]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/check/method/suggest.rs
New upstream version 1.64.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / check / method / suggest.rs
1 //! Give useful errors and suggestions to users when an item can't be
2 //! found or is otherwise invalid.
3
4 use crate::check::FnCtxt;
5 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
6 use rustc_errors::{
7 pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, ErrorGuaranteed,
8 MultiSpan,
9 };
10 use rustc_hir as hir;
11 use rustc_hir::def::DefKind;
12 use rustc_hir::def_id::DefId;
13 use rustc_hir::lang_items::LangItem;
14 use rustc_hir::{ExprKind, Node, QPath};
15 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
16 use rustc_middle::traits::util::supertraits;
17 use rustc_middle::ty::fast_reject::{simplify_type, TreatParams};
18 use rustc_middle::ty::print::with_crate_prefix;
19 use rustc_middle::ty::ToPolyTraitRef;
20 use rustc_middle::ty::{self, DefIdTree, ToPredicate, Ty, TyCtxt, TypeVisitable};
21 use rustc_span::symbol::{kw, sym, Ident};
22 use rustc_span::Symbol;
23 use rustc_span::{lev_distance, source_map, ExpnKind, FileName, MacroKind, Span};
24 use rustc_trait_selection::traits::error_reporting::on_unimplemented::InferCtxtExt as _;
25 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
26 use rustc_trait_selection::traits::{
27 FulfillmentError, Obligation, ObligationCause, ObligationCauseCode, OnUnimplementedNote,
28 };
29
30 use std::cmp::Ordering;
31 use std::iter;
32
33 use super::probe::{Mode, ProbeScope};
34 use super::{super::suggest_call_constructor, CandidateSource, MethodError, NoMatchData};
35
36 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
37 fn is_fn_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
38 let tcx = self.tcx;
39 match ty.kind() {
40 // Not all of these (e.g., unsafe fns) implement `FnOnce`,
41 // so we look for these beforehand.
42 ty::Closure(..) | ty::FnDef(..) | ty::FnPtr(_) => true,
43 // If it's not a simple function, look for things which implement `FnOnce`.
44 _ => {
45 let Some(fn_once) = tcx.lang_items().fn_once_trait() else {
46 return false;
47 };
48
49 // This conditional prevents us from asking to call errors and unresolved types.
50 // It might seem that we can use `predicate_must_hold_modulo_regions`,
51 // but since a Dummy binder is used to fill in the FnOnce trait's arguments,
52 // type resolution always gives a "maybe" here.
53 if self.autoderef(span, ty).any(|(ty, _)| {
54 info!("check deref {:?} error", ty);
55 matches!(ty.kind(), ty::Error(_) | ty::Infer(_))
56 }) {
57 return false;
58 }
59
60 self.autoderef(span, ty).any(|(ty, _)| {
61 info!("check deref {:?} impl FnOnce", ty);
62 self.probe(|_| {
63 let fn_once_substs = tcx.mk_substs_trait(
64 ty,
65 &[self
66 .next_ty_var(TypeVariableOrigin {
67 kind: TypeVariableOriginKind::MiscVariable,
68 span,
69 })
70 .into()],
71 );
72 let trait_ref = ty::TraitRef::new(fn_once, fn_once_substs);
73 let poly_trait_ref = ty::Binder::dummy(trait_ref);
74 let obligation = Obligation::misc(
75 span,
76 self.body_id,
77 self.param_env,
78 poly_trait_ref.without_const().to_predicate(tcx),
79 );
80 self.predicate_may_hold(&obligation)
81 })
82 })
83 }
84 }
85 }
86
87 fn is_slice_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
88 self.autoderef(span, ty).any(|(ty, _)| matches!(ty.kind(), ty::Slice(..) | ty::Array(..)))
89 }
90
91 pub fn report_method_error(
92 &self,
93 mut span: Span,
94 rcvr_ty: Ty<'tcx>,
95 item_name: Ident,
96 source: SelfSource<'tcx>,
97 error: MethodError<'tcx>,
98 args: Option<&'tcx [hir::Expr<'tcx>]>,
99 ) -> Option<DiagnosticBuilder<'_, ErrorGuaranteed>> {
100 // Avoid suggestions when we don't know what's going on.
101 if rcvr_ty.references_error() {
102 return None;
103 }
104
105 let report_candidates = |span: Span,
106 err: &mut Diagnostic,
107 mut sources: Vec<CandidateSource>,
108 sugg_span: Span| {
109 sources.sort();
110 sources.dedup();
111 // Dynamic limit to avoid hiding just one candidate, which is silly.
112 let limit = if sources.len() == 5 { 5 } else { 4 };
113
114 for (idx, source) in sources.iter().take(limit).enumerate() {
115 match *source {
116 CandidateSource::Impl(impl_did) => {
117 // Provide the best span we can. Use the item, if local to crate, else
118 // the impl, if local to crate (item may be defaulted), else nothing.
119 let Some(item) = self.associated_value(impl_did, item_name).or_else(|| {
120 let impl_trait_ref = self.tcx.impl_trait_ref(impl_did)?;
121 self.associated_value(impl_trait_ref.def_id, item_name)
122 }) else {
123 continue;
124 };
125
126 let note_span = if item.def_id.is_local() {
127 Some(self.tcx.def_span(item.def_id))
128 } else if impl_did.is_local() {
129 Some(self.tcx.def_span(impl_did))
130 } else {
131 None
132 };
133
134 let impl_ty = self.tcx.at(span).type_of(impl_did);
135
136 let insertion = match self.tcx.impl_trait_ref(impl_did) {
137 None => String::new(),
138 Some(trait_ref) => format!(
139 " of the trait `{}`",
140 self.tcx.def_path_str(trait_ref.def_id)
141 ),
142 };
143
144 let (note_str, idx) = if sources.len() > 1 {
145 (
146 format!(
147 "candidate #{} is defined in an impl{} for the type `{}`",
148 idx + 1,
149 insertion,
150 impl_ty,
151 ),
152 Some(idx + 1),
153 )
154 } else {
155 (
156 format!(
157 "the candidate is defined in an impl{} for the type `{}`",
158 insertion, impl_ty,
159 ),
160 None,
161 )
162 };
163 if let Some(note_span) = note_span {
164 // We have a span pointing to the method. Show note with snippet.
165 err.span_note(note_span, &note_str);
166 } else {
167 err.note(&note_str);
168 }
169 if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_did) {
170 let path = self.tcx.def_path_str(trait_ref.def_id);
171
172 let ty = match item.kind {
173 ty::AssocKind::Const | ty::AssocKind::Type => rcvr_ty,
174 ty::AssocKind::Fn => self
175 .tcx
176 .fn_sig(item.def_id)
177 .inputs()
178 .skip_binder()
179 .get(0)
180 .filter(|ty| ty.is_region_ptr() && !rcvr_ty.is_region_ptr())
181 .copied()
182 .unwrap_or(rcvr_ty),
183 };
184 print_disambiguation_help(
185 item_name,
186 args,
187 err,
188 path,
189 ty,
190 item.kind,
191 item.def_id,
192 sugg_span,
193 idx,
194 self.tcx.sess.source_map(),
195 item.fn_has_self_parameter,
196 );
197 }
198 }
199 CandidateSource::Trait(trait_did) => {
200 let Some(item) = self.associated_value(trait_did, item_name) else { continue };
201 let item_span = self.tcx.def_span(item.def_id);
202 let idx = if sources.len() > 1 {
203 let msg = &format!(
204 "candidate #{} is defined in the trait `{}`",
205 idx + 1,
206 self.tcx.def_path_str(trait_did)
207 );
208 err.span_note(item_span, msg);
209 Some(idx + 1)
210 } else {
211 let msg = &format!(
212 "the candidate is defined in the trait `{}`",
213 self.tcx.def_path_str(trait_did)
214 );
215 err.span_note(item_span, msg);
216 None
217 };
218 let path = self.tcx.def_path_str(trait_did);
219 print_disambiguation_help(
220 item_name,
221 args,
222 err,
223 path,
224 rcvr_ty,
225 item.kind,
226 item.def_id,
227 sugg_span,
228 idx,
229 self.tcx.sess.source_map(),
230 item.fn_has_self_parameter,
231 );
232 }
233 }
234 }
235 if sources.len() > limit {
236 err.note(&format!("and {} others", sources.len() - limit));
237 }
238 };
239
240 let sugg_span = if let SelfSource::MethodCall(expr) = source {
241 // Given `foo.bar(baz)`, `expr` is `bar`, but we want to point to the whole thing.
242 self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id)).span
243 } else {
244 span
245 };
246
247 match error {
248 MethodError::NoMatch(NoMatchData {
249 static_candidates: static_sources,
250 unsatisfied_predicates,
251 out_of_scope_traits,
252 lev_candidate,
253 mode,
254 }) => {
255 let tcx = self.tcx;
256
257 let actual = self.resolve_vars_if_possible(rcvr_ty);
258 let ty_str = self.ty_to_string(actual);
259 let is_method = mode == Mode::MethodCall;
260 let item_kind = if is_method {
261 "method"
262 } else if actual.is_enum() {
263 "variant or associated item"
264 } else {
265 match (item_name.as_str().chars().next(), actual.is_fresh_ty()) {
266 (Some(name), false) if name.is_lowercase() => "function or associated item",
267 (Some(_), false) => "associated item",
268 (Some(_), true) | (None, false) => "variant or associated item",
269 (None, true) => "variant",
270 }
271 };
272
273 if self.suggest_constraining_numerical_ty(
274 tcx, actual, source, span, item_kind, item_name, &ty_str,
275 ) {
276 return None;
277 }
278
279 span = item_name.span;
280
281 // Don't show generic arguments when the method can't be found in any implementation (#81576).
282 let mut ty_str_reported = ty_str.clone();
283 if let ty::Adt(_, generics) = actual.kind() {
284 if generics.len() > 0 {
285 let mut autoderef = self.autoderef(span, actual);
286 let candidate_found = autoderef.any(|(ty, _)| {
287 if let ty::Adt(adt_deref, _) = ty.kind() {
288 self.tcx
289 .inherent_impls(adt_deref.did())
290 .iter()
291 .filter_map(|def_id| self.associated_value(*def_id, item_name))
292 .count()
293 >= 1
294 } else {
295 false
296 }
297 });
298 let has_deref = autoderef.step_count() > 0;
299 if !candidate_found && !has_deref && unsatisfied_predicates.is_empty() {
300 if let Some((path_string, _)) = ty_str.split_once('<') {
301 ty_str_reported = path_string.to_string();
302 }
303 }
304 }
305 }
306
307 let mut err = struct_span_err!(
308 tcx.sess,
309 span,
310 E0599,
311 "no {} named `{}` found for {} `{}` in the current scope",
312 item_kind,
313 item_name,
314 actual.prefix_string(self.tcx),
315 ty_str_reported,
316 );
317 if actual.references_error() {
318 err.downgrade_to_delayed_bug();
319 }
320
321 if let Mode::MethodCall = mode && let SelfSource::MethodCall(cal) = source {
322 self.suggest_await_before_method(
323 &mut err, item_name, actual, cal, span,
324 );
325 }
326 if let Some(span) = tcx.resolutions(()).confused_type_with_std_module.get(&span) {
327 err.span_suggestion(
328 span.shrink_to_lo(),
329 "you are looking for the module in `std`, not the primitive type",
330 "std::",
331 Applicability::MachineApplicable,
332 );
333 }
334 if let ty::RawPtr(_) = &actual.kind() {
335 err.note(
336 "try using `<*const T>::as_ref()` to get a reference to the \
337 type behind the pointer: https://doc.rust-lang.org/std/\
338 primitive.pointer.html#method.as_ref",
339 );
340 err.note(
341 "using `<*const T>::as_ref()` on a pointer which is unaligned or points \
342 to invalid or uninitialized memory is undefined behavior",
343 );
344 }
345
346 let ty_span = match actual.kind() {
347 ty::Param(param_type) => {
348 let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
349 let type_param = generics.type_param(param_type, self.tcx);
350 Some(self.tcx.def_span(type_param.def_id))
351 }
352 ty::Adt(def, _) if def.did().is_local() => Some(tcx.def_span(def.did())),
353 _ => None,
354 };
355
356 if let Some(span) = ty_span {
357 err.span_label(
358 span,
359 format!(
360 "{item_kind} `{item_name}` not found for this {}",
361 actual.prefix_string(self.tcx)
362 ),
363 );
364 }
365
366 if self.is_fn_ty(rcvr_ty, span) {
367 if let SelfSource::MethodCall(expr) = source {
368 let suggest = if let ty::FnDef(def_id, _) = rcvr_ty.kind() {
369 if let Some(local_id) = def_id.as_local() {
370 let hir_id = tcx.hir().local_def_id_to_hir_id(local_id);
371 let node = tcx.hir().get(hir_id);
372 let fields = node.tuple_fields();
373 if let Some(fields) = fields
374 && let Some(DefKind::Ctor(of, _)) = self.tcx.opt_def_kind(local_id) {
375 Some((fields.len(), of))
376 } else {
377 None
378 }
379 } else {
380 // The logic here isn't smart but `associated_item_def_ids`
381 // doesn't work nicely on local.
382 if let DefKind::Ctor(of, _) = tcx.def_kind(def_id) {
383 let parent_def_id = tcx.parent(*def_id);
384 Some((tcx.associated_item_def_ids(parent_def_id).len(), of))
385 } else {
386 None
387 }
388 }
389 } else {
390 None
391 };
392
393 // If the function is a tuple constructor, we recommend that they call it
394 if let Some((fields, kind)) = suggest {
395 suggest_call_constructor(expr.span, kind, fields, &mut err);
396 } else {
397 // General case
398 err.span_label(
399 expr.span,
400 "this is a function, perhaps you wish to call it",
401 );
402 }
403 }
404 }
405
406 let mut custom_span_label = false;
407
408 if !static_sources.is_empty() {
409 err.note(
410 "found the following associated functions; to be used as methods, \
411 functions must have a `self` parameter",
412 );
413 err.span_label(span, "this is an associated function, not a method");
414 custom_span_label = true;
415 }
416 if static_sources.len() == 1 {
417 let ty_str =
418 if let Some(CandidateSource::Impl(impl_did)) = static_sources.get(0) {
419 // When the "method" is resolved through dereferencing, we really want the
420 // original type that has the associated function for accurate suggestions.
421 // (#61411)
422 let ty = tcx.at(span).type_of(*impl_did);
423 match (&ty.peel_refs().kind(), &actual.peel_refs().kind()) {
424 (ty::Adt(def, _), ty::Adt(def_actual, _)) if def == def_actual => {
425 // Use `actual` as it will have more `substs` filled in.
426 self.ty_to_value_string(actual.peel_refs())
427 }
428 _ => self.ty_to_value_string(ty.peel_refs()),
429 }
430 } else {
431 self.ty_to_value_string(actual.peel_refs())
432 };
433 if let SelfSource::MethodCall(expr) = source {
434 err.span_suggestion(
435 expr.span.to(span),
436 "use associated function syntax instead",
437 format!("{}::{}", ty_str, item_name),
438 Applicability::MachineApplicable,
439 );
440 } else {
441 err.help(&format!("try with `{}::{}`", ty_str, item_name,));
442 }
443
444 report_candidates(span, &mut err, static_sources, sugg_span);
445 } else if static_sources.len() > 1 {
446 report_candidates(span, &mut err, static_sources, sugg_span);
447 }
448
449 let mut bound_spans = vec![];
450 let mut restrict_type_params = false;
451 let mut unsatisfied_bounds = false;
452 if item_name.name == sym::count && self.is_slice_ty(actual, span) {
453 let msg = "consider using `len` instead";
454 if let SelfSource::MethodCall(_expr) = source {
455 err.span_suggestion_short(
456 span,
457 msg,
458 "len",
459 Applicability::MachineApplicable,
460 );
461 } else {
462 err.span_label(span, msg);
463 }
464 if let Some(iterator_trait) = self.tcx.get_diagnostic_item(sym::Iterator) {
465 let iterator_trait = self.tcx.def_path_str(iterator_trait);
466 err.note(&format!("`count` is defined on `{iterator_trait}`, which `{actual}` does not implement"));
467 }
468 } else if !unsatisfied_predicates.is_empty() {
469 let mut type_params = FxHashMap::default();
470
471 // Pick out the list of unimplemented traits on the receiver.
472 // This is used for custom error messages with the `#[rustc_on_unimplemented]` attribute.
473 let mut unimplemented_traits = FxHashMap::default();
474 let mut unimplemented_traits_only = true;
475 for (predicate, _parent_pred, cause) in &unsatisfied_predicates {
476 if let (ty::PredicateKind::Trait(p), Some(cause)) =
477 (predicate.kind().skip_binder(), cause.as_ref())
478 {
479 if p.trait_ref.self_ty() != rcvr_ty {
480 // This is necessary, not just to keep the errors clean, but also
481 // because our derived obligations can wind up with a trait ref that
482 // requires a different param_env to be correctly compared.
483 continue;
484 }
485 unimplemented_traits.entry(p.trait_ref.def_id).or_insert((
486 predicate.kind().rebind(p.trait_ref),
487 Obligation {
488 cause: cause.clone(),
489 param_env: self.param_env,
490 predicate: *predicate,
491 recursion_depth: 0,
492 },
493 ));
494 }
495 }
496
497 // Make sure that, if any traits other than the found ones were involved,
498 // we don't don't report an unimplemented trait.
499 // We don't want to say that `iter::Cloned` is not an iterator, just
500 // because of some non-Clone item being iterated over.
501 for (predicate, _parent_pred, _cause) in &unsatisfied_predicates {
502 match predicate.kind().skip_binder() {
503 ty::PredicateKind::Trait(p)
504 if unimplemented_traits.contains_key(&p.trait_ref.def_id) => {}
505 _ => {
506 unimplemented_traits_only = false;
507 break;
508 }
509 }
510 }
511
512 let mut collect_type_param_suggestions =
513 |self_ty: Ty<'tcx>, parent_pred: ty::Predicate<'tcx>, obligation: &str| {
514 // We don't care about regions here, so it's fine to skip the binder here.
515 if let (ty::Param(_), ty::PredicateKind::Trait(p)) =
516 (self_ty.kind(), parent_pred.kind().skip_binder())
517 {
518 let node = match p.trait_ref.self_ty().kind() {
519 ty::Param(_) => {
520 // Account for `fn` items like in `issue-35677.rs` to
521 // suggest restricting its type params.
522 let did = self.tcx.hir().body_owner_def_id(hir::BodyId {
523 hir_id: self.body_id,
524 });
525 Some(
526 self.tcx
527 .hir()
528 .get(self.tcx.hir().local_def_id_to_hir_id(did)),
529 )
530 }
531 ty::Adt(def, _) => def.did().as_local().map(|def_id| {
532 self.tcx
533 .hir()
534 .get(self.tcx.hir().local_def_id_to_hir_id(def_id))
535 }),
536 _ => None,
537 };
538 if let Some(hir::Node::Item(hir::Item { kind, .. })) = node {
539 if let Some(g) = kind.generics() {
540 let key = (
541 g.tail_span_for_predicate_suggestion(),
542 g.add_where_or_trailing_comma(),
543 );
544 type_params
545 .entry(key)
546 .or_insert_with(FxHashSet::default)
547 .insert(obligation.to_owned());
548 }
549 }
550 }
551 };
552 let mut bound_span_label = |self_ty: Ty<'_>, obligation: &str, quiet: &str| {
553 let msg = format!(
554 "doesn't satisfy `{}`",
555 if obligation.len() > 50 { quiet } else { obligation }
556 );
557 match &self_ty.kind() {
558 // Point at the type that couldn't satisfy the bound.
559 ty::Adt(def, _) => {
560 bound_spans.push((self.tcx.def_span(def.did()), msg))
561 }
562 // Point at the trait object that couldn't satisfy the bound.
563 ty::Dynamic(preds, _) => {
564 for pred in preds.iter() {
565 match pred.skip_binder() {
566 ty::ExistentialPredicate::Trait(tr) => bound_spans
567 .push((self.tcx.def_span(tr.def_id), msg.clone())),
568 ty::ExistentialPredicate::Projection(_)
569 | ty::ExistentialPredicate::AutoTrait(_) => {}
570 }
571 }
572 }
573 // Point at the closure that couldn't satisfy the bound.
574 ty::Closure(def_id, _) => bound_spans.push((
575 tcx.def_span(*def_id),
576 format!("doesn't satisfy `{}`", quiet),
577 )),
578 _ => {}
579 }
580 };
581 let mut format_pred = |pred: ty::Predicate<'tcx>| {
582 let bound_predicate = pred.kind();
583 match bound_predicate.skip_binder() {
584 ty::PredicateKind::Projection(pred) => {
585 let pred = bound_predicate.rebind(pred);
586 // `<Foo as Iterator>::Item = String`.
587 let projection_ty = pred.skip_binder().projection_ty;
588
589 let substs_with_infer_self = tcx.mk_substs(
590 iter::once(tcx.mk_ty_var(ty::TyVid::from_u32(0)).into())
591 .chain(projection_ty.substs.iter().skip(1)),
592 );
593
594 let quiet_projection_ty = ty::ProjectionTy {
595 substs: substs_with_infer_self,
596 item_def_id: projection_ty.item_def_id,
597 };
598
599 let term = pred.skip_binder().term;
600
601 let obligation = format!("{} = {}", projection_ty, term);
602 let quiet = format!("{} = {}", quiet_projection_ty, term);
603
604 bound_span_label(projection_ty.self_ty(), &obligation, &quiet);
605 Some((obligation, projection_ty.self_ty()))
606 }
607 ty::PredicateKind::Trait(poly_trait_ref) => {
608 let p = poly_trait_ref.trait_ref;
609 let self_ty = p.self_ty();
610 let path = p.print_only_trait_path();
611 let obligation = format!("{}: {}", self_ty, path);
612 let quiet = format!("_: {}", path);
613 bound_span_label(self_ty, &obligation, &quiet);
614 Some((obligation, self_ty))
615 }
616 _ => None,
617 }
618 };
619
620 // Find all the requirements that come from a local `impl` block.
621 let mut skip_list: FxHashSet<_> = Default::default();
622 let mut spanned_predicates: FxHashMap<MultiSpan, _> = Default::default();
623 for (data, p, parent_p, impl_def_id, cause) in unsatisfied_predicates
624 .iter()
625 .filter_map(|(p, parent, c)| c.as_ref().map(|c| (p, parent, c)))
626 .filter_map(|(p, parent, c)| match c.code() {
627 ObligationCauseCode::ImplDerivedObligation(ref data) => {
628 Some((&data.derived, p, parent, data.impl_def_id, data))
629 }
630 _ => None,
631 })
632 {
633 let parent_trait_ref = data.parent_trait_pred;
634 let path = parent_trait_ref.print_modifiers_and_trait_path();
635 let tr_self_ty = parent_trait_ref.skip_binder().self_ty();
636 let unsatisfied_msg = "unsatisfied trait bound introduced here";
637 let derive_msg =
638 "unsatisfied trait bound introduced in this `derive` macro";
639 match self.tcx.hir().get_if_local(impl_def_id) {
640 // Unmet obligation comes from a `derive` macro, point at it once to
641 // avoid multiple span labels pointing at the same place.
642 Some(Node::Item(hir::Item {
643 kind: hir::ItemKind::Trait(..),
644 ident,
645 ..
646 })) if matches!(
647 ident.span.ctxt().outer_expn_data().kind,
648 ExpnKind::Macro(MacroKind::Derive, _)
649 ) =>
650 {
651 let span = ident.span.ctxt().outer_expn_data().call_site;
652 let mut spans: MultiSpan = span.into();
653 spans.push_span_label(span, derive_msg);
654 let entry = spanned_predicates.entry(spans);
655 entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
656 }
657
658 Some(Node::Item(hir::Item {
659 kind: hir::ItemKind::Impl(hir::Impl { of_trait, self_ty, .. }),
660 ..
661 })) if matches!(
662 self_ty.span.ctxt().outer_expn_data().kind,
663 ExpnKind::Macro(MacroKind::Derive, _)
664 ) || matches!(
665 of_trait.as_ref().map(|t| t
666 .path
667 .span
668 .ctxt()
669 .outer_expn_data()
670 .kind),
671 Some(ExpnKind::Macro(MacroKind::Derive, _))
672 ) =>
673 {
674 let span = self_ty.span.ctxt().outer_expn_data().call_site;
675 let mut spans: MultiSpan = span.into();
676 spans.push_span_label(span, derive_msg);
677 let entry = spanned_predicates.entry(spans);
678 entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
679 }
680
681 // Unmet obligation coming from a `trait`.
682 Some(Node::Item(hir::Item {
683 kind: hir::ItemKind::Trait(..),
684 ident,
685 span: item_span,
686 ..
687 })) if !matches!(
688 ident.span.ctxt().outer_expn_data().kind,
689 ExpnKind::Macro(MacroKind::Derive, _)
690 ) =>
691 {
692 if let Some(pred) = parent_p {
693 // Done to add the "doesn't satisfy" `span_label`.
694 let _ = format_pred(*pred);
695 }
696 skip_list.insert(p);
697 let mut spans = if cause.span != *item_span {
698 let mut spans: MultiSpan = cause.span.into();
699 spans.push_span_label(cause.span, unsatisfied_msg);
700 spans
701 } else {
702 ident.span.into()
703 };
704 spans.push_span_label(ident.span, "in this trait");
705 let entry = spanned_predicates.entry(spans);
706 entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
707 }
708
709 // Unmet obligation coming from an `impl`.
710 Some(Node::Item(hir::Item {
711 kind:
712 hir::ItemKind::Impl(hir::Impl {
713 of_trait, self_ty, generics, ..
714 }),
715 span: item_span,
716 ..
717 })) if !matches!(
718 self_ty.span.ctxt().outer_expn_data().kind,
719 ExpnKind::Macro(MacroKind::Derive, _)
720 ) && !matches!(
721 of_trait.as_ref().map(|t| t
722 .path
723 .span
724 .ctxt()
725 .outer_expn_data()
726 .kind),
727 Some(ExpnKind::Macro(MacroKind::Derive, _))
728 ) =>
729 {
730 let sized_pred =
731 unsatisfied_predicates.iter().any(|(pred, _, _)| {
732 match pred.kind().skip_binder() {
733 ty::PredicateKind::Trait(pred) => {
734 Some(pred.def_id())
735 == self.tcx.lang_items().sized_trait()
736 && pred.polarity == ty::ImplPolarity::Positive
737 }
738 _ => false,
739 }
740 });
741 for param in generics.params {
742 if param.span == cause.span && sized_pred {
743 let (sp, sugg) = match param.colon_span {
744 Some(sp) => (sp.shrink_to_hi(), " ?Sized +"),
745 None => (param.span.shrink_to_hi(), ": ?Sized"),
746 };
747 err.span_suggestion_verbose(
748 sp,
749 "consider relaxing the type parameter's implicit \
750 `Sized` bound",
751 sugg,
752 Applicability::MachineApplicable,
753 );
754 }
755 }
756 if let Some(pred) = parent_p {
757 // Done to add the "doesn't satisfy" `span_label`.
758 let _ = format_pred(*pred);
759 }
760 skip_list.insert(p);
761 let mut spans = if cause.span != *item_span {
762 let mut spans: MultiSpan = cause.span.into();
763 spans.push_span_label(cause.span, unsatisfied_msg);
764 spans
765 } else {
766 let mut spans = Vec::with_capacity(2);
767 if let Some(trait_ref) = of_trait {
768 spans.push(trait_ref.path.span);
769 }
770 spans.push(self_ty.span);
771 spans.into()
772 };
773 if let Some(trait_ref) = of_trait {
774 spans.push_span_label(trait_ref.path.span, "");
775 }
776 spans.push_span_label(self_ty.span, "");
777
778 let entry = spanned_predicates.entry(spans);
779 entry.or_insert_with(|| (path, tr_self_ty, Vec::new())).2.push(p);
780 }
781 _ => {}
782 }
783 }
784 let mut spanned_predicates: Vec<_> = spanned_predicates.into_iter().collect();
785 spanned_predicates.sort_by_key(|(span, (_, _, _))| span.primary_span());
786 for (span, (_path, _self_ty, preds)) in spanned_predicates {
787 let mut preds: Vec<_> = preds
788 .into_iter()
789 .filter_map(|pred| format_pred(*pred))
790 .map(|(p, _)| format!("`{}`", p))
791 .collect();
792 preds.sort();
793 preds.dedup();
794 let msg = if let [pred] = &preds[..] {
795 format!("trait bound {} was not satisfied", pred)
796 } else {
797 format!(
798 "the following trait bounds were not satisfied:\n{}",
799 preds.join("\n"),
800 )
801 };
802 err.span_note(span, &msg);
803 unsatisfied_bounds = true;
804 }
805
806 // The requirements that didn't have an `impl` span to show.
807 let mut bound_list = unsatisfied_predicates
808 .iter()
809 .filter_map(|(pred, parent_pred, _cause)| {
810 format_pred(*pred).map(|(p, self_ty)| {
811 collect_type_param_suggestions(self_ty, *pred, &p);
812 (
813 match parent_pred {
814 None => format!("`{}`", &p),
815 Some(parent_pred) => match format_pred(*parent_pred) {
816 None => format!("`{}`", &p),
817 Some((parent_p, _)) => {
818 collect_type_param_suggestions(
819 self_ty,
820 *parent_pred,
821 &p,
822 );
823 format!(
824 "`{}`\nwhich is required by `{}`",
825 p, parent_p
826 )
827 }
828 },
829 },
830 *pred,
831 )
832 })
833 })
834 .filter(|(_, pred)| !skip_list.contains(&pred))
835 .map(|(t, _)| t)
836 .enumerate()
837 .collect::<Vec<(usize, String)>>();
838
839 for ((span, add_where_or_comma), obligations) in type_params.into_iter() {
840 restrict_type_params = true;
841 // #74886: Sort here so that the output is always the same.
842 let mut obligations = obligations.into_iter().collect::<Vec<_>>();
843 obligations.sort();
844 err.span_suggestion_verbose(
845 span,
846 &format!(
847 "consider restricting the type parameter{s} to satisfy the \
848 trait bound{s}",
849 s = pluralize!(obligations.len())
850 ),
851 format!("{} {}", add_where_or_comma, obligations.join(", ")),
852 Applicability::MaybeIncorrect,
853 );
854 }
855
856 bound_list.sort_by(|(_, a), (_, b)| a.cmp(b)); // Sort alphabetically.
857 bound_list.dedup_by(|(_, a), (_, b)| a == b); // #35677
858 bound_list.sort_by_key(|(pos, _)| *pos); // Keep the original predicate order.
859
860 if !bound_list.is_empty() || !skip_list.is_empty() {
861 let bound_list = bound_list
862 .into_iter()
863 .map(|(_, path)| path)
864 .collect::<Vec<_>>()
865 .join("\n");
866 let actual_prefix = actual.prefix_string(self.tcx);
867 info!("unimplemented_traits.len() == {}", unimplemented_traits.len());
868 let (primary_message, label) =
869 if unimplemented_traits.len() == 1 && unimplemented_traits_only {
870 unimplemented_traits
871 .into_iter()
872 .next()
873 .map(|(_, (trait_ref, obligation))| {
874 if trait_ref.self_ty().references_error()
875 || actual.references_error()
876 {
877 // Avoid crashing.
878 return (None, None);
879 }
880 let OnUnimplementedNote { message, label, .. } =
881 self.on_unimplemented_note(trait_ref, &obligation);
882 (message, label)
883 })
884 .unwrap_or((None, None))
885 } else {
886 (None, None)
887 };
888 let primary_message = primary_message.unwrap_or_else(|| format!(
889 "the {item_kind} `{item_name}` exists for {actual_prefix} `{ty_str}`, but its trait bounds were not satisfied"
890 ));
891 err.set_primary_message(&primary_message);
892 if let Some(label) = label {
893 custom_span_label = true;
894 err.span_label(span, label);
895 }
896 if !bound_list.is_empty() {
897 err.note(&format!(
898 "the following trait bounds were not satisfied:\n{bound_list}"
899 ));
900 }
901 self.suggest_derive(&mut err, &unsatisfied_predicates);
902
903 unsatisfied_bounds = true;
904 }
905 }
906
907 let label_span_not_found = |err: &mut DiagnosticBuilder<'_, _>| {
908 if unsatisfied_predicates.is_empty() {
909 err.span_label(span, format!("{item_kind} not found in `{ty_str}`"));
910 let is_string_or_ref_str = match actual.kind() {
911 ty::Ref(_, ty, _) => {
912 ty.is_str()
913 || matches!(
914 ty.kind(),
915 ty::Adt(adt, _) if self.tcx.is_diagnostic_item(sym::String, adt.did())
916 )
917 }
918 ty::Adt(adt, _) => self.tcx.is_diagnostic_item(sym::String, adt.did()),
919 _ => false,
920 };
921 if is_string_or_ref_str && item_name.name == sym::iter {
922 err.span_suggestion_verbose(
923 item_name.span,
924 "because of the in-memory representation of `&str`, to obtain \
925 an `Iterator` over each of its codepoint use method `chars`",
926 "chars",
927 Applicability::MachineApplicable,
928 );
929 }
930 if let ty::Adt(adt, _) = rcvr_ty.kind() {
931 let mut inherent_impls_candidate = self
932 .tcx
933 .inherent_impls(adt.did())
934 .iter()
935 .copied()
936 .filter(|def_id| {
937 if let Some(assoc) = self.associated_value(*def_id, item_name) {
938 // Check for both mode is the same so we avoid suggesting
939 // incorrect associated item.
940 match (mode, assoc.fn_has_self_parameter, source) {
941 (Mode::MethodCall, true, SelfSource::MethodCall(_)) => {
942 // We check that the suggest type is actually
943 // different from the received one
944 // So we avoid suggestion method with Box<Self>
945 // for instance
946 self.tcx.at(span).type_of(*def_id) != actual
947 && self.tcx.at(span).type_of(*def_id) != rcvr_ty
948 }
949 (Mode::Path, false, _) => true,
950 _ => false,
951 }
952 } else {
953 false
954 }
955 })
956 .collect::<Vec<_>>();
957 if !inherent_impls_candidate.is_empty() {
958 inherent_impls_candidate.sort();
959 inherent_impls_candidate.dedup();
960
961 // number of type to shows at most.
962 let limit = if inherent_impls_candidate.len() == 5 { 5 } else { 4 };
963 let type_candidates = inherent_impls_candidate
964 .iter()
965 .take(limit)
966 .map(|impl_item| {
967 format!("- `{}`", self.tcx.at(span).type_of(*impl_item))
968 })
969 .collect::<Vec<_>>()
970 .join("\n");
971 let additional_types = if inherent_impls_candidate.len() > limit {
972 format!(
973 "\nand {} more types",
974 inherent_impls_candidate.len() - limit
975 )
976 } else {
977 "".to_string()
978 };
979 err.note(&format!(
980 "the {item_kind} was found for\n{}{}",
981 type_candidates, additional_types
982 ));
983 }
984 }
985 } else {
986 err.span_label(span, format!("{item_kind} cannot be called on `{ty_str}` due to unsatisfied trait bounds"));
987 }
988 };
989
990 // If the method name is the name of a field with a function or closure type,
991 // give a helping note that it has to be called as `(x.f)(...)`.
992 if let SelfSource::MethodCall(expr) = source {
993 if !self.suggest_field_call(span, rcvr_ty, expr, item_name, &mut err)
994 && lev_candidate.is_none()
995 && !custom_span_label
996 {
997 label_span_not_found(&mut err);
998 }
999 } else if !custom_span_label {
1000 label_span_not_found(&mut err);
1001 }
1002
1003 self.check_for_field_method(&mut err, source, span, actual, item_name);
1004
1005 self.check_for_unwrap_self(&mut err, source, span, actual, item_name);
1006
1007 bound_spans.sort();
1008 bound_spans.dedup();
1009 for (span, msg) in bound_spans.into_iter() {
1010 err.span_label(span, &msg);
1011 }
1012
1013 if actual.is_numeric() && actual.is_fresh() || restrict_type_params {
1014 } else {
1015 self.suggest_traits_to_import(
1016 &mut err,
1017 span,
1018 rcvr_ty,
1019 item_name,
1020 args.map(|args| args.len()),
1021 source,
1022 out_of_scope_traits,
1023 &unsatisfied_predicates,
1024 unsatisfied_bounds,
1025 );
1026 }
1027
1028 // Don't emit a suggestion if we found an actual method
1029 // that had unsatisfied trait bounds
1030 if unsatisfied_predicates.is_empty() && actual.is_enum() {
1031 let adt_def = actual.ty_adt_def().expect("enum is not an ADT");
1032 if let Some(suggestion) = lev_distance::find_best_match_for_name(
1033 &adt_def.variants().iter().map(|s| s.name).collect::<Vec<_>>(),
1034 item_name.name,
1035 None,
1036 ) {
1037 err.span_suggestion(
1038 span,
1039 "there is a variant with a similar name",
1040 suggestion,
1041 Applicability::MaybeIncorrect,
1042 );
1043 }
1044 }
1045
1046 if item_name.name == sym::as_str && actual.peel_refs().is_str() {
1047 let msg = "remove this method call";
1048 let mut fallback_span = true;
1049 if let SelfSource::MethodCall(expr) = source {
1050 let call_expr =
1051 self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id));
1052 if let Some(span) = call_expr.span.trim_start(expr.span) {
1053 err.span_suggestion(span, msg, "", Applicability::MachineApplicable);
1054 fallback_span = false;
1055 }
1056 }
1057 if fallback_span {
1058 err.span_label(span, msg);
1059 }
1060 } else if let Some(lev_candidate) = lev_candidate {
1061 // Don't emit a suggestion if we found an actual method
1062 // that had unsatisfied trait bounds
1063 if unsatisfied_predicates.is_empty() {
1064 let def_kind = lev_candidate.kind.as_def_kind();
1065 err.span_suggestion(
1066 span,
1067 &format!(
1068 "there is {} {} with a similar name",
1069 def_kind.article(),
1070 def_kind.descr(lev_candidate.def_id),
1071 ),
1072 lev_candidate.name,
1073 Applicability::MaybeIncorrect,
1074 );
1075 }
1076 }
1077
1078 return Some(err);
1079 }
1080
1081 MethodError::Ambiguity(sources) => {
1082 let mut err = struct_span_err!(
1083 self.sess(),
1084 item_name.span,
1085 E0034,
1086 "multiple applicable items in scope"
1087 );
1088 err.span_label(item_name.span, format!("multiple `{}` found", item_name));
1089
1090 report_candidates(span, &mut err, sources, sugg_span);
1091 err.emit();
1092 }
1093
1094 MethodError::PrivateMatch(kind, def_id, out_of_scope_traits) => {
1095 let kind = kind.descr(def_id);
1096 let mut err = struct_span_err!(
1097 self.tcx.sess,
1098 item_name.span,
1099 E0624,
1100 "{} `{}` is private",
1101 kind,
1102 item_name
1103 );
1104 err.span_label(item_name.span, &format!("private {}", kind));
1105 let sp = self
1106 .tcx
1107 .hir()
1108 .span_if_local(def_id)
1109 .unwrap_or_else(|| self.tcx.def_span(def_id));
1110 err.span_label(sp, &format!("private {} defined here", kind));
1111 self.suggest_valid_traits(&mut err, out_of_scope_traits);
1112 err.emit();
1113 }
1114
1115 MethodError::IllegalSizedBound(candidates, needs_mut, bound_span) => {
1116 let msg = format!("the `{}` method cannot be invoked on a trait object", item_name);
1117 let mut err = self.sess().struct_span_err(span, &msg);
1118 err.span_label(bound_span, "this has a `Sized` requirement");
1119 if !candidates.is_empty() {
1120 let help = format!(
1121 "{an}other candidate{s} {were} found in the following trait{s}, perhaps \
1122 add a `use` for {one_of_them}:",
1123 an = if candidates.len() == 1 { "an" } else { "" },
1124 s = pluralize!(candidates.len()),
1125 were = pluralize!("was", candidates.len()),
1126 one_of_them = if candidates.len() == 1 { "it" } else { "one_of_them" },
1127 );
1128 self.suggest_use_candidates(&mut err, help, candidates);
1129 }
1130 if let ty::Ref(region, t_type, mutability) = rcvr_ty.kind() {
1131 if needs_mut {
1132 let trait_type = self.tcx.mk_ref(
1133 *region,
1134 ty::TypeAndMut { ty: *t_type, mutbl: mutability.invert() },
1135 );
1136 err.note(&format!("you need `{}` instead of `{}`", trait_type, rcvr_ty));
1137 }
1138 }
1139 err.emit();
1140 }
1141
1142 MethodError::BadReturnType => bug!("no return type expectations but got BadReturnType"),
1143 }
1144 None
1145 }
1146
1147 fn suggest_field_call(
1148 &self,
1149 span: Span,
1150 rcvr_ty: Ty<'tcx>,
1151 expr: &hir::Expr<'_>,
1152 item_name: Ident,
1153 err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
1154 ) -> bool {
1155 let tcx = self.tcx;
1156 let field_receiver = self.autoderef(span, rcvr_ty).find_map(|(ty, _)| match ty.kind() {
1157 ty::Adt(def, substs) if !def.is_enum() => {
1158 let variant = &def.non_enum_variant();
1159 tcx.find_field_index(item_name, variant).map(|index| {
1160 let field = &variant.fields[index];
1161 let field_ty = field.ty(tcx, substs);
1162 (field, field_ty)
1163 })
1164 }
1165 _ => None,
1166 });
1167 if let Some((field, field_ty)) = field_receiver {
1168 let scope = tcx.parent_module(self.body_id).to_def_id();
1169 let is_accessible = field.vis.is_accessible_from(scope, tcx);
1170
1171 if is_accessible {
1172 if self.is_fn_ty(field_ty, span) {
1173 let expr_span = expr.span.to(item_name.span);
1174 err.multipart_suggestion(
1175 &format!(
1176 "to call the function stored in `{}`, \
1177 surround the field access with parentheses",
1178 item_name,
1179 ),
1180 vec![
1181 (expr_span.shrink_to_lo(), '('.to_string()),
1182 (expr_span.shrink_to_hi(), ')'.to_string()),
1183 ],
1184 Applicability::MachineApplicable,
1185 );
1186 } else {
1187 let call_expr = tcx.hir().expect_expr(tcx.hir().get_parent_node(expr.hir_id));
1188
1189 if let Some(span) = call_expr.span.trim_start(item_name.span) {
1190 err.span_suggestion(
1191 span,
1192 "remove the arguments",
1193 "",
1194 Applicability::MaybeIncorrect,
1195 );
1196 }
1197 }
1198 }
1199
1200 let field_kind = if is_accessible { "field" } else { "private field" };
1201 err.span_label(item_name.span, format!("{}, not a method", field_kind));
1202 return true;
1203 }
1204 false
1205 }
1206
1207 fn suggest_constraining_numerical_ty(
1208 &self,
1209 tcx: TyCtxt<'tcx>,
1210 actual: Ty<'tcx>,
1211 source: SelfSource<'_>,
1212 span: Span,
1213 item_kind: &str,
1214 item_name: Ident,
1215 ty_str: &str,
1216 ) -> bool {
1217 let found_candidate = all_traits(self.tcx)
1218 .into_iter()
1219 .any(|info| self.associated_value(info.def_id, item_name).is_some());
1220 let found_assoc = |ty: Ty<'tcx>| {
1221 simplify_type(tcx, ty, TreatParams::AsInfer)
1222 .and_then(|simp| {
1223 tcx.incoherent_impls(simp)
1224 .iter()
1225 .find_map(|&id| self.associated_value(id, item_name))
1226 })
1227 .is_some()
1228 };
1229 let found_candidate = found_candidate
1230 || found_assoc(tcx.types.i8)
1231 || found_assoc(tcx.types.i16)
1232 || found_assoc(tcx.types.i32)
1233 || found_assoc(tcx.types.i64)
1234 || found_assoc(tcx.types.i128)
1235 || found_assoc(tcx.types.u8)
1236 || found_assoc(tcx.types.u16)
1237 || found_assoc(tcx.types.u32)
1238 || found_assoc(tcx.types.u64)
1239 || found_assoc(tcx.types.u128)
1240 || found_assoc(tcx.types.f32)
1241 || found_assoc(tcx.types.f32);
1242 if found_candidate
1243 && actual.is_numeric()
1244 && !actual.has_concrete_skeleton()
1245 && let SelfSource::MethodCall(expr) = source
1246 {
1247 let mut err = struct_span_err!(
1248 tcx.sess,
1249 span,
1250 E0689,
1251 "can't call {} `{}` on ambiguous numeric type `{}`",
1252 item_kind,
1253 item_name,
1254 ty_str
1255 );
1256 let concrete_type = if actual.is_integral() { "i32" } else { "f32" };
1257 match expr.kind {
1258 ExprKind::Lit(ref lit) => {
1259 // numeric literal
1260 let snippet = tcx
1261 .sess
1262 .source_map()
1263 .span_to_snippet(lit.span)
1264 .unwrap_or_else(|_| "<numeric literal>".to_owned());
1265
1266 // If this is a floating point literal that ends with '.',
1267 // get rid of it to stop this from becoming a member access.
1268 let snippet = snippet.strip_suffix('.').unwrap_or(&snippet);
1269
1270 err.span_suggestion(
1271 lit.span,
1272 &format!(
1273 "you must specify a concrete type for this numeric value, \
1274 like `{}`",
1275 concrete_type
1276 ),
1277 format!("{snippet}_{concrete_type}"),
1278 Applicability::MaybeIncorrect,
1279 );
1280 }
1281 ExprKind::Path(QPath::Resolved(_, path)) => {
1282 // local binding
1283 if let hir::def::Res::Local(hir_id) = path.res {
1284 let span = tcx.hir().span(hir_id);
1285 let snippet = tcx.sess.source_map().span_to_snippet(span);
1286 let filename = tcx.sess.source_map().span_to_filename(span);
1287
1288 let parent_node =
1289 self.tcx.hir().get(self.tcx.hir().get_parent_node(hir_id));
1290 let msg = format!(
1291 "you must specify a type for this binding, like `{}`",
1292 concrete_type,
1293 );
1294
1295 match (filename, parent_node, snippet) {
1296 (
1297 FileName::Real(_),
1298 Node::Local(hir::Local {
1299 source: hir::LocalSource::Normal,
1300 ty,
1301 ..
1302 }),
1303 Ok(ref snippet),
1304 ) => {
1305 err.span_suggestion(
1306 // account for `let x: _ = 42;`
1307 // ^^^^
1308 span.to(ty.as_ref().map(|ty| ty.span).unwrap_or(span)),
1309 &msg,
1310 format!("{}: {}", snippet, concrete_type),
1311 Applicability::MaybeIncorrect,
1312 );
1313 }
1314 _ => {
1315 err.span_label(span, msg);
1316 }
1317 }
1318 }
1319 }
1320 _ => {}
1321 }
1322 err.emit();
1323 return true;
1324 }
1325 false
1326 }
1327
1328 fn check_for_field_method(
1329 &self,
1330 err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
1331 source: SelfSource<'tcx>,
1332 span: Span,
1333 actual: Ty<'tcx>,
1334 item_name: Ident,
1335 ) {
1336 if let SelfSource::MethodCall(expr) = source
1337 && let Some((fields, substs)) = self.get_field_candidates(span, actual)
1338 {
1339 let call_expr = self.tcx.hir().expect_expr(self.tcx.hir().get_parent_node(expr.hir_id));
1340 for candidate_field in fields.iter() {
1341 if let Some(field_path) = self.check_for_nested_field_satisfying(
1342 span,
1343 &|_, field_ty| {
1344 self.lookup_probe(
1345 span,
1346 item_name,
1347 field_ty,
1348 call_expr,
1349 ProbeScope::AllTraits,
1350 )
1351 .is_ok()
1352 },
1353 candidate_field,
1354 substs,
1355 vec![],
1356 self.tcx.parent_module(expr.hir_id).to_def_id(),
1357 ) {
1358 let field_path_str = field_path
1359 .iter()
1360 .map(|id| id.name.to_ident_string())
1361 .collect::<Vec<String>>()
1362 .join(".");
1363 debug!("field_path_str: {:?}", field_path_str);
1364
1365 err.span_suggestion_verbose(
1366 item_name.span.shrink_to_lo(),
1367 "one of the expressions' fields has a method of the same name",
1368 format!("{field_path_str}."),
1369 Applicability::MaybeIncorrect,
1370 );
1371 }
1372 }
1373 }
1374 }
1375
1376 fn check_for_unwrap_self(
1377 &self,
1378 err: &mut DiagnosticBuilder<'tcx, ErrorGuaranteed>,
1379 source: SelfSource<'tcx>,
1380 span: Span,
1381 actual: Ty<'tcx>,
1382 item_name: Ident,
1383 ) {
1384 let tcx = self.tcx;
1385 let SelfSource::MethodCall(expr) = source else { return; };
1386 let call_expr = tcx.hir().expect_expr(tcx.hir().get_parent_node(expr.hir_id));
1387
1388 let ty::Adt(kind, substs) = actual.kind() else { return; };
1389 if !kind.is_enum() {
1390 return;
1391 }
1392
1393 let matching_variants: Vec<_> = kind
1394 .variants()
1395 .iter()
1396 .flat_map(|variant| {
1397 let [field] = &variant.fields[..] else { return None; };
1398 let field_ty = field.ty(tcx, substs);
1399
1400 // Skip `_`, since that'll just lead to ambiguity.
1401 if self.resolve_vars_if_possible(field_ty).is_ty_var() {
1402 return None;
1403 }
1404
1405 self.lookup_probe(span, item_name, field_ty, call_expr, ProbeScope::AllTraits)
1406 .ok()
1407 .map(|pick| (variant, field, pick))
1408 })
1409 .collect();
1410
1411 let ret_ty_matches = |diagnostic_item| {
1412 if let Some(ret_ty) = self
1413 .ret_coercion
1414 .as_ref()
1415 .map(|c| self.resolve_vars_if_possible(c.borrow().expected_ty()))
1416 && let ty::Adt(kind, _) = ret_ty.kind()
1417 && tcx.get_diagnostic_item(diagnostic_item) == Some(kind.did())
1418 {
1419 true
1420 } else {
1421 false
1422 }
1423 };
1424
1425 match &matching_variants[..] {
1426 [(_, field, pick)] => {
1427 let self_ty = field.ty(tcx, substs);
1428 err.span_note(
1429 tcx.def_span(pick.item.def_id),
1430 &format!("the method `{item_name}` exists on the type `{self_ty}`"),
1431 );
1432 let (article, kind, variant, question) =
1433 if Some(kind.did()) == tcx.get_diagnostic_item(sym::Result) {
1434 ("a", "Result", "Err", ret_ty_matches(sym::Result))
1435 } else if Some(kind.did()) == tcx.get_diagnostic_item(sym::Option) {
1436 ("an", "Option", "None", ret_ty_matches(sym::Option))
1437 } else {
1438 return;
1439 };
1440 if question {
1441 err.span_suggestion_verbose(
1442 expr.span.shrink_to_hi(),
1443 format!(
1444 "use the `?` operator to extract the `{self_ty}` value, propagating \
1445 {article} `{kind}::{variant}` value to the caller"
1446 ),
1447 "?",
1448 Applicability::MachineApplicable,
1449 );
1450 } else {
1451 err.span_suggestion_verbose(
1452 expr.span.shrink_to_hi(),
1453 format!(
1454 "consider using `{kind}::expect` to unwrap the `{self_ty}` value, \
1455 panicking if the value is {article} `{kind}::{variant}`"
1456 ),
1457 ".expect(\"REASON\")",
1458 Applicability::HasPlaceholders,
1459 );
1460 }
1461 }
1462 // FIXME(compiler-errors): Support suggestions for other matching enum variants
1463 _ => {}
1464 }
1465 }
1466
1467 pub(crate) fn note_unmet_impls_on_type(
1468 &self,
1469 err: &mut Diagnostic,
1470 errors: Vec<FulfillmentError<'tcx>>,
1471 ) {
1472 let all_local_types_needing_impls =
1473 errors.iter().all(|e| match e.obligation.predicate.kind().skip_binder() {
1474 ty::PredicateKind::Trait(pred) => match pred.self_ty().kind() {
1475 ty::Adt(def, _) => def.did().is_local(),
1476 _ => false,
1477 },
1478 _ => false,
1479 });
1480 let mut preds: Vec<_> = errors
1481 .iter()
1482 .filter_map(|e| match e.obligation.predicate.kind().skip_binder() {
1483 ty::PredicateKind::Trait(pred) => Some(pred),
1484 _ => None,
1485 })
1486 .collect();
1487 preds.sort_by_key(|pred| (pred.def_id(), pred.self_ty()));
1488 let def_ids = preds
1489 .iter()
1490 .filter_map(|pred| match pred.self_ty().kind() {
1491 ty::Adt(def, _) => Some(def.did()),
1492 _ => None,
1493 })
1494 .collect::<FxHashSet<_>>();
1495 let mut spans: MultiSpan = def_ids
1496 .iter()
1497 .filter_map(|def_id| {
1498 let span = self.tcx.def_span(*def_id);
1499 if span.is_dummy() { None } else { Some(span) }
1500 })
1501 .collect::<Vec<_>>()
1502 .into();
1503
1504 for pred in &preds {
1505 match pred.self_ty().kind() {
1506 ty::Adt(def, _) if def.did().is_local() => {
1507 spans.push_span_label(
1508 self.tcx.def_span(def.did()),
1509 format!("must implement `{}`", pred.trait_ref.print_only_trait_path()),
1510 );
1511 }
1512 _ => {}
1513 }
1514 }
1515
1516 if all_local_types_needing_impls && spans.primary_span().is_some() {
1517 let msg = if preds.len() == 1 {
1518 format!(
1519 "an implementation of `{}` might be missing for `{}`",
1520 preds[0].trait_ref.print_only_trait_path(),
1521 preds[0].self_ty()
1522 )
1523 } else {
1524 format!(
1525 "the following type{} would have to `impl` {} required trait{} for this \
1526 operation to be valid",
1527 pluralize!(def_ids.len()),
1528 if def_ids.len() == 1 { "its" } else { "their" },
1529 pluralize!(preds.len()),
1530 )
1531 };
1532 err.span_note(spans, &msg);
1533 }
1534
1535 let preds: Vec<_> = errors
1536 .iter()
1537 .map(|e| (e.obligation.predicate, None, Some(e.obligation.cause.clone())))
1538 .collect();
1539 self.suggest_derive(err, &preds);
1540 }
1541
1542 fn suggest_derive(
1543 &self,
1544 err: &mut Diagnostic,
1545 unsatisfied_predicates: &[(
1546 ty::Predicate<'tcx>,
1547 Option<ty::Predicate<'tcx>>,
1548 Option<ObligationCause<'tcx>>,
1549 )],
1550 ) {
1551 let mut derives = Vec::<(String, Span, Symbol)>::new();
1552 let mut traits = Vec::<Span>::new();
1553 for (pred, _, _) in unsatisfied_predicates {
1554 let ty::PredicateKind::Trait(trait_pred) = pred.kind().skip_binder() else { continue };
1555 let adt = match trait_pred.self_ty().ty_adt_def() {
1556 Some(adt) if adt.did().is_local() => adt,
1557 _ => continue,
1558 };
1559 if let Some(diagnostic_name) = self.tcx.get_diagnostic_name(trait_pred.def_id()) {
1560 let can_derive = match diagnostic_name {
1561 sym::Default => !adt.is_enum(),
1562 sym::Eq
1563 | sym::PartialEq
1564 | sym::Ord
1565 | sym::PartialOrd
1566 | sym::Clone
1567 | sym::Copy
1568 | sym::Hash
1569 | sym::Debug => true,
1570 _ => false,
1571 };
1572 if can_derive {
1573 let self_name = trait_pred.self_ty().to_string();
1574 let self_span = self.tcx.def_span(adt.did());
1575 if let Some(poly_trait_ref) = pred.to_opt_poly_trait_pred() {
1576 for super_trait in supertraits(self.tcx, poly_trait_ref.to_poly_trait_ref())
1577 {
1578 if let Some(parent_diagnostic_name) =
1579 self.tcx.get_diagnostic_name(super_trait.def_id())
1580 {
1581 derives.push((
1582 self_name.clone(),
1583 self_span,
1584 parent_diagnostic_name,
1585 ));
1586 }
1587 }
1588 }
1589 derives.push((self_name, self_span, diagnostic_name));
1590 } else {
1591 traits.push(self.tcx.def_span(trait_pred.def_id()));
1592 }
1593 } else {
1594 traits.push(self.tcx.def_span(trait_pred.def_id()));
1595 }
1596 }
1597 traits.sort();
1598 traits.dedup();
1599
1600 derives.sort();
1601 derives.dedup();
1602
1603 let mut derives_grouped = Vec::<(String, Span, String)>::new();
1604 for (self_name, self_span, trait_name) in derives.into_iter() {
1605 if let Some((last_self_name, _, ref mut last_trait_names)) = derives_grouped.last_mut()
1606 {
1607 if last_self_name == &self_name {
1608 last_trait_names.push_str(format!(", {}", trait_name).as_str());
1609 continue;
1610 }
1611 }
1612 derives_grouped.push((self_name, self_span, trait_name.to_string()));
1613 }
1614
1615 let len = traits.len();
1616 if len > 0 {
1617 let span: MultiSpan = traits.into();
1618 err.span_note(
1619 span,
1620 &format!("the following trait{} must be implemented", pluralize!(len),),
1621 );
1622 }
1623
1624 for (self_name, self_span, traits) in &derives_grouped {
1625 err.span_suggestion_verbose(
1626 self_span.shrink_to_lo(),
1627 &format!("consider annotating `{}` with `#[derive({})]`", self_name, traits),
1628 format!("#[derive({})]\n", traits),
1629 Applicability::MaybeIncorrect,
1630 );
1631 }
1632 }
1633
1634 /// Print out the type for use in value namespace.
1635 fn ty_to_value_string(&self, ty: Ty<'tcx>) -> String {
1636 match ty.kind() {
1637 ty::Adt(def, substs) => format!("{}", ty::Instance::new(def.did(), substs)),
1638 _ => self.ty_to_string(ty),
1639 }
1640 }
1641
1642 fn suggest_await_before_method(
1643 &self,
1644 err: &mut Diagnostic,
1645 item_name: Ident,
1646 ty: Ty<'tcx>,
1647 call: &hir::Expr<'_>,
1648 span: Span,
1649 ) {
1650 let output_ty = match self.get_impl_future_output_ty(ty) {
1651 Some(output_ty) => self.resolve_vars_if_possible(output_ty).skip_binder(),
1652 _ => return,
1653 };
1654 let method_exists = self.method_exists(item_name, output_ty, call.hir_id, true);
1655 debug!("suggest_await_before_method: is_method_exist={}", method_exists);
1656 if method_exists {
1657 err.span_suggestion_verbose(
1658 span.shrink_to_lo(),
1659 "consider `await`ing on the `Future` and calling the method on its `Output`",
1660 "await.",
1661 Applicability::MaybeIncorrect,
1662 );
1663 }
1664 }
1665
1666 fn suggest_use_candidates(&self, err: &mut Diagnostic, msg: String, candidates: Vec<DefId>) {
1667 let parent_map = self.tcx.visible_parent_map(());
1668
1669 // Separate out candidates that must be imported with a glob, because they are named `_`
1670 // and cannot be referred with their identifier.
1671 let (candidates, globs): (Vec<_>, Vec<_>) = candidates.into_iter().partition(|trait_did| {
1672 if let Some(parent_did) = parent_map.get(trait_did) {
1673 // If the item is re-exported as `_`, we should suggest a glob-import instead.
1674 if *parent_did != self.tcx.parent(*trait_did)
1675 && self
1676 .tcx
1677 .module_children(*parent_did)
1678 .iter()
1679 .filter(|child| child.res.opt_def_id() == Some(*trait_did))
1680 .all(|child| child.ident.name == kw::Underscore)
1681 {
1682 return false;
1683 }
1684 }
1685
1686 true
1687 });
1688
1689 let module_did = self.tcx.parent_module(self.body_id);
1690 let (module, _, _) = self.tcx.hir().get_module(module_did);
1691 let span = module.spans.inject_use_span;
1692
1693 let path_strings = candidates.iter().map(|trait_did| {
1694 format!("use {};\n", with_crate_prefix!(self.tcx.def_path_str(*trait_did)),)
1695 });
1696
1697 let glob_path_strings = globs.iter().map(|trait_did| {
1698 let parent_did = parent_map.get(trait_did).unwrap();
1699 format!(
1700 "use {}::*; // trait {}\n",
1701 with_crate_prefix!(self.tcx.def_path_str(*parent_did)),
1702 self.tcx.item_name(*trait_did),
1703 )
1704 });
1705
1706 err.span_suggestions(
1707 span,
1708 &msg,
1709 path_strings.chain(glob_path_strings),
1710 Applicability::MaybeIncorrect,
1711 );
1712 }
1713
1714 fn suggest_valid_traits(
1715 &self,
1716 err: &mut Diagnostic,
1717 valid_out_of_scope_traits: Vec<DefId>,
1718 ) -> bool {
1719 if !valid_out_of_scope_traits.is_empty() {
1720 let mut candidates = valid_out_of_scope_traits;
1721 candidates.sort();
1722 candidates.dedup();
1723
1724 // `TryFrom` and `FromIterator` have no methods
1725 let edition_fix = candidates
1726 .iter()
1727 .find(|did| self.tcx.is_diagnostic_item(sym::TryInto, **did))
1728 .copied();
1729
1730 err.help("items from traits can only be used if the trait is in scope");
1731 let msg = format!(
1732 "the following {traits_are} implemented but not in scope; \
1733 perhaps add a `use` for {one_of_them}:",
1734 traits_are = if candidates.len() == 1 { "trait is" } else { "traits are" },
1735 one_of_them = if candidates.len() == 1 { "it" } else { "one of them" },
1736 );
1737
1738 self.suggest_use_candidates(err, msg, candidates);
1739 if let Some(did) = edition_fix {
1740 err.note(&format!(
1741 "'{}' is included in the prelude starting in Edition 2021",
1742 with_crate_prefix!(self.tcx.def_path_str(did))
1743 ));
1744 }
1745
1746 true
1747 } else {
1748 false
1749 }
1750 }
1751
1752 fn suggest_traits_to_import(
1753 &self,
1754 err: &mut Diagnostic,
1755 span: Span,
1756 rcvr_ty: Ty<'tcx>,
1757 item_name: Ident,
1758 inputs_len: Option<usize>,
1759 source: SelfSource<'tcx>,
1760 valid_out_of_scope_traits: Vec<DefId>,
1761 unsatisfied_predicates: &[(
1762 ty::Predicate<'tcx>,
1763 Option<ty::Predicate<'tcx>>,
1764 Option<ObligationCause<'tcx>>,
1765 )],
1766 unsatisfied_bounds: bool,
1767 ) {
1768 let mut alt_rcvr_sugg = false;
1769 if let (SelfSource::MethodCall(rcvr), false) = (source, unsatisfied_bounds) {
1770 debug!(?span, ?item_name, ?rcvr_ty, ?rcvr);
1771 let skippable = [
1772 self.tcx.lang_items().clone_trait(),
1773 self.tcx.lang_items().deref_trait(),
1774 self.tcx.lang_items().deref_mut_trait(),
1775 self.tcx.lang_items().drop_trait(),
1776 self.tcx.get_diagnostic_item(sym::AsRef),
1777 ];
1778 // Try alternative arbitrary self types that could fulfill this call.
1779 // FIXME: probe for all types that *could* be arbitrary self-types, not
1780 // just this list.
1781 for (rcvr_ty, post) in &[
1782 (rcvr_ty, ""),
1783 (self.tcx.mk_mut_ref(self.tcx.lifetimes.re_erased, rcvr_ty), "&mut "),
1784 (self.tcx.mk_imm_ref(self.tcx.lifetimes.re_erased, rcvr_ty), "&"),
1785 ] {
1786 match self.lookup_probe(span, item_name, *rcvr_ty, rcvr, ProbeScope::AllTraits) {
1787 Ok(pick) => {
1788 // If the method is defined for the receiver we have, it likely wasn't `use`d.
1789 // We point at the method, but we just skip the rest of the check for arbitrary
1790 // self types and rely on the suggestion to `use` the trait from
1791 // `suggest_valid_traits`.
1792 let did = Some(pick.item.container_id(self.tcx));
1793 let skip = skippable.contains(&did);
1794 if pick.autoderefs == 0 && !skip {
1795 err.span_label(
1796 pick.item.ident(self.tcx).span,
1797 &format!("the method is available for `{}` here", rcvr_ty),
1798 );
1799 }
1800 break;
1801 }
1802 Err(MethodError::Ambiguity(_)) => {
1803 // If the method is defined (but ambiguous) for the receiver we have, it is also
1804 // likely we haven't `use`d it. It may be possible that if we `Box`/`Pin`/etc.
1805 // the receiver, then it might disambiguate this method, but I think these
1806 // suggestions are generally misleading (see #94218).
1807 break;
1808 }
1809 _ => {}
1810 }
1811
1812 for (rcvr_ty, pre) in &[
1813 (self.tcx.mk_lang_item(*rcvr_ty, LangItem::OwnedBox), "Box::new"),
1814 (self.tcx.mk_lang_item(*rcvr_ty, LangItem::Pin), "Pin::new"),
1815 (self.tcx.mk_diagnostic_item(*rcvr_ty, sym::Arc), "Arc::new"),
1816 (self.tcx.mk_diagnostic_item(*rcvr_ty, sym::Rc), "Rc::new"),
1817 ] {
1818 if let Some(new_rcvr_t) = *rcvr_ty
1819 && let Ok(pick) = self.lookup_probe(
1820 span,
1821 item_name,
1822 new_rcvr_t,
1823 rcvr,
1824 ProbeScope::AllTraits,
1825 )
1826 {
1827 debug!("try_alt_rcvr: pick candidate {:?}", pick);
1828 let did = Some(pick.item.container_id(self.tcx));
1829 // We don't want to suggest a container type when the missing
1830 // method is `.clone()` or `.deref()` otherwise we'd suggest
1831 // `Arc::new(foo).clone()`, which is far from what the user wants.
1832 // Explicitly ignore the `Pin::as_ref()` method as `Pin` does not
1833 // implement the `AsRef` trait.
1834 let skip = skippable.contains(&did)
1835 || (("Pin::new" == *pre) && (sym::as_ref == item_name.name))
1836 || inputs_len.map_or(false, |inputs_len| pick.item.kind == ty::AssocKind::Fn && self.tcx.fn_sig(pick.item.def_id).skip_binder().inputs().len() != inputs_len);
1837 // Make sure the method is defined for the *actual* receiver: we don't
1838 // want to treat `Box<Self>` as a receiver if it only works because of
1839 // an autoderef to `&self`
1840 if pick.autoderefs == 0 && !skip {
1841 err.span_label(
1842 pick.item.ident(self.tcx).span,
1843 &format!("the method is available for `{}` here", new_rcvr_t),
1844 );
1845 err.multipart_suggestion(
1846 "consider wrapping the receiver expression with the \
1847 appropriate type",
1848 vec![
1849 (rcvr.span.shrink_to_lo(), format!("{}({}", pre, post)),
1850 (rcvr.span.shrink_to_hi(), ")".to_string()),
1851 ],
1852 Applicability::MaybeIncorrect,
1853 );
1854 // We don't care about the other suggestions.
1855 alt_rcvr_sugg = true;
1856 }
1857 }
1858 }
1859 }
1860 }
1861 if self.suggest_valid_traits(err, valid_out_of_scope_traits) {
1862 return;
1863 }
1864
1865 let type_is_local = self.type_derefs_to_local(span, rcvr_ty, source);
1866
1867 let mut arbitrary_rcvr = vec![];
1868 // There are no traits implemented, so lets suggest some traits to
1869 // implement, by finding ones that have the item name, and are
1870 // legal to implement.
1871 let mut candidates = all_traits(self.tcx)
1872 .into_iter()
1873 // Don't issue suggestions for unstable traits since they're
1874 // unlikely to be implementable anyway
1875 .filter(|info| match self.tcx.lookup_stability(info.def_id) {
1876 Some(attr) => attr.level.is_stable(),
1877 None => true,
1878 })
1879 .filter(|info| {
1880 // We approximate the coherence rules to only suggest
1881 // traits that are legal to implement by requiring that
1882 // either the type or trait is local. Multi-dispatch means
1883 // this isn't perfect (that is, there are cases when
1884 // implementing a trait would be legal but is rejected
1885 // here).
1886 unsatisfied_predicates.iter().all(|(p, _, _)| {
1887 match p.kind().skip_binder() {
1888 // Hide traits if they are present in predicates as they can be fixed without
1889 // having to implement them.
1890 ty::PredicateKind::Trait(t) => t.def_id() == info.def_id,
1891 ty::PredicateKind::Projection(p) => {
1892 p.projection_ty.item_def_id == info.def_id
1893 }
1894 _ => false,
1895 }
1896 }) && (type_is_local || info.def_id.is_local())
1897 && self
1898 .associated_value(info.def_id, item_name)
1899 .filter(|item| {
1900 if let ty::AssocKind::Fn = item.kind {
1901 let id = item
1902 .def_id
1903 .as_local()
1904 .map(|def_id| self.tcx.hir().local_def_id_to_hir_id(def_id));
1905 if let Some(hir::Node::TraitItem(hir::TraitItem {
1906 kind: hir::TraitItemKind::Fn(fn_sig, method),
1907 ..
1908 })) = id.map(|id| self.tcx.hir().get(id))
1909 {
1910 let self_first_arg = match method {
1911 hir::TraitFn::Required([ident, ..]) => {
1912 ident.name == kw::SelfLower
1913 }
1914 hir::TraitFn::Provided(body_id) => {
1915 self.tcx.hir().body(*body_id).params.first().map_or(
1916 false,
1917 |param| {
1918 matches!(
1919 param.pat.kind,
1920 hir::PatKind::Binding(_, _, ident, _)
1921 if ident.name == kw::SelfLower
1922 )
1923 },
1924 )
1925 }
1926 _ => false,
1927 };
1928
1929 if !fn_sig.decl.implicit_self.has_implicit_self()
1930 && self_first_arg
1931 {
1932 if let Some(ty) = fn_sig.decl.inputs.get(0) {
1933 arbitrary_rcvr.push(ty.span);
1934 }
1935 return false;
1936 }
1937 }
1938 }
1939 // We only want to suggest public or local traits (#45781).
1940 item.visibility(self.tcx).is_public() || info.def_id.is_local()
1941 })
1942 .is_some()
1943 })
1944 .collect::<Vec<_>>();
1945 for span in &arbitrary_rcvr {
1946 err.span_label(
1947 *span,
1948 "the method might not be found because of this arbitrary self type",
1949 );
1950 }
1951 if alt_rcvr_sugg {
1952 return;
1953 }
1954
1955 if !candidates.is_empty() {
1956 // Sort from most relevant to least relevant.
1957 candidates.sort_by(|a, b| a.cmp(b).reverse());
1958 candidates.dedup();
1959
1960 let param_type = match rcvr_ty.kind() {
1961 ty::Param(param) => Some(param),
1962 ty::Ref(_, ty, _) => match ty.kind() {
1963 ty::Param(param) => Some(param),
1964 _ => None,
1965 },
1966 _ => None,
1967 };
1968 err.help(if param_type.is_some() {
1969 "items from traits can only be used if the type parameter is bounded by the trait"
1970 } else {
1971 "items from traits can only be used if the trait is implemented and in scope"
1972 });
1973 let candidates_len = candidates.len();
1974 let message = |action| {
1975 format!(
1976 "the following {traits_define} an item `{name}`, perhaps you need to {action} \
1977 {one_of_them}:",
1978 traits_define =
1979 if candidates_len == 1 { "trait defines" } else { "traits define" },
1980 action = action,
1981 one_of_them = if candidates_len == 1 { "it" } else { "one of them" },
1982 name = item_name,
1983 )
1984 };
1985 // Obtain the span for `param` and use it for a structured suggestion.
1986 if let Some(param) = param_type {
1987 let generics = self.tcx.generics_of(self.body_id.owner.to_def_id());
1988 let type_param = generics.type_param(param, self.tcx);
1989 let hir = self.tcx.hir();
1990 if let Some(def_id) = type_param.def_id.as_local() {
1991 let id = hir.local_def_id_to_hir_id(def_id);
1992 // Get the `hir::Param` to verify whether it already has any bounds.
1993 // We do this to avoid suggesting code that ends up as `T: FooBar`,
1994 // instead we suggest `T: Foo + Bar` in that case.
1995 match hir.get(id) {
1996 Node::GenericParam(param) => {
1997 enum Introducer {
1998 Plus,
1999 Colon,
2000 Nothing,
2001 }
2002 let ast_generics = hir.get_generics(id.owner).unwrap();
2003 let (sp, mut introducer) = if let Some(span) =
2004 ast_generics.bounds_span_for_suggestions(def_id)
2005 {
2006 (span, Introducer::Plus)
2007 } else if let Some(colon_span) = param.colon_span {
2008 (colon_span.shrink_to_hi(), Introducer::Nothing)
2009 } else {
2010 (param.span.shrink_to_hi(), Introducer::Colon)
2011 };
2012 if matches!(
2013 param.kind,
2014 hir::GenericParamKind::Type { synthetic: true, .. },
2015 ) {
2016 introducer = Introducer::Plus
2017 }
2018 let trait_def_ids: FxHashSet<DefId> = ast_generics
2019 .bounds_for_param(def_id)
2020 .flat_map(|bp| bp.bounds.iter())
2021 .filter_map(|bound| bound.trait_ref()?.trait_def_id())
2022 .collect();
2023 if !candidates.iter().any(|t| trait_def_ids.contains(&t.def_id)) {
2024 err.span_suggestions(
2025 sp,
2026 &message(format!(
2027 "restrict type parameter `{}` with",
2028 param.name.ident(),
2029 )),
2030 candidates.iter().map(|t| {
2031 format!(
2032 "{} {}",
2033 match introducer {
2034 Introducer::Plus => " +",
2035 Introducer::Colon => ":",
2036 Introducer::Nothing => "",
2037 },
2038 self.tcx.def_path_str(t.def_id),
2039 )
2040 }),
2041 Applicability::MaybeIncorrect,
2042 );
2043 }
2044 return;
2045 }
2046 Node::Item(hir::Item {
2047 kind: hir::ItemKind::Trait(.., bounds, _),
2048 ident,
2049 ..
2050 }) => {
2051 let (sp, sep, article) = if bounds.is_empty() {
2052 (ident.span.shrink_to_hi(), ":", "a")
2053 } else {
2054 (bounds.last().unwrap().span().shrink_to_hi(), " +", "another")
2055 };
2056 err.span_suggestions(
2057 sp,
2058 &message(format!("add {} supertrait for", article)),
2059 candidates.iter().map(|t| {
2060 format!("{} {}", sep, self.tcx.def_path_str(t.def_id),)
2061 }),
2062 Applicability::MaybeIncorrect,
2063 );
2064 return;
2065 }
2066 _ => {}
2067 }
2068 }
2069 }
2070
2071 let (potential_candidates, explicitly_negative) = if param_type.is_some() {
2072 // FIXME: Even though negative bounds are not implemented, we could maybe handle
2073 // cases where a positive bound implies a negative impl.
2074 (candidates, Vec::new())
2075 } else if let Some(simp_rcvr_ty) =
2076 simplify_type(self.tcx, rcvr_ty, TreatParams::AsPlaceholder)
2077 {
2078 let mut potential_candidates = Vec::new();
2079 let mut explicitly_negative = Vec::new();
2080 for candidate in candidates {
2081 // Check if there's a negative impl of `candidate` for `rcvr_ty`
2082 if self
2083 .tcx
2084 .all_impls(candidate.def_id)
2085 .filter(|imp_did| {
2086 self.tcx.impl_polarity(*imp_did) == ty::ImplPolarity::Negative
2087 })
2088 .any(|imp_did| {
2089 let imp = self.tcx.impl_trait_ref(imp_did).unwrap();
2090 let imp_simp =
2091 simplify_type(self.tcx, imp.self_ty(), TreatParams::AsPlaceholder);
2092 imp_simp.map_or(false, |s| s == simp_rcvr_ty)
2093 })
2094 {
2095 explicitly_negative.push(candidate);
2096 } else {
2097 potential_candidates.push(candidate);
2098 }
2099 }
2100 (potential_candidates, explicitly_negative)
2101 } else {
2102 // We don't know enough about `recv_ty` to make proper suggestions.
2103 (candidates, Vec::new())
2104 };
2105
2106 let action = if let Some(param) = param_type {
2107 format!("restrict type parameter `{}` with", param)
2108 } else {
2109 // FIXME: it might only need to be imported into scope, not implemented.
2110 "implement".to_string()
2111 };
2112 match &potential_candidates[..] {
2113 [] => {}
2114 [trait_info] if trait_info.def_id.is_local() => {
2115 err.span_note(
2116 self.tcx.def_span(trait_info.def_id),
2117 &format!(
2118 "`{}` defines an item `{}`, perhaps you need to {} it",
2119 self.tcx.def_path_str(trait_info.def_id),
2120 item_name,
2121 action
2122 ),
2123 );
2124 }
2125 trait_infos => {
2126 let mut msg = message(action);
2127 for (i, trait_info) in trait_infos.iter().enumerate() {
2128 msg.push_str(&format!(
2129 "\ncandidate #{}: `{}`",
2130 i + 1,
2131 self.tcx.def_path_str(trait_info.def_id),
2132 ));
2133 }
2134 err.note(&msg);
2135 }
2136 }
2137 match &explicitly_negative[..] {
2138 [] => {}
2139 [trait_info] => {
2140 let msg = format!(
2141 "the trait `{}` defines an item `{}`, but is explicitly unimplemented",
2142 self.tcx.def_path_str(trait_info.def_id),
2143 item_name
2144 );
2145 err.note(&msg);
2146 }
2147 trait_infos => {
2148 let mut msg = format!(
2149 "the following traits define an item `{}`, but are explicitly unimplemented:",
2150 item_name
2151 );
2152 for trait_info in trait_infos {
2153 msg.push_str(&format!("\n{}", self.tcx.def_path_str(trait_info.def_id)));
2154 }
2155 err.note(&msg);
2156 }
2157 }
2158 }
2159 }
2160
2161 /// Checks whether there is a local type somewhere in the chain of
2162 /// autoderefs of `rcvr_ty`.
2163 fn type_derefs_to_local(
2164 &self,
2165 span: Span,
2166 rcvr_ty: Ty<'tcx>,
2167 source: SelfSource<'tcx>,
2168 ) -> bool {
2169 fn is_local(ty: Ty<'_>) -> bool {
2170 match ty.kind() {
2171 ty::Adt(def, _) => def.did().is_local(),
2172 ty::Foreign(did) => did.is_local(),
2173 ty::Dynamic(tr, ..) => tr.principal().map_or(false, |d| d.def_id().is_local()),
2174 ty::Param(_) => true,
2175
2176 // Everything else (primitive types, etc.) is effectively
2177 // non-local (there are "edge" cases, e.g., `(LocalType,)`, but
2178 // the noise from these sort of types is usually just really
2179 // annoying, rather than any sort of help).
2180 _ => false,
2181 }
2182 }
2183
2184 // This occurs for UFCS desugaring of `T::method`, where there is no
2185 // receiver expression for the method call, and thus no autoderef.
2186 if let SelfSource::QPath(_) = source {
2187 return is_local(self.resolve_vars_with_obligations(rcvr_ty));
2188 }
2189
2190 self.autoderef(span, rcvr_ty).any(|(ty, _)| is_local(ty))
2191 }
2192 }
2193
2194 #[derive(Copy, Clone, Debug)]
2195 pub enum SelfSource<'a> {
2196 QPath(&'a hir::Ty<'a>),
2197 MethodCall(&'a hir::Expr<'a> /* rcvr */),
2198 }
2199
2200 #[derive(Copy, Clone)]
2201 pub struct TraitInfo {
2202 pub def_id: DefId,
2203 }
2204
2205 impl PartialEq for TraitInfo {
2206 fn eq(&self, other: &TraitInfo) -> bool {
2207 self.cmp(other) == Ordering::Equal
2208 }
2209 }
2210 impl Eq for TraitInfo {}
2211 impl PartialOrd for TraitInfo {
2212 fn partial_cmp(&self, other: &TraitInfo) -> Option<Ordering> {
2213 Some(self.cmp(other))
2214 }
2215 }
2216 impl Ord for TraitInfo {
2217 fn cmp(&self, other: &TraitInfo) -> Ordering {
2218 // Local crates are more important than remote ones (local:
2219 // `cnum == 0`), and otherwise we throw in the defid for totality.
2220
2221 let lhs = (other.def_id.krate, other.def_id);
2222 let rhs = (self.def_id.krate, self.def_id);
2223 lhs.cmp(&rhs)
2224 }
2225 }
2226
2227 /// Retrieves all traits in this crate and any dependent crates,
2228 /// and wraps them into `TraitInfo` for custom sorting.
2229 pub fn all_traits(tcx: TyCtxt<'_>) -> Vec<TraitInfo> {
2230 tcx.all_traits().map(|def_id| TraitInfo { def_id }).collect()
2231 }
2232
2233 fn print_disambiguation_help<'tcx>(
2234 item_name: Ident,
2235 args: Option<&'tcx [hir::Expr<'tcx>]>,
2236 err: &mut Diagnostic,
2237 trait_name: String,
2238 rcvr_ty: Ty<'_>,
2239 kind: ty::AssocKind,
2240 def_id: DefId,
2241 span: Span,
2242 candidate: Option<usize>,
2243 source_map: &source_map::SourceMap,
2244 fn_has_self_parameter: bool,
2245 ) {
2246 let mut applicability = Applicability::MachineApplicable;
2247 let (span, sugg) = if let (ty::AssocKind::Fn, Some(args)) = (kind, args) {
2248 let args = format!(
2249 "({}{})",
2250 if rcvr_ty.is_region_ptr() {
2251 if rcvr_ty.is_mutable_ptr() { "&mut " } else { "&" }
2252 } else {
2253 ""
2254 },
2255 args.iter()
2256 .map(|arg| source_map.span_to_snippet(arg.span).unwrap_or_else(|_| {
2257 applicability = Applicability::HasPlaceholders;
2258 "_".to_owned()
2259 }))
2260 .collect::<Vec<_>>()
2261 .join(", "),
2262 );
2263 let trait_name = if !fn_has_self_parameter {
2264 format!("<{} as {}>", rcvr_ty, trait_name)
2265 } else {
2266 trait_name
2267 };
2268 (span, format!("{}::{}{}", trait_name, item_name, args))
2269 } else {
2270 (span.with_hi(item_name.span.lo()), format!("<{} as {}>::", rcvr_ty, trait_name))
2271 };
2272 err.span_suggestion_verbose(
2273 span,
2274 &format!(
2275 "disambiguate the {} for {}",
2276 kind.as_def_kind().descr(def_id),
2277 if let Some(candidate) = candidate {
2278 format!("candidate #{}", candidate)
2279 } else {
2280 "the candidate".to_string()
2281 },
2282 ),
2283 sugg,
2284 applicability,
2285 );
2286 }