PartialEq, Clone)]
194 pub struct Pick<'tcx> {
195 pub item: ty::AssocItem,
196 pub kind: PickKind<'tcx>,
197 pub import_ids: SmallVec<[LocalDefId; 1]>,
198
199 /// Indicates that the source expression should be autoderef'd N times
200 ///
201 /// A = expr | *expr | **expr | ...
202 pub autoderefs: usize,
203
204 /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
205 /// `*mut T`, convert it to `*const T`.
206 pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
207 pub self_ty: Ty<'tcx>,
208 }
209
210 #[derive(Clone, Debug, PartialEq, Eq)]
211 pub enum PickKind<'tcx> {
212 InherentImplPick,
213 ObjectPick,
214 TraitPick,
215 WhereClausePick(
216 // Trait
217 ty::PolyTraitRef<'tcx>,
218 ),
219 }
220
221 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
222
223 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
224 pub enum Mode {
225 // An expression of the form `receiver.method_name(...)`.
226 // Autoderefs are performed on `receiver`, lookup is done based on the
227 // `self` argument of the method, and static methods aren't considered.
228 MethodCall,
229 // An expression of the form `Type::item` or `<T>::item`.
230 // No autoderefs are performed, lookup is done based on the type each
231 // implementation is for, and static methods are included.
232 Path,
233 }
234
235 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
236 pub enum ProbeScope {
237 // Assemble candidates coming only from traits in scope.
238 TraitsInScope,
239
240 // Assemble candidates coming from all traits.
241 AllTraits,
242 }
243
244 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
245 /// This is used to offer suggestions to users. It returns methods
246 /// that could have been called which have the desired return
247 /// type. Some effort is made to rule out methods that, if called,
248 /// would result in an error (basically, the same criteria we
249 /// would use to decide if a method is a plausible fit for
250 /// ambiguity purposes).
251 #[instrument(level = "debug", skip(self, scope_expr_id))]
252 pub fn probe_for_return_type(
253 &self,
254 span: Span,
255 mode: Mode,
256 return_type: Ty<'tcx>,
257 self_ty: Ty<'tcx>,
258 scope_expr_id: hir::HirId,
259 ) -> Vec<ty::AssocItem> {
260 debug!(
261 "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
262 self_ty, return_type, scope_expr_id
263 );
264 let method_names = self
265 .probe_op(
266 span,
267 mode,
268 None,
269 Some(return_type),
270 IsSuggestion(true),
271 self_ty,
272 scope_expr_id,
273 ProbeScope::AllTraits,
274 |probe_cx| Ok(probe_cx.candidate_method_names()),
275 )
276 .unwrap_or_default();
277 method_names
278 .iter()
279 .flat_map(|&method_name| {
280 self.probe_op(
281 span,
282 mode,
283 Some(method_name),
284 Some(return_type),
285 IsSuggestion(true),
286 self_ty,
287 scope_expr_id,
288 ProbeScope::AllTraits,
289 |probe_cx| probe_cx.pick(),
290 )
291 .ok()
292 .map(|pick| pick.item)
293 })
294 .collect()
295 }
296
297 #[instrument(level = "debug", skip(self, scope_expr_id))]
298 pub fn probe_for_name(
299 &self,
300 span: Span,
301 mode: Mode,
302 item_name: Ident,
303 is_suggestion: IsSuggestion,
304 self_ty: Ty<'tcx>,
305 scope_expr_id: hir::HirId,
306 scope: ProbeScope,
307 ) -> PickResult<'tcx> {
308 debug!(
309 "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
310 self_ty, item_name, scope_expr_id
311 );
312 self.probe_op(
313 span,
314 mode,
315 Some(item_name),
316 None,
317 is_suggestion,
318 self_ty,
319 scope_expr_id,
320 scope,
321 |probe_cx| probe_cx.pick(),
322 )
323 }
324
325 fn probe_op<OP, R>(
326 &'a self,
327 span: Span,
328 mode: Mode,
329 method_name: Option<Ident>,
330 return_type: Option<Ty<'tcx>>,
331 is_suggestion: IsSuggestion,
332 self_ty: Ty<'tcx>,
333 scope_expr_id: hir::HirId,
334 scope: ProbeScope,
335 op: OP,
336 ) -> Result<R, MethodError<'tcx>>
337 where
338 OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
339 {
340 let mut orig_values = OriginalQueryValues::default();
341 let param_env_and_self_ty = self.infcx.canonicalize_query(
342 ParamEnvAnd { param_env: self.param_env, value: self_ty },
343 &mut orig_values,
344 );
345
346 let steps = if mode == Mode::MethodCall {
347 self.tcx.method_autoderef_steps(param_env_and_self_ty)
348 } else {
349 self.infcx.probe(|_| {
350 // Mode::Path - the deref steps is "trivial". This turns
351 // our CanonicalQuery into a "trivial" QueryResponse. This
352 // is a bit inefficient, but I don't think that writing
353 // special handling for this "trivial case" is a good idea.
354
355 let infcx = &self.infcx;
356 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
357 infcx.instantiate_canonical_with_fresh_inference_vars(
358 span,
359 &param_env_and_self_ty,
360 );
361 debug!(
362 "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
363 param_env_and_self_ty, self_ty
364 );
365 MethodAutoderefStepsResult {
366 steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
367 self_ty: self.make_query_response_ignoring_pending_obligations(
368 canonical_inference_vars,
369 self_ty,
370 ),
371 autoderefs: 0,
372 from_unsafe_deref: false,
373 unsize: false,
374 }]),
375 opt_bad_ty: None,
376 reached_recursion_limit: false,
377 }
378 })
379 };
380
381 // If our autoderef loop had reached the recursion limit,
382 // report an overflow error, but continue going on with
383 // the truncated autoderef list.
384 if steps.reached_recursion_limit {
385 self.probe(|_| {
386 let ty = &steps
387 .steps
388 .last()
389 .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
390 .self_ty;
391 let ty = self
392 .probe_instantiate_query_response(span, &orig_values, ty)
393 .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
394 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
395 });
396 }
397
398 // If we encountered an `_` type or an error type during autoderef, this is
399 // ambiguous.
400 if let Some(bad_ty) = &steps.opt_bad_ty {
401 if is_suggestion.0 {
402 // Ambiguity was encountered during a suggestion. Just keep going.
403 debug!("ProbeContext: encountered ambiguity in suggestion");
404 } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
405 // this case used to be allowed by the compiler,
406 // so we do a future-compat lint here for the 2015 edition
407 // (see https://github.com/rust-lang/rust/issues/46906)
408 if self.tcx.sess.rust_2018() {
409 self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
410 } else {
411 self.tcx.struct_span_lint_hir(
412 lint::builtin::TYVAR_BEHIND_RAW_POINTER,
413 scope_expr_id,
414 span,
415 |lint| lint.build("type annotations needed").emit(),
416 );
417 }
418 } else {
419 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
420 // an `Err`, report the right "type annotations needed" error pointing
421 // to it.
422 let ty = &bad_ty.ty;
423 let ty = self
424 .probe_instantiate_query_response(span, &orig_values, ty)
425 .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
426 let ty = self.structurally_resolved_type(span, ty.value);
427 assert!(matches!(ty.kind(), ty::Error(_)));
428 return Err(MethodError::NoMatch(NoMatchData::new(
429 Vec::new(),
430 Vec::new(),
431 Vec::new(),
432 None,
433 mode,
434 )));
435 }
436 }
437
438 debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
439
440 // this creates one big transaction so that all type variables etc
441 // that we create during the probe process are removed later
442 self.probe(|_| {
443 let mut probe_cx = ProbeContext::new(
444 self,
445 span,
446 mode,
447 method_name,
448 return_type,
449 orig_values,
450 steps.steps,
451 is_suggestion,
452 scope_expr_id,
453 );
454
455 probe_cx.assemble_inherent_candidates();
456 match scope {
457 ProbeScope::TraitsInScope => {
458 probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
459 }
460 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
461 };
462 op(probe_cx)
463 })
464 }
465 }
466
467 pub fn provide(providers: &mut ty::query::Providers) {
468 providers.method_autoderef_steps = method_autoderef_steps;
469 }
470
471 fn method_autoderef_steps<'tcx>(
472 tcx: TyCtxt<'tcx>,
473 goal: CanonicalTyGoal<'tcx>,
474 ) -> MethodAutoderefStepsResult<'tcx> {
475 debug!("method_autoderef_steps({:?})", goal);
476
477 tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
478 let ParamEnvAnd { param_env, value: self_ty } = goal;
479
480 let mut autoderef =
481 Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
482 .include_raw_pointers()
483 .silence_errors();
484 let mut reached_raw_pointer = false;
485 let mut steps: Vec<_> = autoderef
486 .by_ref()
487 .map(|(ty, d)| {
488 let step = CandidateStep {
489 self_ty: infcx.make_query_response_ignoring_pending_obligations(
490 inference_vars.clone(),
491 ty,
492 ),
493 autoderefs: d,
494 from_unsafe_deref: reached_raw_pointer,
495 unsize: false,
496 };
497 if let ty::RawPtr(_) = ty.kind() {
498 // all the subsequent steps will be from_unsafe_deref
499 reached_raw_pointer = true;
500 }
501 step
502 })
503 .collect();
504
505 let final_ty = autoderef.final_ty(true);
506 let opt_bad_ty = match final_ty.kind() {
507 ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
508 reached_raw_pointer,
509 ty: infcx
510 .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
511 }),
512 ty::Array(elem_ty, _) => {
513 let dereferences = steps.len() - 1;
514
515 steps.push(CandidateStep {
516 self_ty: infcx.make_query_response_ignoring_pending_obligations(
517 inference_vars,
518 infcx.tcx.mk_slice(*elem_ty),
519 ),
520 autoderefs: dereferences,
521 // this could be from an unsafe deref if we had
522 // a *mut/const [T; N]
523 from_unsafe_deref: reached_raw_pointer,
524 unsize: true,
525 });
526
527 None
528 }
529 _ => None,
530 };
531
532 debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
533
534 MethodAutoderefStepsResult {
535 steps: tcx.arena.alloc_from_iter(steps),
536 opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
537 reached_recursion_limit: autoderef.reached_recursion_limit(),
538 }
539 })
540 }
541
542 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
543 fn new(
544 fcx: &'a FnCtxt<'a, 'tcx>,
545 span: Span,
546 mode: Mode,
547 method_name: Option<Ident>,
548 return_type: Option<Ty<'tcx>>,
549 orig_steps_var_values: OriginalQueryValues<'tcx>,
550 steps: &'tcx [CandidateStep<'tcx>],
551 is_suggestion: IsSuggestion,
552 scope_expr_id: hir::HirId,
553 ) -> ProbeContext<'a, 'tcx> {
554 ProbeContext {
555 fcx,
556 span,
557 mode,
558 method_name,
559 return_type,
560 inherent_candidates: Vec::new(),
561 extension_candidates: Vec::new(),
562 impl_dups: FxHashSet::default(),
563 orig_steps_var_values,
564 steps,
565 static_candidates: Vec::new(),
566 allow_similar_names: false,
567 private_candidate: None,
568 unsatisfied_predicates: Vec::new(),
569 is_suggestion,
570 scope_expr_id,
571 }
572 }
573
574 fn reset(&mut self) {
575 self.inherent_candidates.clear();
576 self.extension_candidates.clear();
577 self.impl_dups.clear();
578 self.static_candidates.clear();
579 self.private_candidate = None;
580 }
581
582 ///////////////////////////////////////////////////////////////////////////
583 // CANDIDATE ASSEMBLY
584
585 fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
586 let is_accessible = if let Some(name) = self.method_name {
587 let item = candidate.item;
588 let def_scope =
589 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
590 item.vis.is_accessible_from(def_scope, self.tcx)
591 } else {
592 true
593 };
594 if is_accessible {
595 if is_inherent {
596 self.inherent_candidates.push(candidate);
597 } else {
598 self.extension_candidates.push(candidate);
599 }
600 } else if self.private_candidate.is_none() {
601 self.private_candidate =
602 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
603 }
604 }
605
606 fn assemble_inherent_candidates(&mut self) {
607 for step in self.steps.iter() {
608 self.assemble_probe(&step.self_ty);
609 }
610 }
611
612 fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
613 debug!("assemble_probe: self_ty={:?}", self_ty);
614 let lang_items = self.tcx.lang_items();
615
616 match *self_ty.value.value.kind() {
617 ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
618 // Subtle: we can't use `instantiate_query_response` here: using it will
619 // commit to all of the type equalities assumed by inference going through
620 // autoderef (see the `method-probe-no-guessing` test).
621 //
622 // However, in this code, it is OK if we end up with an object type that is
623 // "more general" than the object type that we are evaluating. For *every*
624 // object type `MY_OBJECT`, a function call that goes through a trait-ref
625 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
626 // `ObjectCandidate`, and it should be discoverable "exactly" through one
627 // of the iterations in the autoderef loop, so there is no problem with it
628 // being discoverable in another one of these iterations.
629 //
630 // Using `instantiate_canonical_with_fresh_inference_vars` on our
631 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
632 // `CanonicalVarValues` will exactly give us such a generalization - it
633 // will still match the original object type, but it won't pollute our
634 // type variables in any form, so just do that!
635 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
636 self.fcx
637 .instantiate_canonical_with_fresh_inference_vars(self.span, self_ty);
638
639 self.assemble_inherent_candidates_from_object(generalized_self_ty);
640 self.assemble_inherent_impl_candidates_for_type(p.def_id());
641 }
642 ty::Adt(def, _) => {
643 self.assemble_inherent_impl_candidates_for_type(def.did);
644 }
645 ty::Foreign(did) => {
646 self.assemble_inherent_impl_candidates_for_type(did);
647 }
648 ty::Param(p) => {
649 self.assemble_inherent_candidates_from_param(p);
650 }
651 ty::Bool => {
652 let lang_def_id = lang_items.bool_impl();
653 self.assemble_inherent_impl_for_primitive(lang_def_id);
654 }
655 ty::Char => {
656 let lang_def_id = lang_items.char_impl();
657 self.assemble_inherent_impl_for_primitive(lang_def_id);
658 }
659 ty::Str => {
660 let lang_def_id = lang_items.str_impl();
661 self.assemble_inherent_impl_for_primitive(lang_def_id);
662
663 let lang_def_id = lang_items.str_alloc_impl();
664 self.assemble_inherent_impl_for_primitive(lang_def_id);
665 }
666 ty::Slice(_) => {
667 for lang_def_id in [
668 lang_items.slice_impl(),
669 lang_items.slice_u8_impl(),
670 lang_items.slice_alloc_impl(),
671 lang_items.slice_u8_alloc_impl(),
672 ] {
673 self.assemble_inherent_impl_for_primitive(lang_def_id);
674 }
675 }
676 ty::Array(_, _) => {
677 let lang_def_id = lang_items.array_impl();
678 self.assemble_inherent_impl_for_primitive(lang_def_id);
679 }
680 ty::RawPtr(ty::TypeAndMut { ty: _, mutbl }) => {
681 let (lang_def_id1, lang_def_id2) = match mutbl {
682 hir::Mutability::Not => {
683 (lang_items.const_ptr_impl(), lang_items.const_slice_ptr_impl())
684 }
685 hir::Mutability::Mut => {
686 (lang_items.mut_ptr_impl(), lang_items.mut_slice_ptr_impl())
687 }
688 };
689 self.assemble_inherent_impl_for_primitive(lang_def_id1);
690 self.assemble_inherent_impl_for_primitive(lang_def_id2);
691 }
692 ty::Int(i) => {
693 let lang_def_id = match i {
694 ty::IntTy::I8 => lang_items.i8_impl(),
695 ty::IntTy::I16 => lang_items.i16_impl(),
696 ty::IntTy::I32 => lang_items.i32_impl(),
697 ty::IntTy::I64 => lang_items.i64_impl(),
698 ty::IntTy::I128 => lang_items.i128_impl(),
699 ty::IntTy::Isize => lang_items.isize_impl(),
700 };
701 self.assemble_inherent_impl_for_primitive(lang_def_id);
702 }
703 ty::Uint(i) => {
704 let lang_def_id = match i {
705 ty::UintTy::U8 => lang_items.u8_impl(),
706 ty::UintTy::U16 => lang_items.u16_impl(),
707 ty::UintTy::U32 => lang_items.u32_impl(),
708 ty::UintTy::U64 => lang_items.u64_impl(),
709 ty::UintTy::U128 => lang_items.u128_impl(),
710 ty::UintTy::Usize => lang_items.usize_impl(),
711 };
712 self.assemble_inherent_impl_for_primitive(lang_def_id);
713 }
714 ty::Float(f) => {
715 let (lang_def_id1, lang_def_id2) = match f {
716 ty::FloatTy::F32 => (lang_items.f32_impl(), lang_items.f32_runtime_impl()),
717 ty::FloatTy::F64 => (lang_items.f64_impl(), lang_items.f64_runtime_impl()),
718 };
719 self.assemble_inherent_impl_for_primitive(lang_def_id1);
720 self.assemble_inherent_impl_for_primitive(lang_def_id2);
721 }
722 _ => {}
723 }
724 }
725
726 fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
727 if let Some(impl_def_id) = lang_def_id {
728 self.assemble_inherent_impl_probe(impl_def_id);
729 }
730 }
731
732 fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
733 let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
734 for &impl_def_id in impl_def_ids.iter() {
735 self.assemble_inherent_impl_probe(impl_def_id);
736 }
737 }
738
739 fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
740 if !self.impl_dups.insert(impl_def_id) {
741 return; // already visited
742 }
743
744 debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
745
746 for item in self.impl_or_trait_item(impl_def_id) {
747 if !self.has_applicable_self(&item) {
748 // No receiver declared. Not a candidate.
749 self.record_static_candidate(ImplSource(impl_def_id));
750 continue;
751 }
752
753 let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
754 let impl_ty = impl_ty.subst(self.tcx, impl_substs);
755
756 debug!("impl_ty: {:?}", impl_ty);
757
758 // Determine the receiver type that the method itself expects.
759 let (xform_self_ty, xform_ret_ty) = self.xform_self_ty(&item, impl_ty, impl_substs);
760 debug!("xform_self_ty: {:?}, xform_ret_ty: {:?}", xform_self_ty, xform_ret_ty);
761
762 // We can't use normalize_associated_types_in as it will pollute the
763 // fcx's fulfillment context after this probe is over.
764 // Note: we only normalize `xform_self_ty` here since the normalization
765 // of the return type can lead to inference results that prohibit
766 // valid canidates from being found, see issue #85671
767 // FIXME Postponing the normalization of the return type likely only hides a deeper bug,
768 // which might be caused by the `param_env` itself. The clauses of the `param_env`
769 // maybe shouldn't include `Param`s, but rather fresh variables or be canonicalized,
770 // see isssue #89650
771 let cause = traits::ObligationCause::misc(self.span, self.body_id);
772 let selcx = &mut traits::SelectionContext::new(self.fcx);
773 let traits::Normalized { value: xform_self_ty, obligations } =
774 traits::normalize(selcx, self.param_env, cause, xform_self_ty);
775 debug!(
776 "assemble_inherent_impl_probe after normalization: xform_self_ty = {:?}/{:?}",
777 xform_self_ty, xform_ret_ty
778 );
779
780 self.push_candidate(
781 Candidate {
782 xform_self_ty,
783 xform_ret_ty,
784 item,
785 kind: InherentImplCandidate(impl_substs, obligations),
786 import_ids: smallvec![],
787 },
788 true,
789 );
790 }
791 }
792
793 fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
794 debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
795
796 let principal = match self_ty.kind() {
797 ty::Dynamic(ref data, ..) => Some(data),
798 _ => None,
799 }
800 .and_then(|data| data.principal())
801 .unwrap_or_else(|| {
802 span_bug!(
803 self.span,
804 "non-object {:?} in assemble_inherent_candidates_from_object",
805 self_ty
806 )
807 });
808
809 // It is illegal to invoke a method on a trait instance that refers to
810 // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
811 // will be reported by `object_safety.rs` if the method refers to the
812 // `Self` type anywhere other than the receiver. Here, we use a
813 // substitution that replaces `Self` with the object type itself. Hence,
814 // a `&self` method will wind up with an argument type like `&dyn Trait`.
815 let trait_ref = principal.with_self_ty(self.tcx, self_ty);
816 self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
817 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
818
819 let (xform_self_ty, xform_ret_ty) =
820 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
821 this.push_candidate(
822 Candidate {
823 xform_self_ty,
824 xform_ret_ty,
825 item,
826 kind: ObjectCandidate,
827 import_ids: smallvec![],
828 },
829 true,
830 );
831 });
832 }
833
834 fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
835 // FIXME: do we want to commit to this behavior for param bounds?
836 debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
837
838 let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
839 let bound_predicate = predicate.kind();
840 match bound_predicate.skip_binder() {
841 ty::PredicateKind::Trait(trait_predicate) => {
842 match *trait_predicate.trait_ref.self_ty().kind() {
843 ty::Param(p) if p == param_ty => {
844 Some(bound_predicate.rebind(trait_predicate.trait_ref))
845 }
846 _ => None,
847 }
848 }
849 ty::PredicateKind::Subtype(..)
850 | ty::PredicateKind::Coerce(..)
851 | ty::PredicateKind::Projection(..)
852 | ty::PredicateKind::RegionOutlives(..)
853 | ty::PredicateKind::WellFormed(..)
854 | ty::PredicateKind::ObjectSafe(..)
855 | ty::PredicateKind::ClosureKind(..)
856 | ty::PredicateKind::TypeOutlives(..)
857 | ty::PredicateKind::ConstEvaluatable(..)
858 | ty::PredicateKind::ConstEquate(..)
859 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
860 }
861 });
862
863 self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
864 let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
865
866 let (xform_self_ty, xform_ret_ty) =
867 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
868
869 // Because this trait derives from a where-clause, it
870 // should not contain any inference variables or other
871 // artifacts. This means it is safe to put into the
872 // `WhereClauseCandidate` and (eventually) into the
873 // `WhereClausePick`.
874 assert!(!trait_ref.substs.needs_infer());
875
876 this.push_candidate(
877 Candidate {
878 xform_self_ty,
879 xform_ret_ty,
880 item,
881 kind: WhereClauseCandidate(poly_trait_ref),
882 import_ids: smallvec![],
883 },
884 true,
885 );
886 });
887 }
888
889 // Do a search through a list of bounds, using a callback to actually
890 // create the candidates.
891 fn elaborate_bounds<F>(
892 &mut self,
893 bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
894 mut mk_cand: F,
895 ) where
896 F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
897 {
898 let tcx = self.tcx;
899 for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
900 debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
901 for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
902 if !self.has_applicable_self(&item) {
903 self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
904 } else {
905 mk_cand(self, bound_trait_ref, item);
906 }
907 }
908 }
909 }
910
911 fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
912 let mut duplicates = FxHashSet::default();
913 let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
914 if let Some(applicable_traits) = opt_applicable_traits {
915 for trait_candidate in applicable_traits.iter() {
916 let trait_did = trait_candidate.def_id;
917 if duplicates.insert(trait_did) {
918 self.assemble_extension_candidates_for_trait(
919 &trait_candidate.import_ids,
920 trait_did,
921 );
922 }
923 }
924 }
925 }
926
927 fn assemble_extension_candidates_for_all_traits(&mut self) {
928 let mut duplicates = FxHashSet::default();
929 for trait_info in suggest::all_traits(self.tcx) {
930 if duplicates.insert(trait_info.def_id) {
931 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
932 }
933 }
934 }
935
936 pub fn matches_return_type(
937 &self,
938 method: &ty::AssocItem,
939 self_ty: Option<Ty<'tcx>>,
940 expected: Ty<'tcx>,
941 ) -> bool {
942 match method.kind {
943 ty::AssocKind::Fn => {
944 let fty = self.tcx.fn_sig(method.def_id);
945 self.probe(|_| {
946 let substs = self.fresh_substs_for_item(self.span, method.def_id);
947 let fty = fty.subst(self.tcx, substs);
948 let (fty, _) =
949 self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
950
951 if let Some(self_ty) = self_ty {
952 if self
953 .at(&ObligationCause::dummy(), self.param_env)
954 .sup(fty.inputs()[0], self_ty)
955 .is_err()
956 {
957 return false;
958 }
959 }
960 self.can_sub(self.param_env, fty.output(), expected).is_ok()
961 })
962 }
963 _ => false,
964 }
965 }
966
967 fn assemble_extension_candidates_for_trait(
968 &mut self,
969 import_ids: &SmallVec<[LocalDefId; 1]>,
970 trait_def_id: DefId,
971 ) {
972 debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
973 let trait_substs = self.fresh_item_substs(trait_def_id);
974 let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
975
976 if self.tcx.is_trait_alias(trait_def_id) {
977 // For trait aliases, assume all supertraits are relevant.
978 let bounds = iter::once(ty::Binder::dummy(trait_ref));
979 self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
980 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
981
982 let (xform_self_ty, xform_ret_ty) =
983 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
984 this.push_candidate(
985 Candidate {
986 xform_self_ty,
987 xform_ret_ty,
988 item,
989 import_ids: import_ids.clone(),
990 kind: TraitCandidate(new_trait_ref),
991 },
992 false,
993 );
994 });
995 } else {
996 debug_assert!(self.tcx.is_trait(trait_def_id));
997 for item in self.impl_or_trait_item(trait_def_id) {
998 // Check whether `trait_def_id` defines a method with suitable name.
999 if !self.has_applicable_self(&item) {
1000 debug!("method has inapplicable self");
1001 self.record_static_candidate(TraitSource(trait_def_id));
1002 continue;
1003 }
1004
1005 let (xform_self_ty, xform_ret_ty) =
1006 self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
1007 self.push_candidate(
1008 Candidate {
1009 xform_self_ty,
1010 xform_ret_ty,
1011 item,
1012 import_ids: import_ids.clone(),
1013 kind: TraitCandidate(trait_ref),
1014 },
1015 false,
1016 );
1017 }
1018 }
1019 }
1020
1021 fn candidate_method_names(&self) -> Vec<Ident> {
1022 let mut set = FxHashSet::default();
1023 let mut names: Vec<_> = self
1024 .inherent_candidates
1025 .iter()
1026 .chain(&self.extension_candidates)
1027 .filter(|candidate| {
1028 if let Some(return_ty) = self.return_type {
1029 self.matches_return_type(&candidate.item, None, return_ty)
1030 } else {
1031 true
1032 }
1033 })
1034 .map(|candidate| candidate.item.ident(self.tcx))
1035 .filter(|&name| set.insert(name))
1036 .collect();
1037
1038 // Sort them by the name so we have a stable result.
1039 names.sort_by(|a, b| a.as_str().partial_cmp(b.as_str()).unwrap());
1040 names
1041 }
1042
1043 ///////////////////////////////////////////////////////////////////////////
1044 // THE ACTUAL SEARCH
1045
1046 fn pick(mut self) -> PickResult<'tcx> {
1047 assert!(self.method_name.is_some());
1048
1049 if let Some(r) = self.pick_core() {
1050 return r;
1051 }
1052
1053 debug!("pick: actual search failed, assemble diagnostics");
1054
1055 let static_candidates = mem::take(&mut self.static_candidates);
1056 let private_candidate = self.private_candidate.take();
1057 let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1058
1059 // things failed, so lets look at all traits, for diagnostic purposes now:
1060 self.reset();
1061
1062 let span = self.span;
1063 let tcx = self.tcx;
1064
1065 self.assemble_extension_candidates_for_all_traits();
1066
1067 let out_of_scope_traits = match self.pick_core() {
1068 Some(Ok(p)) => vec![p.item.container.id()],
1069 //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1070 Some(Err(MethodError::Ambiguity(v))) => v
1071 .into_iter()
1072 .map(|source| match source {
1073 TraitSource(id) => id,
1074 ImplSource(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1075 Some(id) => id,
1076 None => span_bug!(span, "found inherent method when looking at traits"),
1077 },
1078 })
1079 .collect(),
1080 Some(Err(MethodError::NoMatch(NoMatchData {
1081 out_of_scope_traits: others, ..
1082 }))) => {
1083 assert!(others.is_empty());
1084 vec![]
1085 }
1086 _ => vec![],
1087 };
1088
1089 if let Some((kind, def_id)) = private_candidate {
1090 return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1091 }
1092 let lev_candidate = self.probe_for_lev_candidate()?;
1093
1094 Err(MethodError::NoMatch(NoMatchData::new(
1095 static_candidates,
1096 unsatisfied_predicates,
1097 out_of_scope_traits,
1098 lev_candidate,
1099 self.mode,
1100 )))
1101 }
1102
1103 fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1104 let mut unstable_candidates = Vec::new();
1105 let pick = self.pick_all_method(Some(&mut unstable_candidates));
1106
1107 // In this case unstable picking is done by `pick_method`.
1108 if !self.tcx.sess.opts.debugging_opts.pick_stable_methods_before_any_unstable {
1109 return pick;
1110 }
1111
1112 match pick {
1113 // Emit a lint if there are unstable candidates alongside the stable ones.
1114 //
1115 // We suppress warning if we're picking the method only because it is a
1116 // suggestion.
1117 Some(Ok(ref p)) if !self.is_suggestion.0 && !unstable_candidates.is_empty() => {
1118 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1119 pick
1120 }
1121 Some(_) => pick,
1122 None => self.pick_all_method(None),
1123 }
1124 }
1125
1126 fn pick_all_method(
1127 &mut self,
1128 mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1129 ) -> Option<PickResult<'tcx>> {
1130 let steps = self.steps.clone();
1131 steps
1132 .iter()
1133 .filter(|step| {
1134 debug!("pick_all_method: step={:?}", step);
1135 // skip types that are from a type error or that would require dereferencing
1136 // a raw pointer
1137 !step.self_ty.references_error() && !step.from_unsafe_deref
1138 })
1139 .flat_map(|step| {
1140 let InferOk { value: self_ty, obligations: _ } = self
1141 .fcx
1142 .probe_instantiate_query_response(
1143 self.span,
1144 &self.orig_steps_var_values,
1145 &step.self_ty,
1146 )
1147 .unwrap_or_else(|_| {
1148 span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1149 });
1150 self.pick_by_value_method(step, self_ty, unstable_candidates.as_deref_mut())
1151 .or_else(|| {
1152 self.pick_autorefd_method(
1153 step,
1154 self_ty,
1155 hir::Mutability::Not,
1156 unstable_candidates.as_deref_mut(),
1157 )
1158 .or_else(|| {
1159 self.pick_autorefd_method(
1160 step,
1161 self_ty,
1162 hir::Mutability::Mut,
1163 unstable_candidates.as_deref_mut(),
1164 )
1165 })
1166 .or_else(|| {
1167 self.pick_const_ptr_method(
1168 step,
1169 self_ty,
1170 unstable_candidates.as_deref_mut(),
1171 )
1172 })
1173 })
1174 })
1175 .next()
1176 }
1177
1178 /// For each type `T` in the step list, this attempts to find a method where
1179 /// the (transformed) self type is exactly `T`. We do however do one
1180 /// transformation on the adjustment: if we are passing a region pointer in,
1181 /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1182 /// to transparently pass `&mut` pointers, in particular, without consuming
1183 /// them for their entire lifetime.
1184 fn pick_by_value_method(
1185 &mut self,
1186 step: &CandidateStep<'tcx>,
1187 self_ty: Ty<'tcx>,
1188 unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1189 ) -> Option<PickResult<'tcx>> {
1190 if step.unsize {
1191 return None;
1192 }
1193
1194 self.pick_method(self_ty, unstable_candidates).map(|r| {
1195 r.map(|mut pick| {
1196 pick.autoderefs = step.autoderefs;
1197
1198 // Insert a `&*` or `&mut *` if this is a reference type:
1199 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1200 pick.autoderefs += 1;
1201 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1202 mutbl,
1203 unsize: pick.autoref_or_ptr_adjustment.map_or(false, |a| a.get_unsize()),
1204 })
1205 }
1206
1207 pick
1208 })
1209 })
1210 }
1211
1212 fn pick_autorefd_method(
1213 &mut self,
1214 step: &CandidateStep<'tcx>,
1215 self_ty: Ty<'tcx>,
1216 mutbl: hir::Mutability,
1217 unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1218 ) -> Option<PickResult<'tcx>> {
1219 let tcx = self.tcx;
1220
1221 // In general, during probing we erase regions.
1222 let region = tcx.lifetimes.re_erased;
1223
1224 let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1225 self.pick_method(autoref_ty, unstable_candidates).map(|r| {
1226 r.map(|mut pick| {
1227 pick.autoderefs = step.autoderefs;
1228 pick.autoref_or_ptr_adjustment =
1229 Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1230 pick
1231 })
1232 })
1233 }
1234
1235 /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1236 /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1237 /// autorefs would require dereferencing the pointer, which is not safe.
1238 fn pick_const_ptr_method(
1239 &mut self,
1240 step: &CandidateStep<'tcx>,
1241 self_ty: Ty<'tcx>,
1242 unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1243 ) -> Option<PickResult<'tcx>> {
1244 // Don't convert an unsized reference to ptr
1245 if step.unsize {
1246 return None;
1247 }
1248
1249 let ty = match self_ty.kind() {
1250 &ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) => ty,
1251 _ => return None,
1252 };
1253
1254 let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1255 let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1256 self.pick_method(const_ptr_ty, unstable_candidates).map(|r| {
1257 r.map(|mut pick| {
1258 pick.autoderefs = step.autoderefs;
1259 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1260 pick
1261 })
1262 })
1263 }
1264
1265 fn pick_method_with_unstable(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1266 debug!("pick_method_with_unstable(self_ty={})", self.ty_to_string(self_ty));
1267
1268 let mut possibly_unsatisfied_predicates = Vec::new();
1269 let mut unstable_candidates = Vec::new();
1270
1271 for (kind, candidates) in
1272 &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1273 {
1274 debug!("searching {} candidates", kind);
1275 let res = self.consider_candidates(
1276 self_ty,
1277 candidates.iter(),
1278 &mut possibly_unsatisfied_predicates,
1279 Some(&mut unstable_candidates),
1280 );
1281 if let Some(pick) = res {
1282 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1283 if let Ok(p) = &pick {
1284 // Emit a lint if there are unstable candidates alongside the stable ones.
1285 //
1286 // We suppress warning if we're picking the method only because it is a
1287 // suggestion.
1288 self.emit_unstable_name_collision_hint(p, &unstable_candidates);
1289 }
1290 }
1291 return Some(pick);
1292 }
1293 }
1294
1295 debug!("searching unstable candidates");
1296 let res = self.consider_candidates(
1297 self_ty,
1298 unstable_candidates.iter().map(|(c, _)| c),
1299 &mut possibly_unsatisfied_predicates,
1300 None,
1301 );
1302 if res.is_none() {
1303 self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1304 }
1305 res
1306 }
1307
1308 fn pick_method(
1309 &mut self,
1310 self_ty: Ty<'tcx>,
1311 mut unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1312 ) -> Option<PickResult<'tcx>> {
1313 if !self.tcx.sess.opts.debugging_opts.pick_stable_methods_before_any_unstable {
1314 return self.pick_method_with_unstable(self_ty);
1315 }
1316
1317 debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1318
1319 let mut possibly_unsatisfied_predicates = Vec::new();
1320
1321 for (kind, candidates) in
1322 &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1323 {
1324 debug!("searching {} candidates", kind);
1325 let res = self.consider_candidates(
1326 self_ty,
1327 candidates.iter(),
1328 &mut possibly_unsatisfied_predicates,
1329 unstable_candidates.as_deref_mut(),
1330 );
1331 if let Some(pick) = res {
1332 return Some(pick);
1333 }
1334 }
1335
1336 // `pick_method` may be called twice for the same self_ty if no stable methods
1337 // match. Only extend once.
1338 if unstable_candidates.is_some() {
1339 self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1340 }
1341 None
1342 }
1343
1344 fn consider_candidates<'b, ProbesIter>(
1345 &self,
1346 self_ty: Ty<'tcx>,
1347 probes: ProbesIter,
1348 possibly_unsatisfied_predicates: &mut Vec<(
1349 ty::Predicate<'tcx>,
1350 Option<ty::Predicate<'tcx>>,
1351 Option<ObligationCause<'tcx>>,
1352 )>,
1353 unstable_candidates: Option<&mut Vec<(Candidate<'tcx>, Symbol)>>,
1354 ) -> Option<PickResult<'tcx>>
1355 where
1356 ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1357 'tcx: 'b,
1358 {
1359 let mut applicable_candidates: Vec<_> = probes
1360 .clone()
1361 .map(|probe| {
1362 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1363 })
1364 .filter(|&(_, status)| status != ProbeResult::NoMatch)
1365 .collect();
1366
1367 debug!("applicable_candidates: {:?}", applicable_candidates);
1368
1369 if applicable_candidates.len() > 1 {
1370 if let Some(pick) =
1371 self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1372 {
1373 return Some(Ok(pick));
1374 }
1375 }
1376
1377 if let Some(uc) = unstable_candidates {
1378 applicable_candidates.retain(|&(p, _)| {
1379 if let stability::EvalResult::Deny { feature, .. } =
1380 self.tcx.eval_stability(p.item.def_id, None, self.span, None)
1381 {
1382 uc.push((p.clone(), feature));
1383 return false;
1384 }
1385 true
1386 });
1387 }
1388
1389 if applicable_candidates.len() > 1 {
1390 let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1391 return Some(Err(MethodError::Ambiguity(sources)));
1392 }
1393
1394 applicable_candidates.pop().map(|(probe, status)| {
1395 if status == ProbeResult::Match {
1396 Ok(probe.to_unadjusted_pick(self_ty))
1397 } else {
1398 Err(MethodError::BadReturnType)
1399 }
1400 })
1401 }
1402
1403 fn emit_unstable_name_collision_hint(
1404 &self,
1405 stable_pick: &Pick<'_>,
1406 unstable_candidates: &[(Candidate<'tcx>, Symbol)],
1407 ) {
1408 self.tcx.struct_span_lint_hir(
1409 lint::builtin::UNSTABLE_NAME_COLLISIONS,
1410 self.scope_expr_id,
1411 self.span,
1412 |lint| {
1413 let def_kind = stable_pick.item.kind.as_def_kind();
1414 let mut diag = lint.build(&format!(
1415 "{} {} with this name may be added to the standard library in the future",
1416 def_kind.article(),
1417 def_kind.descr(stable_pick.item.def_id),
1418 ));
1419 match (stable_pick.item.kind, stable_pick.item.container) {
1420 (ty::AssocKind::Fn, _) => {
1421 // FIXME: This should be a `span_suggestion` instead of `help`
1422 // However `self.span` only
1423 // highlights the method name, so we can't use it. Also consider reusing
1424 // the code from `report_method_error()`.
1425 diag.help(&format!(
1426 "call with fully qualified syntax `{}(...)` to keep using the current \
1427 method",
1428 self.tcx.def_path_str(stable_pick.item.def_id),
1429 ));
1430 }
1431 (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer(def_id)) => {
1432 diag.span_suggestion(
1433 self.span,
1434 "use the fully qualified path to the associated const",
1435 format!(
1436 "<{} as {}>::{}",
1437 stable_pick.self_ty,
1438 self.tcx.def_path_str(def_id),
1439 stable_pick.item.name
1440 ),
1441 Applicability::MachineApplicable,
1442 );
1443 }
1444 _ => {}
1445 }
1446 if self.tcx.sess.is_nightly_build() {
1447 for (candidate, feature) in unstable_candidates {
1448 diag.help(&format!(
1449 "add `#![feature({})]` to the crate attributes to enable `{}`",
1450 feature,
1451 self.tcx.def_path_str(candidate.item.def_id),
1452 ));
1453 }
1454 }
1455
1456 diag.emit();
1457 },
1458 );
1459 }
1460
1461 fn select_trait_candidate(
1462 &self,
1463 trait_ref: ty::TraitRef<'tcx>,
1464 ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1465 let cause = traits::ObligationCause::misc(self.span, self.body_id);
1466 let predicate = ty::Binder::dummy(trait_ref).to_poly_trait_predicate();
1467 let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1468 traits::SelectionContext::new(self).select(&obligation)
1469 }
1470
1471 fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1472 match candidate.kind {
1473 InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1474 ObjectCandidate | WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1475 TraitCandidate(trait_ref) => self.probe(|_| {
1476 let _ = self
1477 .at(&ObligationCause::dummy(), self.param_env)
1478 .sup(candidate.xform_self_ty, self_ty);
1479 match self.select_trait_candidate(trait_ref) {
1480 Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1481 // If only a single impl matches, make the error message point
1482 // to that impl.
1483 ImplSource(impl_data.impl_def_id)
1484 }
1485 _ => TraitSource(candidate.item.container.id()),
1486 }
1487 }),
1488 }
1489 }
1490
1491 fn consider_probe(
1492 &self,
1493 self_ty: Ty<'tcx>,
1494 probe: &Candidate<'tcx>,
1495 possibly_unsatisfied_predicates: &mut Vec<(
1496 ty::Predicate<'tcx>,
1497 Option<ty::Predicate<'tcx>>,
1498 Option<ObligationCause<'tcx>>,
1499 )>,
1500 ) -> ProbeResult {
1501 debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1502
1503 self.probe(|_| {
1504 // First check that the self type can be related.
1505 let sub_obligations = match self
1506 .at(&ObligationCause::dummy(), self.param_env)
1507 .sup(probe.xform_self_ty, self_ty)
1508 {
1509 Ok(InferOk { obligations, value: () }) => obligations,
1510 Err(err) => {
1511 debug!("--> cannot relate self-types {:?}", err);
1512 return ProbeResult::NoMatch;
1513 }
1514 };
1515
1516 let mut result = ProbeResult::Match;
1517 let mut xform_ret_ty = probe.xform_ret_ty;
1518 debug!(?xform_ret_ty);
1519
1520 let selcx = &mut traits::SelectionContext::new(self);
1521 let cause = traits::ObligationCause::misc(self.span, self.body_id);
1522
1523 // If so, impls may carry other conditions (e.g., where
1524 // clauses) that must be considered. Make sure that those
1525 // match as well (or at least may match, sometimes we
1526 // don't have enough information to fully evaluate).
1527 match probe.kind {
1528 InherentImplCandidate(ref substs, ref ref_obligations) => {
1529 // `xform_ret_ty` hasn't been normalized yet, only `xform_self_ty`,
1530 // see the reasons mentioned in the comments in `assemble_inherent_impl_probe`
1531 // for why this is necessary
1532 let traits::Normalized {
1533 value: normalized_xform_ret_ty,
1534 obligations: normalization_obligations,
1535 } = traits::normalize(selcx, self.param_env, cause.clone(), probe.xform_ret_ty);
1536 xform_ret_ty = normalized_xform_ret_ty;
1537 debug!("xform_ret_ty after normalization: {:?}", xform_ret_ty);
1538
1539 // Check whether the impl imposes obligations we have to worry about.
1540 let impl_def_id = probe.item.container.id();
1541 let impl_bounds = self.tcx.predicates_of(impl_def_id);
1542 let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1543 let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1544 traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1545
1546 // Convert the bounds into obligations.
1547 let impl_obligations =
1548 traits::predicates_for_generics(cause, self.param_env, impl_bounds);
1549
1550 let candidate_obligations = impl_obligations
1551 .chain(norm_obligations.into_iter())
1552 .chain(ref_obligations.iter().cloned())
1553 .chain(normalization_obligations.into_iter());
1554
1555 // Evaluate those obligations to see if they might possibly hold.
1556 for o in candidate_obligations {
1557 let o = self.resolve_vars_if_possible(o);
1558 if !self.predicate_may_hold(&o) {
1559 result = ProbeResult::NoMatch;
1560 possibly_unsatisfied_predicates.push((
1561 o.predicate,
1562 None,
1563 Some(o.cause),
1564 ));
1565 }
1566 }
1567 }
1568
1569 ObjectCandidate | WhereClauseCandidate(..) => {
1570 // These have no additional conditions to check.
1571 }
1572
1573 TraitCandidate(trait_ref) => {
1574 if let Some(method_name) = self.method_name {
1575 // Some trait methods are excluded for arrays before 2021.
1576 // (`array.into_iter()` wants a slice iterator for compatibility.)
1577 if self_ty.is_array() && !method_name.span.rust_2021() {
1578 let trait_def = self.tcx.trait_def(trait_ref.def_id);
1579 if trait_def.skip_array_during_method_dispatch {
1580 return ProbeResult::NoMatch;
1581 }
1582 }
1583 }
1584 let predicate =
1585 ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx);
1586 let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1587 if !self.predicate_may_hold(&obligation) {
1588 result = ProbeResult::NoMatch;
1589 if self.probe(|_| {
1590 match self.select_trait_candidate(trait_ref) {
1591 Err(_) => return true,
1592 Ok(Some(impl_source))
1593 if !impl_source.borrow_nested_obligations().is_empty() =>
1594 {
1595 for obligation in impl_source.borrow_nested_obligations() {
1596 // Determine exactly which obligation wasn't met, so
1597 // that we can give more context in the error.
1598 if !self.predicate_may_hold(obligation) {
1599 let nested_predicate =
1600 self.resolve_vars_if_possible(obligation.predicate);
1601 let predicate =
1602 self.resolve_vars_if_possible(predicate);
1603 let p = if predicate == nested_predicate {
1604 // Avoid "`MyStruct: Foo` which is required by
1605 // `MyStruct: Foo`" in E0599.
1606 None
1607 } else {
1608 Some(predicate)
1609 };
1610 possibly_unsatisfied_predicates.push((
1611 nested_predicate,
1612 p,
1613 Some(obligation.cause.clone()),
1614 ));
1615 }
1616 }
1617 }
1618 _ => {
1619 // Some nested subobligation of this predicate
1620 // failed.
1621 let predicate = self.resolve_vars_if_possible(predicate);
1622 possibly_unsatisfied_predicates.push((predicate, None, None));
1623 }
1624 }
1625 false
1626 }) {
1627 // This candidate's primary obligation doesn't even
1628 // select - don't bother registering anything in
1629 // `potentially_unsatisfied_predicates`.
1630 return ProbeResult::NoMatch;
1631 }
1632 }
1633 }
1634 }
1635
1636 // Evaluate those obligations to see if they might possibly hold.
1637 for o in sub_obligations {
1638 let o = self.resolve_vars_if_possible(o);
1639 if !self.predicate_may_hold(&o) {
1640 result = ProbeResult::NoMatch;
1641 possibly_unsatisfied_predicates.push((o.predicate, None, Some(o.cause)));
1642 }
1643 }
1644
1645 if let ProbeResult::Match = result {
1646 if let (Some(return_ty), Some(xform_ret_ty)) = (self.return_type, xform_ret_ty) {
1647 let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1648 debug!(
1649 "comparing return_ty {:?} with xform ret ty {:?}",
1650 return_ty, probe.xform_ret_ty
1651 );
1652 if self
1653 .at(&ObligationCause::dummy(), self.param_env)
1654 .sup(return_ty, xform_ret_ty)
1655 .is_err()
1656 {
1657 return ProbeResult::BadReturnType;
1658 }
1659 }
1660 }
1661
1662 result
1663 })
1664 }
1665
1666 /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1667 /// same trait, but we don't know which impl to use. In this case, since in all cases the
1668 /// external interface of the method can be determined from the trait, it's ok not to decide.
1669 /// We can basically just collapse all of the probes for various impls into one where-clause
1670 /// probe. This will result in a pending obligation so when more type-info is available we can
1671 /// make the final decision.
1672 ///
1673 /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1674 ///
1675 /// ```
1676 /// trait Foo { ... }
1677 /// impl Foo for Vec<i32> { ... }
1678 /// impl Foo for Vec<usize> { ... }
1679 /// ```
1680 ///
1681 /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1682 /// use, so it's ok to just commit to "using the method from the trait Foo".
1683 fn collapse_candidates_to_trait_pick(
1684 &self,
1685 self_ty: Ty<'tcx>,
1686 probes: &[(&Candidate<'tcx>, ProbeResult)],
1687 ) -> Option<Pick<'tcx>> {
1688 // Do all probes correspond to the same trait?
1689 let container = probes[0].0.item.container;
1690 if let ty::ImplContainer(_) = container {
1691 return None;
1692 }
1693 if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1694 return None;
1695 }
1696
1697 // FIXME: check the return type here somehow.
1698 // If so, just use this trait and call it a day.
1699 Some(Pick {
1700 item: probes[0].0.item,
1701 kind: TraitPick,
1702 import_ids: probes[0].0.import_ids.clone(),
1703 autoderefs: 0,
1704 autoref_or_ptr_adjustment: None,
1705 self_ty,
1706 })
1707 }
1708
1709 /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1710 /// candidate method where the method name may have been misspelt. Similarly to other
1711 /// Levenshtein based suggestions, we provide at most one such suggestion.
1712 fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1713 debug!("probing for method names similar to {:?}", self.method_name);
1714
1715 let steps = self.steps.clone();
1716 self.probe(|_| {
1717 let mut pcx = ProbeContext::new(
1718 self.fcx,
1719 self.span,
1720 self.mode,
1721 self.method_name,
1722 self.return_type,
1723 self.orig_steps_var_values.clone(),
1724 steps,
1725 IsSuggestion(true),
1726 self.scope_expr_id,
1727 );
1728 pcx.allow_similar_names = true;
1729 pcx.assemble_inherent_candidates();
1730
1731 let method_names = pcx.candidate_method_names();
1732 pcx.allow_similar_names = false;
1733 let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1734 .iter()
1735 .filter_map(|&method_name| {
1736 pcx.reset();
1737 pcx.method_name = Some(method_name);
1738 pcx.assemble_inherent_candidates();
1739 pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1740 })
1741 .collect();
1742
1743 if applicable_close_candidates.is_empty() {
1744 Ok(None)
1745 } else {
1746 let best_name = {
1747 let names = applicable_close_candidates
1748 .iter()
1749 .map(|cand| cand.name)
1750 .collect::<Vec<Symbol>>();
1751 find_best_match_for_name(&names, self.method_name.unwrap().name, None)
1752 }
1753 .unwrap();
1754 Ok(applicable_close_candidates.into_iter().find(|method| method.name == best_name))
1755 }
1756 })
1757 }
1758
1759 ///////////////////////////////////////////////////////////////////////////
1760 // MISCELLANY
1761 fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1762 // "Fast track" -- check for usage of sugar when in method call
1763 // mode.
1764 //
1765 // In Path mode (i.e., resolving a value like `T::next`), consider any
1766 // associated value (i.e., methods, constants) but not types.
1767 match self.mode {
1768 Mode::MethodCall => item.fn_has_self_parameter,
1769 Mode::Path => match item.kind {
1770 ty::AssocKind::Type => false,
1771 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1772 },
1773 }
1774 // FIXME -- check for types that deref to `Self`,
1775 // like `Rc<Self>` and so on.
1776 //
1777 // Note also that the current code will break if this type
1778 // includes any of the type parameters defined on the method
1779 // -- but this could be overcome.
1780 }
1781
1782 fn record_static_candidate(&mut self, source: CandidateSource) {
1783 self.static_candidates.push(source);
1784 }
1785
1786 #[instrument(level = "debug", skip(self))]
1787 fn xform_self_ty(
1788 &self,
1789 item: &ty::AssocItem,
1790 impl_ty: Ty<'tcx>,
1791 substs: SubstsRef<'tcx>,
1792 ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1793 if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1794 let sig = self.xform_method_sig(item.def_id, substs);
1795 (sig.inputs()[0], Some(sig.output()))
1796 } else {
1797 (impl_ty, None)
1798 }
1799 }
1800
1801 #[instrument(level = "debug", skip(self))]
1802 fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1803 let fn_sig = self.tcx.fn_sig(method);
1804 debug!(?fn_sig);
1805
1806 assert!(!substs.has_escaping_bound_vars());
1807
1808 // It is possible for type parameters or early-bound lifetimes
1809 // to appear in the signature of `self`. The substitutions we
1810 // are given do not include type/lifetime parameters for the
1811 // method yet. So create fresh variables here for those too,
1812 // if there are any.
1813 let generics = self.tcx.generics_of(method);
1814 assert_eq!(substs.len(), generics.parent_count as usize);
1815
1816 // Erase any late-bound regions from the method and substitute
1817 // in the values from the substitution.
1818 let xform_fn_sig = self.erase_late_bound_regions(fn_sig);
1819
1820 if generics.params.is_empty() {
1821 xform_fn_sig.subst(self.tcx, substs)
1822 } else {
1823 let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1824 let i = param.index as usize;
1825 if i < substs.len() {
1826 substs[i]
1827 } else {
1828 match param.kind {
1829 GenericParamDefKind::Lifetime => {
1830 // In general, during probe we erase regions.
1831 self.tcx.lifetimes.re_erased.into()
1832 }
1833 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1834 self.var_for_def(self.span, param)
1835 }
1836 }
1837 }
1838 });
1839 xform_fn_sig.subst(self.tcx, substs)
1840 }
1841 }
1842
1843 /// Gets the type of an impl and generate substitutions with placeholders.
1844 fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1845 (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1846 }
1847
1848 fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1849 InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1850 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1851 GenericParamDefKind::Type { .. } => self
1852 .next_ty_var(TypeVariableOrigin {
1853 kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1854 span: self.tcx.def_span(def_id),
1855 })
1856 .into(),
1857 GenericParamDefKind::Const { .. } => {
1858 let span = self.tcx.def_span(def_id);
1859 let origin = ConstVariableOrigin {
1860 kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1861 span,
1862 };
1863 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1864 }
1865 })
1866 }
1867
1868 /// Replaces late-bound-regions bound by `value` with `'static` using
1869 /// `ty::erase_late_bound_regions`.
1870 ///
1871 /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1872 /// method matching. It is reasonable during the probe phase because we don't consider region
1873 /// relationships at all. Therefore, we can just replace all the region variables with 'static
1874 /// rather than creating fresh region variables. This is nice for two reasons:
1875 ///
1876 /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1877 /// particular method call, it winds up creating fewer types overall, which helps for memory
1878 /// usage. (Admittedly, this is a rather small effect, though measurable.)
1879 ///
1880 /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1881 /// late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1882 /// regions with actual region variables as is proper, we'd have to ensure that the same
1883 /// region got replaced with the same variable, which requires a bit more coordination
1884 /// and/or tracking the substitution and
1885 /// so forth.
1886 fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1887 where
1888 T: TypeFoldable<'tcx>,
1889 {
1890 self.tcx.erase_late_bound_regions(value)
1891 }
1892
1893 /// Finds the method with the appropriate name (or return type, as the case may be). If
1894 /// `allow_similar_names` is set, find methods with close-matching names.
1895 // The length of the returned iterator is nearly always 0 or 1 and this
1896 // method is fairly hot.
1897 fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1898 if let Some(name) = self.method_name {
1899 if self.allow_similar_names {
1900 let max_dist = max(name.as_str().len(), 3) / 3;
1901 self.tcx
1902 .associated_items(def_id)
1903 .in_definition_order()
1904 .filter(|x| {
1905 if x.kind.namespace() != Namespace::ValueNS {
1906 return false;
1907 }
1908 match lev_distance(name.as_str(), x.name.as_str(), max_dist) {
1909 Some(d) => d > 0,
1910 None => false,
1911 }
1912 })
1913 .copied()
1914 .collect()
1915 } else {
1916 self.fcx
1917 .associated_value(def_id, name)
1918 .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1919 }
1920 } else {
1921 self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1922 }
1923 }
1924 }
1925
1926 impl<'tcx> Candidate<'tcx> {
1927 fn to_unadjusted_pick(&self, self_ty: Ty<'tcx>) -> Pick<'tcx> {
1928 Pick {
1929 item: self.item,
1930 kind: match self.kind {
1931 InherentImplCandidate(..) => InherentImplPick,
1932 ObjectCandidate => ObjectPick,
1933 TraitCandidate(_) => TraitPick,
1934 WhereClauseCandidate(ref trait_ref) => {
1935 // Only trait derived from where-clauses should
1936 // appear here, so they should not contain any
1937 // inference variables or other artifacts. This
1938 // means they are safe to put into the
1939 // `WhereClausePick`.
1940 assert!(
1941 !trait_ref.skip_binder().substs.needs_infer()
1942 && !trait_ref.skip_binder().substs.has_placeholders()
1943 );
1944
1945 WhereClausePick(*trait_ref)
1946 }
1947 },
1948 import_ids: self.import_ids.clone(),
1949 autoderefs: 0,
1950 autoref_or_ptr_adjustment: None,
1951 self_ty,
1952 }
1953 }
1954 }