]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/check/method/probe.rs
Update upstream source from tag 'upstream/1.53.0+dfsg1'
[rustc.git] / compiler / rustc_typeck / src / check / method / probe.rs
1 use super::suggest;
2 use super::MethodError;
3 use super::NoMatchData;
4 use super::{CandidateSource, ImplSource, TraitSource};
5
6 use crate::check::FnCtxt;
7 use crate::errors::MethodCallOnUnknownType;
8 use crate::hir::def::DefKind;
9 use crate::hir::def_id::DefId;
10
11 use rustc_data_structures::fx::FxHashSet;
12 use rustc_data_structures::sync::Lrc;
13 use rustc_errors::Applicability;
14 use rustc_hir as hir;
15 use rustc_hir::def::Namespace;
16 use rustc_infer::infer::canonical::OriginalQueryValues;
17 use rustc_infer::infer::canonical::{Canonical, QueryResponse};
18 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
19 use rustc_infer::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
20 use rustc_infer::infer::{self, InferOk, TyCtxtInferExt};
21 use rustc_middle::middle::stability;
22 use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
23 use rustc_middle::ty::GenericParamDefKind;
24 use rustc_middle::ty::{
25 self, ParamEnvAnd, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable, WithConstness,
26 };
27 use rustc_session::lint;
28 use rustc_span::def_id::LocalDefId;
29 use rustc_span::lev_distance::{find_best_match_for_name, lev_distance};
30 use rustc_span::{symbol::Ident, Span, Symbol, DUMMY_SP};
31 use rustc_trait_selection::autoderef::{self, Autoderef};
32 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
33 use rustc_trait_selection::traits::query::method_autoderef::MethodAutoderefBadTy;
34 use rustc_trait_selection::traits::query::method_autoderef::{
35 CandidateStep, MethodAutoderefStepsResult,
36 };
37 use rustc_trait_selection::traits::query::CanonicalTyGoal;
38 use rustc_trait_selection::traits::{self, ObligationCause};
39 use std::cmp::max;
40 use std::iter;
41 use std::mem;
42 use std::ops::Deref;
43
44 use smallvec::{smallvec, SmallVec};
45
46 use self::CandidateKind::*;
47 pub use self::PickKind::*;
48
49 /// Boolean flag used to indicate if this search is for a suggestion
50 /// or not. If true, we can allow ambiguity and so forth.
51 #[derive(Clone, Copy, Debug)]
52 pub struct IsSuggestion(pub bool);
53
54 struct ProbeContext<'a, 'tcx> {
55 fcx: &'a FnCtxt<'a, 'tcx>,
56 span: Span,
57 mode: Mode,
58 method_name: Option<Ident>,
59 return_type: Option<Ty<'tcx>>,
60
61 /// This is the OriginalQueryValues for the steps queries
62 /// that are answered in steps.
63 orig_steps_var_values: OriginalQueryValues<'tcx>,
64 steps: Lrc<Vec<CandidateStep<'tcx>>>,
65
66 inherent_candidates: Vec<Candidate<'tcx>>,
67 extension_candidates: Vec<Candidate<'tcx>>,
68 impl_dups: FxHashSet<DefId>,
69
70 /// Collects near misses when the candidate functions are missing a `self` keyword and is only
71 /// used for error reporting
72 static_candidates: Vec<CandidateSource>,
73
74 /// When probing for names, include names that are close to the
75 /// requested name (by Levensthein distance)
76 allow_similar_names: bool,
77
78 /// Some(candidate) if there is a private candidate
79 private_candidate: Option<(DefKind, DefId)>,
80
81 /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
82 /// for error reporting
83 unsatisfied_predicates: Vec<(ty::Predicate<'tcx>, Option<ty::Predicate<'tcx>>)>,
84
85 is_suggestion: IsSuggestion,
86
87 scope_expr_id: hir::HirId,
88 }
89
90 impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
91 type Target = FnCtxt<'a, 'tcx>;
92 fn deref(&self) -> &Self::Target {
93 &self.fcx
94 }
95 }
96
97 #[derive(Debug)]
98 struct Candidate<'tcx> {
99 // Candidates are (I'm not quite sure, but they are mostly) basically
100 // some metadata on top of a `ty::AssocItem` (without substs).
101 //
102 // However, method probing wants to be able to evaluate the predicates
103 // for a function with the substs applied - for example, if a function
104 // has `where Self: Sized`, we don't want to consider it unless `Self`
105 // is actually `Sized`, and similarly, return-type suggestions want
106 // to consider the "actual" return type.
107 //
108 // The way this is handled is through `xform_self_ty`. It contains
109 // the receiver type of this candidate, but `xform_self_ty`,
110 // `xform_ret_ty` and `kind` (which contains the predicates) have the
111 // generic parameters of this candidate substituted with the *same set*
112 // of inference variables, which acts as some weird sort of "query".
113 //
114 // When we check out a candidate, we require `xform_self_ty` to be
115 // a subtype of the passed-in self-type, and this equates the type
116 // variables in the rest of the fields.
117 //
118 // For example, if we have this candidate:
119 // ```
120 // trait Foo {
121 // fn foo(&self) where Self: Sized;
122 // }
123 // ```
124 //
125 // Then `xform_self_ty` will be `&'erased ?X` and `kind` will contain
126 // the predicate `?X: Sized`, so if we are evaluating `Foo` for a
127 // the receiver `&T`, we'll do the subtyping which will make `?X`
128 // get the right value, then when we evaluate the predicate we'll check
129 // if `T: Sized`.
130 xform_self_ty: Ty<'tcx>,
131 xform_ret_ty: Option<Ty<'tcx>>,
132 item: ty::AssocItem,
133 kind: CandidateKind<'tcx>,
134 import_ids: SmallVec<[LocalDefId; 1]>,
135 }
136
137 #[derive(Debug)]
138 enum CandidateKind<'tcx> {
139 InherentImplCandidate(
140 SubstsRef<'tcx>,
141 // Normalize obligations
142 Vec<traits::PredicateObligation<'tcx>>,
143 ),
144 ObjectCandidate,
145 TraitCandidate(ty::TraitRef<'tcx>),
146 WhereClauseCandidate(
147 // Trait
148 ty::PolyTraitRef<'tcx>,
149 ),
150 }
151
152 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
153 enum ProbeResult {
154 NoMatch,
155 BadReturnType,
156 Match,
157 }
158
159 /// When adjusting a receiver we often want to do one of
160 ///
161 /// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
162 /// - If the receiver has type `*mut T`, convert it to `*const T`
163 ///
164 /// This type tells us which one to do.
165 ///
166 /// Note that in principle we could do both at the same time. For example, when the receiver has
167 /// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
168 /// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
169 /// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
170 /// `mut`), or it has type `*mut T` and we convert it to `*const T`.
171 #[derive(Debug, PartialEq, Clone)]
172 pub enum AutorefOrPtrAdjustment<'tcx> {
173 /// Receiver has type `T`, add `&` or `&mut` (it `T` is `mut`), and maybe also "unsize" it.
174 /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
175 Autoref {
176 mutbl: hir::Mutability,
177
178 /// Indicates that the source expression should be "unsized" to a target type. This should
179 /// probably eventually go away in favor of just coercing method receivers.
180 unsize: Option<Ty<'tcx>>,
181 },
182 /// Receiver has type `*mut T`, convert to `*const T`
183 ToConstPtr,
184 }
185
186 impl<'tcx> AutorefOrPtrAdjustment<'tcx> {
187 fn get_unsize(&self) -> Option<Ty<'tcx>> {
188 match self {
189 AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => unsize.clone(),
190 AutorefOrPtrAdjustment::ToConstPtr => None,
191 }
192 }
193 }
194
195 #[derive(Debug, PartialEq, Clone)]
196 pub struct Pick<'tcx> {
197 pub item: ty::AssocItem,
198 pub kind: PickKind<'tcx>,
199 pub import_ids: SmallVec<[LocalDefId; 1]>,
200
201 /// Indicates that the source expression should be autoderef'd N times
202 ///
203 /// A = expr | *expr | **expr | ...
204 pub autoderefs: usize,
205
206 /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
207 /// `*mut T`, convert it to `*const T`.
208 pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment<'tcx>>,
209 }
210
211 #[derive(Clone, Debug, PartialEq, Eq)]
212 pub enum PickKind<'tcx> {
213 InherentImplPick,
214 ObjectPick,
215 TraitPick,
216 WhereClausePick(
217 // Trait
218 ty::PolyTraitRef<'tcx>,
219 ),
220 }
221
222 pub type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
223
224 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
225 pub enum Mode {
226 // An expression of the form `receiver.method_name(...)`.
227 // Autoderefs are performed on `receiver`, lookup is done based on the
228 // `self` argument of the method, and static methods aren't considered.
229 MethodCall,
230 // An expression of the form `Type::item` or `<T>::item`.
231 // No autoderefs are performed, lookup is done based on the type each
232 // implementation is for, and static methods are included.
233 Path,
234 }
235
236 #[derive(PartialEq, Eq, Copy, Clone, Debug)]
237 pub enum ProbeScope {
238 // Assemble candidates coming only from traits in scope.
239 TraitsInScope,
240
241 // Assemble candidates coming from all traits.
242 AllTraits,
243 }
244
245 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
246 /// This is used to offer suggestions to users. It returns methods
247 /// that could have been called which have the desired return
248 /// type. Some effort is made to rule out methods that, if called,
249 /// would result in an error (basically, the same criteria we
250 /// would use to decide if a method is a plausible fit for
251 /// ambiguity purposes).
252 #[instrument(level = "debug", skip(self, scope_expr_id))]
253 pub fn probe_for_return_type(
254 &self,
255 span: Span,
256 mode: Mode,
257 return_type: Ty<'tcx>,
258 self_ty: Ty<'tcx>,
259 scope_expr_id: hir::HirId,
260 ) -> Vec<ty::AssocItem> {
261 debug!(
262 "probe(self_ty={:?}, return_type={}, scope_expr_id={})",
263 self_ty, return_type, scope_expr_id
264 );
265 let method_names = self
266 .probe_op(
267 span,
268 mode,
269 None,
270 Some(return_type),
271 IsSuggestion(true),
272 self_ty,
273 scope_expr_id,
274 ProbeScope::AllTraits,
275 |probe_cx| Ok(probe_cx.candidate_method_names()),
276 )
277 .unwrap_or_default();
278 method_names
279 .iter()
280 .flat_map(|&method_name| {
281 self.probe_op(
282 span,
283 mode,
284 Some(method_name),
285 Some(return_type),
286 IsSuggestion(true),
287 self_ty,
288 scope_expr_id,
289 ProbeScope::AllTraits,
290 |probe_cx| probe_cx.pick(),
291 )
292 .ok()
293 .map(|pick| pick.item)
294 })
295 .collect()
296 }
297
298 #[instrument(level = "debug", skip(self, scope_expr_id))]
299 pub fn probe_for_name(
300 &self,
301 span: Span,
302 mode: Mode,
303 item_name: Ident,
304 is_suggestion: IsSuggestion,
305 self_ty: Ty<'tcx>,
306 scope_expr_id: hir::HirId,
307 scope: ProbeScope,
308 ) -> PickResult<'tcx> {
309 debug!(
310 "probe(self_ty={:?}, item_name={}, scope_expr_id={})",
311 self_ty, item_name, scope_expr_id
312 );
313 self.probe_op(
314 span,
315 mode,
316 Some(item_name),
317 None,
318 is_suggestion,
319 self_ty,
320 scope_expr_id,
321 scope,
322 |probe_cx| probe_cx.pick(),
323 )
324 }
325
326 fn probe_op<OP, R>(
327 &'a self,
328 span: Span,
329 mode: Mode,
330 method_name: Option<Ident>,
331 return_type: Option<Ty<'tcx>>,
332 is_suggestion: IsSuggestion,
333 self_ty: Ty<'tcx>,
334 scope_expr_id: hir::HirId,
335 scope: ProbeScope,
336 op: OP,
337 ) -> Result<R, MethodError<'tcx>>
338 where
339 OP: FnOnce(ProbeContext<'a, 'tcx>) -> Result<R, MethodError<'tcx>>,
340 {
341 let mut orig_values = OriginalQueryValues::default();
342 let param_env_and_self_ty = self.infcx.canonicalize_query(
343 ParamEnvAnd { param_env: self.param_env, value: self_ty },
344 &mut orig_values,
345 );
346
347 let steps = if mode == Mode::MethodCall {
348 self.tcx.method_autoderef_steps(param_env_and_self_ty)
349 } else {
350 self.infcx.probe(|_| {
351 // Mode::Path - the deref steps is "trivial". This turns
352 // our CanonicalQuery into a "trivial" QueryResponse. This
353 // is a bit inefficient, but I don't think that writing
354 // special handling for this "trivial case" is a good idea.
355
356 let infcx = &self.infcx;
357 let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
358 infcx.instantiate_canonical_with_fresh_inference_vars(
359 span,
360 &param_env_and_self_ty,
361 );
362 debug!(
363 "probe_op: Mode::Path, param_env_and_self_ty={:?} self_ty={:?}",
364 param_env_and_self_ty, self_ty
365 );
366 MethodAutoderefStepsResult {
367 steps: Lrc::new(vec![CandidateStep {
368 self_ty: self.make_query_response_ignoring_pending_obligations(
369 canonical_inference_vars,
370 self_ty,
371 ),
372 autoderefs: 0,
373 from_unsafe_deref: false,
374 unsize: false,
375 }]),
376 opt_bad_ty: None,
377 reached_recursion_limit: false,
378 }
379 })
380 };
381
382 // If our autoderef loop had reached the recursion limit,
383 // report an overflow error, but continue going on with
384 // the truncated autoderef list.
385 if steps.reached_recursion_limit {
386 self.probe(|_| {
387 let ty = &steps
388 .steps
389 .last()
390 .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
391 .self_ty;
392 let ty = self
393 .probe_instantiate_query_response(span, &orig_values, ty)
394 .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
395 autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
396 });
397 }
398
399 // If we encountered an `_` type or an error type during autoderef, this is
400 // ambiguous.
401 if let Some(bad_ty) = &steps.opt_bad_ty {
402 if is_suggestion.0 {
403 // Ambiguity was encountered during a suggestion. Just keep going.
404 debug!("ProbeContext: encountered ambiguity in suggestion");
405 } else if bad_ty.reached_raw_pointer && !self.tcx.features().arbitrary_self_types {
406 // this case used to be allowed by the compiler,
407 // so we do a future-compat lint here for the 2015 edition
408 // (see https://github.com/rust-lang/rust/issues/46906)
409 if self.tcx.sess.rust_2018() {
410 self.tcx.sess.emit_err(MethodCallOnUnknownType { span });
411 } else {
412 self.tcx.struct_span_lint_hir(
413 lint::builtin::TYVAR_BEHIND_RAW_POINTER,
414 scope_expr_id,
415 span,
416 |lint| lint.build("type annotations needed").emit(),
417 );
418 }
419 } else {
420 // Encountered a real ambiguity, so abort the lookup. If `ty` is not
421 // an `Err`, report the right "type annotations needed" error pointing
422 // to it.
423 let ty = &bad_ty.ty;
424 let ty = self
425 .probe_instantiate_query_response(span, &orig_values, ty)
426 .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
427 let ty = self.structurally_resolved_type(span, ty.value);
428 assert!(matches!(ty.kind(), ty::Error(_)));
429 return Err(MethodError::NoMatch(NoMatchData::new(
430 Vec::new(),
431 Vec::new(),
432 Vec::new(),
433 None,
434 mode,
435 )));
436 }
437 }
438
439 debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
440
441 // this creates one big transaction so that all type variables etc
442 // that we create during the probe process are removed later
443 self.probe(|_| {
444 let mut probe_cx = ProbeContext::new(
445 self,
446 span,
447 mode,
448 method_name,
449 return_type,
450 orig_values,
451 steps.steps,
452 is_suggestion,
453 scope_expr_id,
454 );
455
456 probe_cx.assemble_inherent_candidates();
457 match scope {
458 ProbeScope::TraitsInScope => {
459 probe_cx.assemble_extension_candidates_for_traits_in_scope(scope_expr_id)
460 }
461 ProbeScope::AllTraits => probe_cx.assemble_extension_candidates_for_all_traits(),
462 };
463 op(probe_cx)
464 })
465 }
466 }
467
468 pub fn provide(providers: &mut ty::query::Providers) {
469 providers.method_autoderef_steps = method_autoderef_steps;
470 }
471
472 fn method_autoderef_steps<'tcx>(
473 tcx: TyCtxt<'tcx>,
474 goal: CanonicalTyGoal<'tcx>,
475 ) -> MethodAutoderefStepsResult<'tcx> {
476 debug!("method_autoderef_steps({:?})", goal);
477
478 tcx.infer_ctxt().enter_with_canonical(DUMMY_SP, &goal, |ref infcx, goal, inference_vars| {
479 let ParamEnvAnd { param_env, value: self_ty } = goal;
480
481 let mut autoderef =
482 Autoderef::new(infcx, param_env, hir::CRATE_HIR_ID, DUMMY_SP, self_ty, DUMMY_SP)
483 .include_raw_pointers()
484 .silence_errors();
485 let mut reached_raw_pointer = false;
486 let mut steps: Vec<_> = autoderef
487 .by_ref()
488 .map(|(ty, d)| {
489 let step = CandidateStep {
490 self_ty: infcx.make_query_response_ignoring_pending_obligations(
491 inference_vars.clone(),
492 ty,
493 ),
494 autoderefs: d,
495 from_unsafe_deref: reached_raw_pointer,
496 unsize: false,
497 };
498 if let ty::RawPtr(_) = ty.kind() {
499 // all the subsequent steps will be from_unsafe_deref
500 reached_raw_pointer = true;
501 }
502 step
503 })
504 .collect();
505
506 let final_ty = autoderef.final_ty(true);
507 let opt_bad_ty = match final_ty.kind() {
508 ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
509 reached_raw_pointer,
510 ty: infcx
511 .make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
512 }),
513 ty::Array(elem_ty, _) => {
514 let dereferences = steps.len() - 1;
515
516 steps.push(CandidateStep {
517 self_ty: infcx.make_query_response_ignoring_pending_obligations(
518 inference_vars,
519 infcx.tcx.mk_slice(elem_ty),
520 ),
521 autoderefs: dereferences,
522 // this could be from an unsafe deref if we had
523 // a *mut/const [T; N]
524 from_unsafe_deref: reached_raw_pointer,
525 unsize: true,
526 });
527
528 None
529 }
530 _ => None,
531 };
532
533 debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
534
535 MethodAutoderefStepsResult {
536 steps: Lrc::new(steps),
537 opt_bad_ty: opt_bad_ty.map(Lrc::new),
538 reached_recursion_limit: autoderef.reached_recursion_limit(),
539 }
540 })
541 }
542
543 impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
544 fn new(
545 fcx: &'a FnCtxt<'a, 'tcx>,
546 span: Span,
547 mode: Mode,
548 method_name: Option<Ident>,
549 return_type: Option<Ty<'tcx>>,
550 orig_steps_var_values: OriginalQueryValues<'tcx>,
551 steps: Lrc<Vec<CandidateStep<'tcx>>>,
552 is_suggestion: IsSuggestion,
553 scope_expr_id: hir::HirId,
554 ) -> ProbeContext<'a, 'tcx> {
555 ProbeContext {
556 fcx,
557 span,
558 mode,
559 method_name,
560 return_type,
561 inherent_candidates: Vec::new(),
562 extension_candidates: Vec::new(),
563 impl_dups: FxHashSet::default(),
564 orig_steps_var_values,
565 steps,
566 static_candidates: Vec::new(),
567 allow_similar_names: false,
568 private_candidate: None,
569 unsatisfied_predicates: Vec::new(),
570 is_suggestion,
571 scope_expr_id,
572 }
573 }
574
575 fn reset(&mut self) {
576 self.inherent_candidates.clear();
577 self.extension_candidates.clear();
578 self.impl_dups.clear();
579 self.static_candidates.clear();
580 self.private_candidate = None;
581 }
582
583 ///////////////////////////////////////////////////////////////////////////
584 // CANDIDATE ASSEMBLY
585
586 fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
587 let is_accessible = if let Some(name) = self.method_name {
588 let item = candidate.item;
589 let def_scope =
590 self.tcx.adjust_ident_and_get_scope(name, item.container.id(), self.body_id).1;
591 item.vis.is_accessible_from(def_scope, self.tcx)
592 } else {
593 true
594 };
595 if is_accessible {
596 if is_inherent {
597 self.inherent_candidates.push(candidate);
598 } else {
599 self.extension_candidates.push(candidate);
600 }
601 } else if self.private_candidate.is_none() {
602 self.private_candidate =
603 Some((candidate.item.kind.as_def_kind(), candidate.item.def_id));
604 }
605 }
606
607 fn assemble_inherent_candidates(&mut self) {
608 let steps = Lrc::clone(&self.steps);
609 for step in steps.iter() {
610 self.assemble_probe(&step.self_ty);
611 }
612 }
613
614 fn assemble_probe(&mut self, self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>) {
615 debug!("assemble_probe: self_ty={:?}", self_ty);
616 let lang_items = self.tcx.lang_items();
617
618 match *self_ty.value.value.kind() {
619 ty::Dynamic(ref data, ..) => {
620 if let Some(p) = data.principal() {
621 // Subtle: we can't use `instantiate_query_response` here: using it will
622 // commit to all of the type equalities assumed by inference going through
623 // autoderef (see the `method-probe-no-guessing` test).
624 //
625 // However, in this code, it is OK if we end up with an object type that is
626 // "more general" than the object type that we are evaluating. For *every*
627 // object type `MY_OBJECT`, a function call that goes through a trait-ref
628 // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
629 // `ObjectCandidate`, and it should be discoverable "exactly" through one
630 // of the iterations in the autoderef loop, so there is no problem with it
631 // being discoverable in another one of these iterations.
632 //
633 // Using `instantiate_canonical_with_fresh_inference_vars` on our
634 // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
635 // `CanonicalVarValues` will exactly give us such a generalization - it
636 // will still match the original object type, but it won't pollute our
637 // type variables in any form, so just do that!
638 let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
639 self.fcx
640 .instantiate_canonical_with_fresh_inference_vars(self.span, &self_ty);
641
642 self.assemble_inherent_candidates_from_object(generalized_self_ty);
643 self.assemble_inherent_impl_candidates_for_type(p.def_id());
644 }
645 }
646 ty::Adt(def, _) => {
647 self.assemble_inherent_impl_candidates_for_type(def.did);
648 }
649 ty::Foreign(did) => {
650 self.assemble_inherent_impl_candidates_for_type(did);
651 }
652 ty::Param(p) => {
653 self.assemble_inherent_candidates_from_param(p);
654 }
655 ty::Bool => {
656 let lang_def_id = lang_items.bool_impl();
657 self.assemble_inherent_impl_for_primitive(lang_def_id);
658 }
659 ty::Char => {
660 let lang_def_id = lang_items.char_impl();
661 self.assemble_inherent_impl_for_primitive(lang_def_id);
662 }
663 ty::Str => {
664 let lang_def_id = lang_items.str_impl();
665 self.assemble_inherent_impl_for_primitive(lang_def_id);
666
667 let lang_def_id = lang_items.str_alloc_impl();
668 self.assemble_inherent_impl_for_primitive(lang_def_id);
669 }
670 ty::Slice(_) => {
671 for &lang_def_id in &[
672 lang_items.slice_impl(),
673 lang_items.slice_u8_impl(),
674 lang_items.slice_alloc_impl(),
675 lang_items.slice_u8_alloc_impl(),
676 ] {
677 self.assemble_inherent_impl_for_primitive(lang_def_id);
678 }
679 }
680 ty::Array(_, _) => {
681 let lang_def_id = lang_items.array_impl();
682 self.assemble_inherent_impl_for_primitive(lang_def_id);
683 }
684 ty::RawPtr(ty::TypeAndMut { ty: _, mutbl }) => {
685 let (lang_def_id1, lang_def_id2) = match mutbl {
686 hir::Mutability::Not => {
687 (lang_items.const_ptr_impl(), lang_items.const_slice_ptr_impl())
688 }
689 hir::Mutability::Mut => {
690 (lang_items.mut_ptr_impl(), lang_items.mut_slice_ptr_impl())
691 }
692 };
693 self.assemble_inherent_impl_for_primitive(lang_def_id1);
694 self.assemble_inherent_impl_for_primitive(lang_def_id2);
695 }
696 ty::Int(i) => {
697 let lang_def_id = match i {
698 ty::IntTy::I8 => lang_items.i8_impl(),
699 ty::IntTy::I16 => lang_items.i16_impl(),
700 ty::IntTy::I32 => lang_items.i32_impl(),
701 ty::IntTy::I64 => lang_items.i64_impl(),
702 ty::IntTy::I128 => lang_items.i128_impl(),
703 ty::IntTy::Isize => lang_items.isize_impl(),
704 };
705 self.assemble_inherent_impl_for_primitive(lang_def_id);
706 }
707 ty::Uint(i) => {
708 let lang_def_id = match i {
709 ty::UintTy::U8 => lang_items.u8_impl(),
710 ty::UintTy::U16 => lang_items.u16_impl(),
711 ty::UintTy::U32 => lang_items.u32_impl(),
712 ty::UintTy::U64 => lang_items.u64_impl(),
713 ty::UintTy::U128 => lang_items.u128_impl(),
714 ty::UintTy::Usize => lang_items.usize_impl(),
715 };
716 self.assemble_inherent_impl_for_primitive(lang_def_id);
717 }
718 ty::Float(f) => {
719 let (lang_def_id1, lang_def_id2) = match f {
720 ty::FloatTy::F32 => (lang_items.f32_impl(), lang_items.f32_runtime_impl()),
721 ty::FloatTy::F64 => (lang_items.f64_impl(), lang_items.f64_runtime_impl()),
722 };
723 self.assemble_inherent_impl_for_primitive(lang_def_id1);
724 self.assemble_inherent_impl_for_primitive(lang_def_id2);
725 }
726 _ => {}
727 }
728 }
729
730 fn assemble_inherent_impl_for_primitive(&mut self, lang_def_id: Option<DefId>) {
731 if let Some(impl_def_id) = lang_def_id {
732 self.assemble_inherent_impl_probe(impl_def_id);
733 }
734 }
735
736 fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId) {
737 let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id);
738 for &impl_def_id in impl_def_ids.iter() {
739 self.assemble_inherent_impl_probe(impl_def_id);
740 }
741 }
742
743 fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId) {
744 if !self.impl_dups.insert(impl_def_id) {
745 return; // already visited
746 }
747
748 debug!("assemble_inherent_impl_probe {:?}", impl_def_id);
749
750 for item in self.impl_or_trait_item(impl_def_id) {
751 if !self.has_applicable_self(&item) {
752 // No receiver declared. Not a candidate.
753 self.record_static_candidate(ImplSource(impl_def_id));
754 continue;
755 }
756
757 let (impl_ty, impl_substs) = self.impl_ty_and_substs(impl_def_id);
758 let impl_ty = impl_ty.subst(self.tcx, impl_substs);
759
760 // Determine the receiver type that the method itself expects.
761 let xform_tys = self.xform_self_ty(&item, impl_ty, impl_substs);
762
763 // We can't use normalize_associated_types_in as it will pollute the
764 // fcx's fulfillment context after this probe is over.
765 let cause = traits::ObligationCause::misc(self.span, self.body_id);
766 let selcx = &mut traits::SelectionContext::new(self.fcx);
767 let traits::Normalized { value: (xform_self_ty, xform_ret_ty), obligations } =
768 traits::normalize(selcx, self.param_env, cause, xform_tys);
769 debug!(
770 "assemble_inherent_impl_probe: xform_self_ty = {:?}/{:?}",
771 xform_self_ty, xform_ret_ty
772 );
773
774 self.push_candidate(
775 Candidate {
776 xform_self_ty,
777 xform_ret_ty,
778 item,
779 kind: InherentImplCandidate(impl_substs, obligations),
780 import_ids: smallvec![],
781 },
782 true,
783 );
784 }
785 }
786
787 fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
788 debug!("assemble_inherent_candidates_from_object(self_ty={:?})", self_ty);
789
790 let principal = match self_ty.kind() {
791 ty::Dynamic(ref data, ..) => Some(data),
792 _ => None,
793 }
794 .and_then(|data| data.principal())
795 .unwrap_or_else(|| {
796 span_bug!(
797 self.span,
798 "non-object {:?} in assemble_inherent_candidates_from_object",
799 self_ty
800 )
801 });
802
803 // It is illegal to invoke a method on a trait instance that refers to
804 // the `Self` type. An [`ObjectSafetyViolation::SupertraitSelf`] error
805 // will be reported by `object_safety.rs` if the method refers to the
806 // `Self` type anywhere other than the receiver. Here, we use a
807 // substitution that replaces `Self` with the object type itself. Hence,
808 // a `&self` method will wind up with an argument type like `&dyn Trait`.
809 let trait_ref = principal.with_self_ty(self.tcx, self_ty);
810 self.elaborate_bounds(iter::once(trait_ref), |this, new_trait_ref, item| {
811 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
812
813 let (xform_self_ty, xform_ret_ty) =
814 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
815 this.push_candidate(
816 Candidate {
817 xform_self_ty,
818 xform_ret_ty,
819 item,
820 kind: ObjectCandidate,
821 import_ids: smallvec![],
822 },
823 true,
824 );
825 });
826 }
827
828 fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
829 // FIXME: do we want to commit to this behavior for param bounds?
830 debug!("assemble_inherent_candidates_from_param(param_ty={:?})", param_ty);
831
832 let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
833 let bound_predicate = predicate.kind();
834 match bound_predicate.skip_binder() {
835 ty::PredicateKind::Trait(trait_predicate, _) => {
836 match *trait_predicate.trait_ref.self_ty().kind() {
837 ty::Param(p) if p == param_ty => {
838 Some(bound_predicate.rebind(trait_predicate.trait_ref))
839 }
840 _ => None,
841 }
842 }
843 ty::PredicateKind::Subtype(..)
844 | ty::PredicateKind::Projection(..)
845 | ty::PredicateKind::RegionOutlives(..)
846 | ty::PredicateKind::WellFormed(..)
847 | ty::PredicateKind::ObjectSafe(..)
848 | ty::PredicateKind::ClosureKind(..)
849 | ty::PredicateKind::TypeOutlives(..)
850 | ty::PredicateKind::ConstEvaluatable(..)
851 | ty::PredicateKind::ConstEquate(..)
852 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
853 }
854 });
855
856 self.elaborate_bounds(bounds, |this, poly_trait_ref, item| {
857 let trait_ref = this.erase_late_bound_regions(poly_trait_ref);
858
859 let (xform_self_ty, xform_ret_ty) =
860 this.xform_self_ty(&item, trait_ref.self_ty(), trait_ref.substs);
861
862 // Because this trait derives from a where-clause, it
863 // should not contain any inference variables or other
864 // artifacts. This means it is safe to put into the
865 // `WhereClauseCandidate` and (eventually) into the
866 // `WhereClausePick`.
867 assert!(!trait_ref.substs.needs_infer());
868
869 this.push_candidate(
870 Candidate {
871 xform_self_ty,
872 xform_ret_ty,
873 item,
874 kind: WhereClauseCandidate(poly_trait_ref),
875 import_ids: smallvec![],
876 },
877 true,
878 );
879 });
880 }
881
882 // Do a search through a list of bounds, using a callback to actually
883 // create the candidates.
884 fn elaborate_bounds<F>(
885 &mut self,
886 bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
887 mut mk_cand: F,
888 ) where
889 F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
890 {
891 let tcx = self.tcx;
892 for bound_trait_ref in traits::transitive_bounds(tcx, bounds) {
893 debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
894 for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
895 if !self.has_applicable_self(&item) {
896 self.record_static_candidate(TraitSource(bound_trait_ref.def_id()));
897 } else {
898 mk_cand(self, bound_trait_ref, item);
899 }
900 }
901 }
902 }
903
904 fn assemble_extension_candidates_for_traits_in_scope(&mut self, expr_hir_id: hir::HirId) {
905 let mut duplicates = FxHashSet::default();
906 let opt_applicable_traits = self.tcx.in_scope_traits(expr_hir_id);
907 if let Some(applicable_traits) = opt_applicable_traits {
908 for trait_candidate in applicable_traits.iter() {
909 let trait_did = trait_candidate.def_id;
910 if duplicates.insert(trait_did) {
911 self.assemble_extension_candidates_for_trait(
912 &trait_candidate.import_ids,
913 trait_did,
914 );
915 }
916 }
917 }
918 }
919
920 fn assemble_extension_candidates_for_all_traits(&mut self) {
921 let mut duplicates = FxHashSet::default();
922 for trait_info in suggest::all_traits(self.tcx) {
923 if duplicates.insert(trait_info.def_id) {
924 self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
925 }
926 }
927 }
928
929 pub fn matches_return_type(
930 &self,
931 method: &ty::AssocItem,
932 self_ty: Option<Ty<'tcx>>,
933 expected: Ty<'tcx>,
934 ) -> bool {
935 match method.kind {
936 ty::AssocKind::Fn => {
937 let fty = self.tcx.fn_sig(method.def_id);
938 self.probe(|_| {
939 let substs = self.fresh_substs_for_item(self.span, method.def_id);
940 let fty = fty.subst(self.tcx, substs);
941 let (fty, _) =
942 self.replace_bound_vars_with_fresh_vars(self.span, infer::FnCall, fty);
943
944 if let Some(self_ty) = self_ty {
945 if self
946 .at(&ObligationCause::dummy(), self.param_env)
947 .sup(fty.inputs()[0], self_ty)
948 .is_err()
949 {
950 return false;
951 }
952 }
953 self.can_sub(self.param_env, fty.output(), expected).is_ok()
954 })
955 }
956 _ => false,
957 }
958 }
959
960 fn assemble_extension_candidates_for_trait(
961 &mut self,
962 import_ids: &SmallVec<[LocalDefId; 1]>,
963 trait_def_id: DefId,
964 ) {
965 debug!("assemble_extension_candidates_for_trait(trait_def_id={:?})", trait_def_id);
966 let trait_substs = self.fresh_item_substs(trait_def_id);
967 let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs);
968
969 if self.tcx.is_trait_alias(trait_def_id) {
970 // For trait aliases, assume all super-traits are relevant.
971 let bounds = iter::once(trait_ref.to_poly_trait_ref());
972 self.elaborate_bounds(bounds, |this, new_trait_ref, item| {
973 let new_trait_ref = this.erase_late_bound_regions(new_trait_ref);
974
975 let (xform_self_ty, xform_ret_ty) =
976 this.xform_self_ty(&item, new_trait_ref.self_ty(), new_trait_ref.substs);
977 this.push_candidate(
978 Candidate {
979 xform_self_ty,
980 xform_ret_ty,
981 item,
982 import_ids: import_ids.clone(),
983 kind: TraitCandidate(new_trait_ref),
984 },
985 false,
986 );
987 });
988 } else {
989 debug_assert!(self.tcx.is_trait(trait_def_id));
990 for item in self.impl_or_trait_item(trait_def_id) {
991 // Check whether `trait_def_id` defines a method with suitable name.
992 if !self.has_applicable_self(&item) {
993 debug!("method has inapplicable self");
994 self.record_static_candidate(TraitSource(trait_def_id));
995 continue;
996 }
997
998 let (xform_self_ty, xform_ret_ty) =
999 self.xform_self_ty(&item, trait_ref.self_ty(), trait_substs);
1000 self.push_candidate(
1001 Candidate {
1002 xform_self_ty,
1003 xform_ret_ty,
1004 item,
1005 import_ids: import_ids.clone(),
1006 kind: TraitCandidate(trait_ref),
1007 },
1008 false,
1009 );
1010 }
1011 }
1012 }
1013
1014 fn candidate_method_names(&self) -> Vec<Ident> {
1015 let mut set = FxHashSet::default();
1016 let mut names: Vec<_> = self
1017 .inherent_candidates
1018 .iter()
1019 .chain(&self.extension_candidates)
1020 .filter(|candidate| {
1021 if let Some(return_ty) = self.return_type {
1022 self.matches_return_type(&candidate.item, None, return_ty)
1023 } else {
1024 true
1025 }
1026 })
1027 .map(|candidate| candidate.item.ident)
1028 .filter(|&name| set.insert(name))
1029 .collect();
1030
1031 // Sort them by the name so we have a stable result.
1032 names.sort_by_cached_key(|n| n.as_str());
1033 names
1034 }
1035
1036 ///////////////////////////////////////////////////////////////////////////
1037 // THE ACTUAL SEARCH
1038
1039 fn pick(mut self) -> PickResult<'tcx> {
1040 assert!(self.method_name.is_some());
1041
1042 if let Some(r) = self.pick_core() {
1043 return r;
1044 }
1045
1046 debug!("pick: actual search failed, assemble diagnostics");
1047
1048 let static_candidates = mem::take(&mut self.static_candidates);
1049 let private_candidate = self.private_candidate.take();
1050 let unsatisfied_predicates = mem::take(&mut self.unsatisfied_predicates);
1051
1052 // things failed, so lets look at all traits, for diagnostic purposes now:
1053 self.reset();
1054
1055 let span = self.span;
1056 let tcx = self.tcx;
1057
1058 self.assemble_extension_candidates_for_all_traits();
1059
1060 let out_of_scope_traits = match self.pick_core() {
1061 Some(Ok(p)) => vec![p.item.container.id()],
1062 //Some(Ok(p)) => p.iter().map(|p| p.item.container().id()).collect(),
1063 Some(Err(MethodError::Ambiguity(v))) => v
1064 .into_iter()
1065 .map(|source| match source {
1066 TraitSource(id) => id,
1067 ImplSource(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1068 Some(id) => id,
1069 None => span_bug!(span, "found inherent method when looking at traits"),
1070 },
1071 })
1072 .collect(),
1073 Some(Err(MethodError::NoMatch(NoMatchData {
1074 out_of_scope_traits: others, ..
1075 }))) => {
1076 assert!(others.is_empty());
1077 vec![]
1078 }
1079 _ => vec![],
1080 };
1081
1082 if let Some((kind, def_id)) = private_candidate {
1083 return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1084 }
1085 let lev_candidate = self.probe_for_lev_candidate()?;
1086
1087 Err(MethodError::NoMatch(NoMatchData::new(
1088 static_candidates,
1089 unsatisfied_predicates,
1090 out_of_scope_traits,
1091 lev_candidate,
1092 self.mode,
1093 )))
1094 }
1095
1096 fn pick_core(&mut self) -> Option<PickResult<'tcx>> {
1097 let steps = self.steps.clone();
1098
1099 // find the first step that works
1100 steps
1101 .iter()
1102 .filter(|step| {
1103 debug!("pick_core: step={:?}", step);
1104 // skip types that are from a type error or that would require dereferencing
1105 // a raw pointer
1106 !step.self_ty.references_error() && !step.from_unsafe_deref
1107 })
1108 .flat_map(|step| {
1109 let InferOk { value: self_ty, obligations: _ } = self
1110 .fcx
1111 .probe_instantiate_query_response(
1112 self.span,
1113 &self.orig_steps_var_values,
1114 &step.self_ty,
1115 )
1116 .unwrap_or_else(|_| {
1117 span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1118 });
1119 self.pick_by_value_method(step, self_ty).or_else(|| {
1120 self.pick_autorefd_method(step, self_ty, hir::Mutability::Not)
1121 .or_else(|| self.pick_autorefd_method(step, self_ty, hir::Mutability::Mut))
1122 .or_else(|| self.pick_const_ptr_method(step, self_ty))
1123 })
1124 })
1125 .next()
1126 }
1127
1128 /// For each type `T` in the step list, this attempts to find a method where
1129 /// the (transformed) self type is exactly `T`. We do however do one
1130 /// transformation on the adjustment: if we are passing a region pointer in,
1131 /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1132 /// to transparently pass `&mut` pointers, in particular, without consuming
1133 /// them for their entire lifetime.
1134 fn pick_by_value_method(
1135 &mut self,
1136 step: &CandidateStep<'tcx>,
1137 self_ty: Ty<'tcx>,
1138 ) -> Option<PickResult<'tcx>> {
1139 if step.unsize {
1140 return None;
1141 }
1142
1143 self.pick_method(self_ty).map(|r| {
1144 r.map(|mut pick| {
1145 pick.autoderefs = step.autoderefs;
1146
1147 // Insert a `&*` or `&mut *` if this is a reference type:
1148 if let ty::Ref(_, _, mutbl) = *step.self_ty.value.value.kind() {
1149 pick.autoderefs += 1;
1150 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1151 mutbl,
1152 unsize: pick.autoref_or_ptr_adjustment.and_then(|a| a.get_unsize()),
1153 })
1154 }
1155
1156 pick
1157 })
1158 })
1159 }
1160
1161 fn pick_autorefd_method(
1162 &mut self,
1163 step: &CandidateStep<'tcx>,
1164 self_ty: Ty<'tcx>,
1165 mutbl: hir::Mutability,
1166 ) -> Option<PickResult<'tcx>> {
1167 let tcx = self.tcx;
1168
1169 // In general, during probing we erase regions.
1170 let region = tcx.lifetimes.re_erased;
1171
1172 let autoref_ty = tcx.mk_ref(region, ty::TypeAndMut { ty: self_ty, mutbl });
1173 self.pick_method(autoref_ty).map(|r| {
1174 r.map(|mut pick| {
1175 pick.autoderefs = step.autoderefs;
1176 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1177 mutbl,
1178 unsize: step.unsize.then_some(self_ty),
1179 });
1180 pick
1181 })
1182 })
1183 }
1184
1185 /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1186 /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1187 /// autorefs would require dereferencing the pointer, which is not safe.
1188 fn pick_const_ptr_method(
1189 &mut self,
1190 step: &CandidateStep<'tcx>,
1191 self_ty: Ty<'tcx>,
1192 ) -> Option<PickResult<'tcx>> {
1193 // Don't convert an unsized reference to ptr
1194 if step.unsize {
1195 return None;
1196 }
1197
1198 let ty = match self_ty.kind() {
1199 ty::RawPtr(ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }) => ty,
1200 _ => return None,
1201 };
1202
1203 let const_self_ty = ty::TypeAndMut { ty, mutbl: hir::Mutability::Not };
1204 let const_ptr_ty = self.tcx.mk_ptr(const_self_ty);
1205 self.pick_method(const_ptr_ty).map(|r| {
1206 r.map(|mut pick| {
1207 pick.autoderefs = step.autoderefs;
1208 pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1209 pick
1210 })
1211 })
1212 }
1213
1214 fn pick_method(&mut self, self_ty: Ty<'tcx>) -> Option<PickResult<'tcx>> {
1215 debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1216
1217 let mut possibly_unsatisfied_predicates = Vec::new();
1218 let mut unstable_candidates = Vec::new();
1219
1220 for (kind, candidates) in
1221 &[("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1222 {
1223 debug!("searching {} candidates", kind);
1224 let res = self.consider_candidates(
1225 self_ty,
1226 candidates.iter(),
1227 &mut possibly_unsatisfied_predicates,
1228 Some(&mut unstable_candidates),
1229 );
1230 if let Some(pick) = res {
1231 if !self.is_suggestion.0 && !unstable_candidates.is_empty() {
1232 if let Ok(p) = &pick {
1233 // Emit a lint if there are unstable candidates alongside the stable ones.
1234 //
1235 // We suppress warning if we're picking the method only because it is a
1236 // suggestion.
1237 self.emit_unstable_name_collision_hint(p, &unstable_candidates, self_ty);
1238 }
1239 }
1240 return Some(pick);
1241 }
1242 }
1243
1244 debug!("searching unstable candidates");
1245 let res = self.consider_candidates(
1246 self_ty,
1247 unstable_candidates.into_iter().map(|(c, _)| c),
1248 &mut possibly_unsatisfied_predicates,
1249 None,
1250 );
1251 if res.is_none() {
1252 self.unsatisfied_predicates.extend(possibly_unsatisfied_predicates);
1253 }
1254 res
1255 }
1256
1257 fn consider_candidates<'b, ProbesIter>(
1258 &self,
1259 self_ty: Ty<'tcx>,
1260 probes: ProbesIter,
1261 possibly_unsatisfied_predicates: &mut Vec<(
1262 ty::Predicate<'tcx>,
1263 Option<ty::Predicate<'tcx>>,
1264 )>,
1265 unstable_candidates: Option<&mut Vec<(&'b Candidate<'tcx>, Symbol)>>,
1266 ) -> Option<PickResult<'tcx>>
1267 where
1268 ProbesIter: Iterator<Item = &'b Candidate<'tcx>> + Clone,
1269 {
1270 let mut applicable_candidates: Vec<_> = probes
1271 .clone()
1272 .map(|probe| {
1273 (probe, self.consider_probe(self_ty, probe, possibly_unsatisfied_predicates))
1274 })
1275 .filter(|&(_, status)| status != ProbeResult::NoMatch)
1276 .collect();
1277
1278 debug!("applicable_candidates: {:?}", applicable_candidates);
1279
1280 if applicable_candidates.len() > 1 {
1281 if let Some(pick) = self.collapse_candidates_to_trait_pick(&applicable_candidates[..]) {
1282 return Some(Ok(pick));
1283 }
1284 }
1285
1286 if let Some(uc) = unstable_candidates {
1287 applicable_candidates.retain(|&(p, _)| {
1288 if let stability::EvalResult::Deny { feature, .. } =
1289 self.tcx.eval_stability(p.item.def_id, None, self.span)
1290 {
1291 uc.push((p, feature));
1292 return false;
1293 }
1294 true
1295 });
1296 }
1297
1298 if applicable_candidates.len() > 1 {
1299 let sources = probes.map(|p| self.candidate_source(p, self_ty)).collect();
1300 return Some(Err(MethodError::Ambiguity(sources)));
1301 }
1302
1303 applicable_candidates.pop().map(|(probe, status)| {
1304 if status == ProbeResult::Match {
1305 Ok(probe.to_unadjusted_pick())
1306 } else {
1307 Err(MethodError::BadReturnType)
1308 }
1309 })
1310 }
1311
1312 fn emit_unstable_name_collision_hint(
1313 &self,
1314 stable_pick: &Pick<'_>,
1315 unstable_candidates: &[(&Candidate<'tcx>, Symbol)],
1316 self_ty: Ty<'tcx>,
1317 ) {
1318 self.tcx.struct_span_lint_hir(
1319 lint::builtin::UNSTABLE_NAME_COLLISIONS,
1320 self.scope_expr_id,
1321 self.span,
1322 |lint| {
1323 let def_kind = stable_pick.item.kind.as_def_kind();
1324 let mut diag = lint.build(&format!(
1325 "{} {} with this name may be added to the standard library in the future",
1326 def_kind.article(),
1327 def_kind.descr(stable_pick.item.def_id),
1328 ));
1329 match (stable_pick.item.kind, stable_pick.item.container) {
1330 (ty::AssocKind::Fn, _) => {
1331 // FIXME: This should be a `span_suggestion` instead of `help`
1332 // However `self.span` only
1333 // highlights the method name, so we can't use it. Also consider reusing
1334 // the code from `report_method_error()`.
1335 diag.help(&format!(
1336 "call with fully qualified syntax `{}(...)` to keep using the current \
1337 method",
1338 self.tcx.def_path_str(stable_pick.item.def_id),
1339 ));
1340 }
1341 (ty::AssocKind::Const, ty::AssocItemContainer::TraitContainer(def_id)) => {
1342 diag.span_suggestion(
1343 self.span,
1344 "use the fully qualified path to the associated const",
1345 format!(
1346 "<{} as {}>::{}",
1347 self_ty,
1348 self.tcx.def_path_str(def_id),
1349 stable_pick.item.ident
1350 ),
1351 Applicability::MachineApplicable,
1352 );
1353 }
1354 _ => {}
1355 }
1356 if self.tcx.sess.is_nightly_build() {
1357 for (candidate, feature) in unstable_candidates {
1358 diag.help(&format!(
1359 "add `#![feature({})]` to the crate attributes to enable `{}`",
1360 feature,
1361 self.tcx.def_path_str(candidate.item.def_id),
1362 ));
1363 }
1364 }
1365
1366 diag.emit();
1367 },
1368 );
1369 }
1370
1371 fn select_trait_candidate(
1372 &self,
1373 trait_ref: ty::TraitRef<'tcx>,
1374 ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1375 let cause = traits::ObligationCause::misc(self.span, self.body_id);
1376 let predicate = trait_ref.to_poly_trait_ref().to_poly_trait_predicate();
1377 let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1378 traits::SelectionContext::new(self).select(&obligation)
1379 }
1380
1381 fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1382 match candidate.kind {
1383 InherentImplCandidate(..) => ImplSource(candidate.item.container.id()),
1384 ObjectCandidate | WhereClauseCandidate(_) => TraitSource(candidate.item.container.id()),
1385 TraitCandidate(trait_ref) => self.probe(|_| {
1386 let _ = self
1387 .at(&ObligationCause::dummy(), self.param_env)
1388 .sup(candidate.xform_self_ty, self_ty);
1389 match self.select_trait_candidate(trait_ref) {
1390 Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1391 // If only a single impl matches, make the error message point
1392 // to that impl.
1393 ImplSource(impl_data.impl_def_id)
1394 }
1395 _ => TraitSource(candidate.item.container.id()),
1396 }
1397 }),
1398 }
1399 }
1400
1401 fn consider_probe(
1402 &self,
1403 self_ty: Ty<'tcx>,
1404 probe: &Candidate<'tcx>,
1405 possibly_unsatisfied_predicates: &mut Vec<(
1406 ty::Predicate<'tcx>,
1407 Option<ty::Predicate<'tcx>>,
1408 )>,
1409 ) -> ProbeResult {
1410 debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1411
1412 self.probe(|_| {
1413 // First check that the self type can be related.
1414 let sub_obligations = match self
1415 .at(&ObligationCause::dummy(), self.param_env)
1416 .sup(probe.xform_self_ty, self_ty)
1417 {
1418 Ok(InferOk { obligations, value: () }) => obligations,
1419 Err(_) => {
1420 debug!("--> cannot relate self-types");
1421 return ProbeResult::NoMatch;
1422 }
1423 };
1424
1425 let mut result = ProbeResult::Match;
1426 let selcx = &mut traits::SelectionContext::new(self);
1427 let cause = traits::ObligationCause::misc(self.span, self.body_id);
1428
1429 // If so, impls may carry other conditions (e.g., where
1430 // clauses) that must be considered. Make sure that those
1431 // match as well (or at least may match, sometimes we
1432 // don't have enough information to fully evaluate).
1433 match probe.kind {
1434 InherentImplCandidate(ref substs, ref ref_obligations) => {
1435 // Check whether the impl imposes obligations we have to worry about.
1436 let impl_def_id = probe.item.container.id();
1437 let impl_bounds = self.tcx.predicates_of(impl_def_id);
1438 let impl_bounds = impl_bounds.instantiate(self.tcx, substs);
1439 let traits::Normalized { value: impl_bounds, obligations: norm_obligations } =
1440 traits::normalize(selcx, self.param_env, cause.clone(), impl_bounds);
1441
1442 // Convert the bounds into obligations.
1443 let impl_obligations =
1444 traits::predicates_for_generics(cause, self.param_env, impl_bounds);
1445
1446 let candidate_obligations = impl_obligations
1447 .chain(norm_obligations.into_iter())
1448 .chain(ref_obligations.iter().cloned());
1449 // Evaluate those obligations to see if they might possibly hold.
1450 for o in candidate_obligations {
1451 let o = self.resolve_vars_if_possible(o);
1452 if !self.predicate_may_hold(&o) {
1453 result = ProbeResult::NoMatch;
1454 possibly_unsatisfied_predicates.push((o.predicate, None));
1455 }
1456 }
1457 }
1458
1459 ObjectCandidate | WhereClauseCandidate(..) => {
1460 // These have no additional conditions to check.
1461 }
1462
1463 TraitCandidate(trait_ref) => {
1464 if let Some(method_name) = self.method_name {
1465 // Some trait methods are excluded for arrays before 2021.
1466 // (`array.into_iter()` wants a slice iterator for compatibility.)
1467 if self_ty.is_array() && !method_name.span.rust_2021() {
1468 let trait_def = self.tcx.trait_def(trait_ref.def_id);
1469 if trait_def.skip_array_during_method_dispatch {
1470 return ProbeResult::NoMatch;
1471 }
1472 }
1473 }
1474 let predicate = trait_ref.without_const().to_predicate(self.tcx);
1475 let obligation = traits::Obligation::new(cause, self.param_env, predicate);
1476 if !self.predicate_may_hold(&obligation) {
1477 result = ProbeResult::NoMatch;
1478 if self.probe(|_| {
1479 match self.select_trait_candidate(trait_ref) {
1480 Err(_) => return true,
1481 Ok(Some(impl_source))
1482 if !impl_source.borrow_nested_obligations().is_empty() =>
1483 {
1484 for obligation in impl_source.borrow_nested_obligations() {
1485 // Determine exactly which obligation wasn't met, so
1486 // that we can give more context in the error.
1487 if !self.predicate_may_hold(obligation) {
1488 let nested_predicate =
1489 self.resolve_vars_if_possible(obligation.predicate);
1490 let predicate =
1491 self.resolve_vars_if_possible(predicate);
1492 let p = if predicate == nested_predicate {
1493 // Avoid "`MyStruct: Foo` which is required by
1494 // `MyStruct: Foo`" in E0599.
1495 None
1496 } else {
1497 Some(predicate)
1498 };
1499 possibly_unsatisfied_predicates
1500 .push((nested_predicate, p));
1501 }
1502 }
1503 }
1504 _ => {
1505 // Some nested subobligation of this predicate
1506 // failed.
1507 let predicate = self.resolve_vars_if_possible(predicate);
1508 possibly_unsatisfied_predicates.push((predicate, None));
1509 }
1510 }
1511 false
1512 }) {
1513 // This candidate's primary obligation doesn't even
1514 // select - don't bother registering anything in
1515 // `potentially_unsatisfied_predicates`.
1516 return ProbeResult::NoMatch;
1517 }
1518 }
1519 }
1520 }
1521
1522 // Evaluate those obligations to see if they might possibly hold.
1523 for o in sub_obligations {
1524 let o = self.resolve_vars_if_possible(o);
1525 if !self.predicate_may_hold(&o) {
1526 result = ProbeResult::NoMatch;
1527 possibly_unsatisfied_predicates.push((o.predicate, None));
1528 }
1529 }
1530
1531 if let ProbeResult::Match = result {
1532 if let (Some(return_ty), Some(xform_ret_ty)) =
1533 (self.return_type, probe.xform_ret_ty)
1534 {
1535 let xform_ret_ty = self.resolve_vars_if_possible(xform_ret_ty);
1536 debug!(
1537 "comparing return_ty {:?} with xform ret ty {:?}",
1538 return_ty, probe.xform_ret_ty
1539 );
1540 if self
1541 .at(&ObligationCause::dummy(), self.param_env)
1542 .sup(return_ty, xform_ret_ty)
1543 .is_err()
1544 {
1545 return ProbeResult::BadReturnType;
1546 }
1547 }
1548 }
1549
1550 result
1551 })
1552 }
1553
1554 /// Sometimes we get in a situation where we have multiple probes that are all impls of the
1555 /// same trait, but we don't know which impl to use. In this case, since in all cases the
1556 /// external interface of the method can be determined from the trait, it's ok not to decide.
1557 /// We can basically just collapse all of the probes for various impls into one where-clause
1558 /// probe. This will result in a pending obligation so when more type-info is available we can
1559 /// make the final decision.
1560 ///
1561 /// Example (`src/test/ui/method-two-trait-defer-resolution-1.rs`):
1562 ///
1563 /// ```
1564 /// trait Foo { ... }
1565 /// impl Foo for Vec<i32> { ... }
1566 /// impl Foo for Vec<usize> { ... }
1567 /// ```
1568 ///
1569 /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
1570 /// use, so it's ok to just commit to "using the method from the trait Foo".
1571 fn collapse_candidates_to_trait_pick(
1572 &self,
1573 probes: &[(&Candidate<'tcx>, ProbeResult)],
1574 ) -> Option<Pick<'tcx>> {
1575 // Do all probes correspond to the same trait?
1576 let container = probes[0].0.item.container;
1577 if let ty::ImplContainer(_) = container {
1578 return None;
1579 }
1580 if probes[1..].iter().any(|&(p, _)| p.item.container != container) {
1581 return None;
1582 }
1583
1584 // FIXME: check the return type here somehow.
1585 // If so, just use this trait and call it a day.
1586 Some(Pick {
1587 item: probes[0].0.item,
1588 kind: TraitPick,
1589 import_ids: probes[0].0.import_ids.clone(),
1590 autoderefs: 0,
1591 autoref_or_ptr_adjustment: None,
1592 })
1593 }
1594
1595 /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
1596 /// candidate method where the method name may have been misspelt. Similarly to other
1597 /// Levenshtein based suggestions, we provide at most one such suggestion.
1598 fn probe_for_lev_candidate(&mut self) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
1599 debug!("probing for method names similar to {:?}", self.method_name);
1600
1601 let steps = self.steps.clone();
1602 self.probe(|_| {
1603 let mut pcx = ProbeContext::new(
1604 self.fcx,
1605 self.span,
1606 self.mode,
1607 self.method_name,
1608 self.return_type,
1609 self.orig_steps_var_values.clone(),
1610 steps,
1611 IsSuggestion(true),
1612 self.scope_expr_id,
1613 );
1614 pcx.allow_similar_names = true;
1615 pcx.assemble_inherent_candidates();
1616
1617 let method_names = pcx.candidate_method_names();
1618 pcx.allow_similar_names = false;
1619 let applicable_close_candidates: Vec<ty::AssocItem> = method_names
1620 .iter()
1621 .filter_map(|&method_name| {
1622 pcx.reset();
1623 pcx.method_name = Some(method_name);
1624 pcx.assemble_inherent_candidates();
1625 pcx.pick_core().and_then(|pick| pick.ok()).map(|pick| pick.item)
1626 })
1627 .collect();
1628
1629 if applicable_close_candidates.is_empty() {
1630 Ok(None)
1631 } else {
1632 let best_name = {
1633 let names = applicable_close_candidates
1634 .iter()
1635 .map(|cand| cand.ident.name)
1636 .collect::<Vec<Symbol>>();
1637 find_best_match_for_name(&names, self.method_name.unwrap().name, None)
1638 }
1639 .unwrap();
1640 Ok(applicable_close_candidates
1641 .into_iter()
1642 .find(|method| method.ident.name == best_name))
1643 }
1644 })
1645 }
1646
1647 ///////////////////////////////////////////////////////////////////////////
1648 // MISCELLANY
1649 fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
1650 // "Fast track" -- check for usage of sugar when in method call
1651 // mode.
1652 //
1653 // In Path mode (i.e., resolving a value like `T::next`), consider any
1654 // associated value (i.e., methods, constants) but not types.
1655 match self.mode {
1656 Mode::MethodCall => item.fn_has_self_parameter,
1657 Mode::Path => match item.kind {
1658 ty::AssocKind::Type => false,
1659 ty::AssocKind::Fn | ty::AssocKind::Const => true,
1660 },
1661 }
1662 // FIXME -- check for types that deref to `Self`,
1663 // like `Rc<Self>` and so on.
1664 //
1665 // Note also that the current code will break if this type
1666 // includes any of the type parameters defined on the method
1667 // -- but this could be overcome.
1668 }
1669
1670 fn record_static_candidate(&mut self, source: CandidateSource) {
1671 self.static_candidates.push(source);
1672 }
1673
1674 fn xform_self_ty(
1675 &self,
1676 item: &ty::AssocItem,
1677 impl_ty: Ty<'tcx>,
1678 substs: SubstsRef<'tcx>,
1679 ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
1680 if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
1681 let sig = self.xform_method_sig(item.def_id, substs);
1682 (sig.inputs()[0], Some(sig.output()))
1683 } else {
1684 (impl_ty, None)
1685 }
1686 }
1687
1688 fn xform_method_sig(&self, method: DefId, substs: SubstsRef<'tcx>) -> ty::FnSig<'tcx> {
1689 let fn_sig = self.tcx.fn_sig(method);
1690 debug!("xform_self_ty(fn_sig={:?}, substs={:?})", fn_sig, substs);
1691
1692 assert!(!substs.has_escaping_bound_vars());
1693
1694 // It is possible for type parameters or early-bound lifetimes
1695 // to appear in the signature of `self`. The substitutions we
1696 // are given do not include type/lifetime parameters for the
1697 // method yet. So create fresh variables here for those too,
1698 // if there are any.
1699 let generics = self.tcx.generics_of(method);
1700 assert_eq!(substs.len(), generics.parent_count as usize);
1701
1702 // Erase any late-bound regions from the method and substitute
1703 // in the values from the substitution.
1704 let xform_fn_sig = self.erase_late_bound_regions(fn_sig);
1705
1706 if generics.params.is_empty() {
1707 xform_fn_sig.subst(self.tcx, substs)
1708 } else {
1709 let substs = InternalSubsts::for_item(self.tcx, method, |param, _| {
1710 let i = param.index as usize;
1711 if i < substs.len() {
1712 substs[i]
1713 } else {
1714 match param.kind {
1715 GenericParamDefKind::Lifetime => {
1716 // In general, during probe we erase regions.
1717 self.tcx.lifetimes.re_erased.into()
1718 }
1719 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
1720 self.var_for_def(self.span, param)
1721 }
1722 }
1723 }
1724 });
1725 xform_fn_sig.subst(self.tcx, substs)
1726 }
1727 }
1728
1729 /// Gets the type of an impl and generate substitutions with placeholders.
1730 fn impl_ty_and_substs(&self, impl_def_id: DefId) -> (Ty<'tcx>, SubstsRef<'tcx>) {
1731 (self.tcx.type_of(impl_def_id), self.fresh_item_substs(impl_def_id))
1732 }
1733
1734 fn fresh_item_substs(&self, def_id: DefId) -> SubstsRef<'tcx> {
1735 InternalSubsts::for_item(self.tcx, def_id, |param, _| match param.kind {
1736 GenericParamDefKind::Lifetime => self.tcx.lifetimes.re_erased.into(),
1737 GenericParamDefKind::Type { .. } => self
1738 .next_ty_var(TypeVariableOrigin {
1739 kind: TypeVariableOriginKind::SubstitutionPlaceholder,
1740 span: self.tcx.def_span(def_id),
1741 })
1742 .into(),
1743 GenericParamDefKind::Const { .. } => {
1744 let span = self.tcx.def_span(def_id);
1745 let origin = ConstVariableOrigin {
1746 kind: ConstVariableOriginKind::SubstitutionPlaceholder,
1747 span,
1748 };
1749 self.next_const_var(self.tcx.type_of(param.def_id), origin).into()
1750 }
1751 })
1752 }
1753
1754 /// Replaces late-bound-regions bound by `value` with `'static` using
1755 /// `ty::erase_late_bound_regions`.
1756 ///
1757 /// This is only a reasonable thing to do during the *probe* phase, not the *confirm* phase, of
1758 /// method matching. It is reasonable during the probe phase because we don't consider region
1759 /// relationships at all. Therefore, we can just replace all the region variables with 'static
1760 /// rather than creating fresh region variables. This is nice for two reasons:
1761 ///
1762 /// 1. Because the numbers of the region variables would otherwise be fairly unique to this
1763 /// particular method call, it winds up creating fewer types overall, which helps for memory
1764 /// usage. (Admittedly, this is a rather small effect, though measurable.)
1765 ///
1766 /// 2. It makes it easier to deal with higher-ranked trait bounds, because we can replace any
1767 /// late-bound regions with 'static. Otherwise, if we were going to replace late-bound
1768 /// regions with actual region variables as is proper, we'd have to ensure that the same
1769 /// region got replaced with the same variable, which requires a bit more coordination
1770 /// and/or tracking the substitution and
1771 /// so forth.
1772 fn erase_late_bound_regions<T>(&self, value: ty::Binder<'tcx, T>) -> T
1773 where
1774 T: TypeFoldable<'tcx>,
1775 {
1776 self.tcx.erase_late_bound_regions(value)
1777 }
1778
1779 /// Finds the method with the appropriate name (or return type, as the case may be). If
1780 /// `allow_similar_names` is set, find methods with close-matching names.
1781 // The length of the returned iterator is nearly always 0 or 1 and this
1782 // method is fairly hot.
1783 fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
1784 if let Some(name) = self.method_name {
1785 if self.allow_similar_names {
1786 let max_dist = max(name.as_str().len(), 3) / 3;
1787 self.tcx
1788 .associated_items(def_id)
1789 .in_definition_order()
1790 .filter(|x| {
1791 let dist = lev_distance(&*name.as_str(), &x.ident.as_str());
1792 x.kind.namespace() == Namespace::ValueNS && dist > 0 && dist <= max_dist
1793 })
1794 .copied()
1795 .collect()
1796 } else {
1797 self.fcx
1798 .associated_item(def_id, name, Namespace::ValueNS)
1799 .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
1800 }
1801 } else {
1802 self.tcx.associated_items(def_id).in_definition_order().copied().collect()
1803 }
1804 }
1805 }
1806
1807 impl<'tcx> Candidate<'tcx> {
1808 fn to_unadjusted_pick(&self) -> Pick<'tcx> {
1809 Pick {
1810 item: self.item,
1811 kind: match self.kind {
1812 InherentImplCandidate(..) => InherentImplPick,
1813 ObjectCandidate => ObjectPick,
1814 TraitCandidate(_) => TraitPick,
1815 WhereClauseCandidate(ref trait_ref) => {
1816 // Only trait derived from where-clauses should
1817 // appear here, so they should not contain any
1818 // inference variables or other artifacts. This
1819 // means they are safe to put into the
1820 // `WhereClausePick`.
1821 assert!(
1822 !trait_ref.skip_binder().substs.needs_infer()
1823 && !trait_ref.skip_binder().substs.has_placeholders()
1824 );
1825
1826 WhereClausePick(*trait_ref)
1827 }
1828 },
1829 import_ids: self.import_ids.clone(),
1830 autoderefs: 0,
1831 autoref_or_ptr_adjustment: None,
1832 }
1833 }
1834 }