]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/collect.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / compiler / rustc_typeck / src / collect.rs
1 // ignore-tidy-filelength
2 //! "Collection" is the process of determining the type and other external
3 //! details of each item in Rust. Collection is specifically concerned
4 //! with *inter-procedural* things -- for example, for a function
5 //! definition, collection will figure out the type and signature of the
6 //! function, but it will not visit the *body* of the function in any way,
7 //! nor examine type annotations on local variables (that's the job of
8 //! type *checking*).
9 //!
10 //! Collecting is ultimately defined by a bundle of queries that
11 //! inquire after various facts about the items in the crate (e.g.,
12 //! `type_of`, `generics_of`, `predicates_of`, etc). See the `provide` function
13 //! for the full set.
14 //!
15 //! At present, however, we do run collection across all items in the
16 //! crate as a kind of pass. This should eventually be factored away.
17
18 use crate::astconv::{AstConv, SizedByDefault};
19 use crate::bounds::Bounds;
20 use crate::check::intrinsic::intrinsic_operation_unsafety;
21 use crate::constrained_generic_params as cgp;
22 use crate::errors;
23 use crate::middle::resolve_lifetime as rl;
24 use rustc_ast as ast;
25 use rustc_ast::{MetaItemKind, NestedMetaItem};
26 use rustc_attr::{list_contains_name, InlineAttr, InstructionSetAttr, OptimizeAttr};
27 use rustc_data_structures::captures::Captures;
28 use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
29 use rustc_errors::{struct_span_err, Applicability};
30 use rustc_hir as hir;
31 use rustc_hir::def::{CtorKind, DefKind, Res};
32 use rustc_hir::def_id::{DefId, LocalDefId, LOCAL_CRATE};
33 use rustc_hir::intravisit::{self, NestedVisitorMap, Visitor};
34 use rustc_hir::weak_lang_items;
35 use rustc_hir::{GenericParamKind, HirId, Node};
36 use rustc_middle::hir::map::blocks::FnLikeNode;
37 use rustc_middle::hir::map::Map;
38 use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
39 use rustc_middle::mir::mono::Linkage;
40 use rustc_middle::ty::query::Providers;
41 use rustc_middle::ty::subst::InternalSubsts;
42 use rustc_middle::ty::util::Discr;
43 use rustc_middle::ty::util::IntTypeExt;
44 use rustc_middle::ty::{self, AdtKind, Const, DefIdTree, ToPolyTraitRef, Ty, TyCtxt};
45 use rustc_middle::ty::{ReprOptions, ToPredicate, WithConstness};
46 use rustc_session::config::SanitizerSet;
47 use rustc_session::lint;
48 use rustc_session::parse::feature_err;
49 use rustc_span::symbol::{kw, sym, Ident, Symbol};
50 use rustc_span::{Span, DUMMY_SP};
51 use rustc_target::spec::abi;
52 use rustc_trait_selection::traits::error_reporting::suggestions::NextTypeParamName;
53
54 mod item_bounds;
55 mod type_of;
56
57 struct OnlySelfBounds(bool);
58
59 ///////////////////////////////////////////////////////////////////////////
60 // Main entry point
61
62 fn collect_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
63 tcx.hir().visit_item_likes_in_module(
64 module_def_id,
65 &mut CollectItemTypesVisitor { tcx }.as_deep_visitor(),
66 );
67 }
68
69 pub fn provide(providers: &mut Providers) {
70 *providers = Providers {
71 opt_const_param_of: type_of::opt_const_param_of,
72 type_of: type_of::type_of,
73 item_bounds: item_bounds::item_bounds,
74 explicit_item_bounds: item_bounds::explicit_item_bounds,
75 generics_of,
76 predicates_of,
77 predicates_defined_on,
78 projection_ty_from_predicates,
79 explicit_predicates_of,
80 super_predicates_of,
81 super_predicates_that_define_assoc_type,
82 trait_explicit_predicates_and_bounds,
83 type_param_predicates,
84 trait_def,
85 adt_def,
86 fn_sig,
87 impl_trait_ref,
88 impl_polarity,
89 is_foreign_item,
90 static_mutability,
91 generator_kind,
92 codegen_fn_attrs,
93 collect_mod_item_types,
94 ..*providers
95 };
96 }
97
98 ///////////////////////////////////////////////////////////////////////////
99
100 /// Context specific to some particular item. This is what implements
101 /// `AstConv`. It has information about the predicates that are defined
102 /// on the trait. Unfortunately, this predicate information is
103 /// available in various different forms at various points in the
104 /// process. So we can't just store a pointer to e.g., the AST or the
105 /// parsed ty form, we have to be more flexible. To this end, the
106 /// `ItemCtxt` is parameterized by a `DefId` that it uses to satisfy
107 /// `get_type_parameter_bounds` requests, drawing the information from
108 /// the AST (`hir::Generics`), recursively.
109 pub struct ItemCtxt<'tcx> {
110 tcx: TyCtxt<'tcx>,
111 item_def_id: DefId,
112 }
113
114 ///////////////////////////////////////////////////////////////////////////
115
116 #[derive(Default)]
117 crate struct PlaceholderHirTyCollector(crate Vec<Span>);
118
119 impl<'v> Visitor<'v> for PlaceholderHirTyCollector {
120 type Map = intravisit::ErasedMap<'v>;
121
122 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
123 NestedVisitorMap::None
124 }
125 fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
126 if let hir::TyKind::Infer = t.kind {
127 self.0.push(t.span);
128 }
129 intravisit::walk_ty(self, t)
130 }
131 }
132
133 struct CollectItemTypesVisitor<'tcx> {
134 tcx: TyCtxt<'tcx>,
135 }
136
137 /// If there are any placeholder types (`_`), emit an error explaining that this is not allowed
138 /// and suggest adding type parameters in the appropriate place, taking into consideration any and
139 /// all already existing generic type parameters to avoid suggesting a name that is already in use.
140 crate fn placeholder_type_error(
141 tcx: TyCtxt<'tcx>,
142 span: Option<Span>,
143 generics: &[hir::GenericParam<'_>],
144 placeholder_types: Vec<Span>,
145 suggest: bool,
146 hir_ty: Option<&hir::Ty<'_>>,
147 ) {
148 if placeholder_types.is_empty() {
149 return;
150 }
151
152 let type_name = generics.next_type_param_name(None);
153 let mut sugg: Vec<_> =
154 placeholder_types.iter().map(|sp| (*sp, (*type_name).to_string())).collect();
155
156 if generics.is_empty() {
157 if let Some(span) = span {
158 sugg.push((span, format!("<{}>", type_name)));
159 }
160 } else if let Some(arg) = generics
161 .iter()
162 .find(|arg| matches!(arg.name, hir::ParamName::Plain(Ident { name: kw::Underscore, .. })))
163 {
164 // Account for `_` already present in cases like `struct S<_>(_);` and suggest
165 // `struct S<T>(T);` instead of `struct S<_, T>(T);`.
166 sugg.push((arg.span, (*type_name).to_string()));
167 } else {
168 let last = generics.iter().last().unwrap();
169 sugg.push((
170 // Account for bounds, we want `fn foo<T: E, K>(_: K)` not `fn foo<T, K: E>(_: K)`.
171 last.bounds_span().unwrap_or(last.span).shrink_to_hi(),
172 format!(", {}", type_name),
173 ));
174 }
175
176 let mut err = bad_placeholder_type(tcx, placeholder_types);
177
178 // Suggest, but only if it is not a function in const or static
179 if suggest {
180 let mut is_fn = false;
181 let mut is_const = false;
182 let mut is_static = false;
183
184 if let Some(hir_ty) = hir_ty {
185 if let hir::TyKind::BareFn(_) = hir_ty.kind {
186 is_fn = true;
187
188 // Check if parent is const or static
189 let parent_id = tcx.hir().get_parent_node(hir_ty.hir_id);
190 let parent_node = tcx.hir().get(parent_id);
191
192 if let hir::Node::Item(item) = parent_node {
193 if let hir::ItemKind::Const(_, _) = item.kind {
194 is_const = true;
195 } else if let hir::ItemKind::Static(_, _, _) = item.kind {
196 is_static = true;
197 }
198 }
199 }
200 }
201
202 // if function is wrapped around a const or static,
203 // then don't show the suggestion
204 if !(is_fn && (is_const || is_static)) {
205 err.multipart_suggestion(
206 "use type parameters instead",
207 sugg,
208 Applicability::HasPlaceholders,
209 );
210 }
211 }
212 err.emit();
213 }
214
215 fn reject_placeholder_type_signatures_in_item(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) {
216 let (generics, suggest) = match &item.kind {
217 hir::ItemKind::Union(_, generics)
218 | hir::ItemKind::Enum(_, generics)
219 | hir::ItemKind::TraitAlias(generics, _)
220 | hir::ItemKind::Trait(_, _, generics, ..)
221 | hir::ItemKind::Impl(hir::Impl { generics, .. })
222 | hir::ItemKind::Struct(_, generics) => (generics, true),
223 hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. })
224 | hir::ItemKind::TyAlias(_, generics) => (generics, false),
225 // `static`, `fn` and `const` are handled elsewhere to suggest appropriate type.
226 _ => return,
227 };
228
229 let mut visitor = PlaceholderHirTyCollector::default();
230 visitor.visit_item(item);
231
232 placeholder_type_error(tcx, Some(generics.span), generics.params, visitor.0, suggest, None);
233 }
234
235 impl Visitor<'tcx> for CollectItemTypesVisitor<'tcx> {
236 type Map = Map<'tcx>;
237
238 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
239 NestedVisitorMap::OnlyBodies(self.tcx.hir())
240 }
241
242 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
243 convert_item(self.tcx, item.item_id());
244 reject_placeholder_type_signatures_in_item(self.tcx, item);
245 intravisit::walk_item(self, item);
246 }
247
248 fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
249 for param in generics.params {
250 match param.kind {
251 hir::GenericParamKind::Lifetime { .. } => {}
252 hir::GenericParamKind::Type { default: Some(_), .. } => {
253 let def_id = self.tcx.hir().local_def_id(param.hir_id);
254 self.tcx.ensure().type_of(def_id);
255 }
256 hir::GenericParamKind::Type { .. } => {}
257 hir::GenericParamKind::Const { .. } => {
258 let def_id = self.tcx.hir().local_def_id(param.hir_id);
259 self.tcx.ensure().type_of(def_id);
260 // FIXME(const_generics_defaults)
261 }
262 }
263 }
264 intravisit::walk_generics(self, generics);
265 }
266
267 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
268 if let hir::ExprKind::Closure(..) = expr.kind {
269 let def_id = self.tcx.hir().local_def_id(expr.hir_id);
270 self.tcx.ensure().generics_of(def_id);
271 self.tcx.ensure().type_of(def_id);
272 }
273 intravisit::walk_expr(self, expr);
274 }
275
276 fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
277 convert_trait_item(self.tcx, trait_item.trait_item_id());
278 intravisit::walk_trait_item(self, trait_item);
279 }
280
281 fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
282 convert_impl_item(self.tcx, impl_item.impl_item_id());
283 intravisit::walk_impl_item(self, impl_item);
284 }
285 }
286
287 ///////////////////////////////////////////////////////////////////////////
288 // Utility types and common code for the above passes.
289
290 fn bad_placeholder_type(
291 tcx: TyCtxt<'tcx>,
292 mut spans: Vec<Span>,
293 ) -> rustc_errors::DiagnosticBuilder<'tcx> {
294 spans.sort();
295 let mut err = struct_span_err!(
296 tcx.sess,
297 spans.clone(),
298 E0121,
299 "the type placeholder `_` is not allowed within types on item signatures",
300 );
301 for span in spans {
302 err.span_label(span, "not allowed in type signatures");
303 }
304 err
305 }
306
307 impl ItemCtxt<'tcx> {
308 pub fn new(tcx: TyCtxt<'tcx>, item_def_id: DefId) -> ItemCtxt<'tcx> {
309 ItemCtxt { tcx, item_def_id }
310 }
311
312 pub fn to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
313 <dyn AstConv<'_>>::ast_ty_to_ty(self, ast_ty)
314 }
315
316 pub fn hir_id(&self) -> hir::HirId {
317 self.tcx.hir().local_def_id_to_hir_id(self.item_def_id.expect_local())
318 }
319
320 pub fn node(&self) -> hir::Node<'tcx> {
321 self.tcx.hir().get(self.hir_id())
322 }
323 }
324
325 impl AstConv<'tcx> for ItemCtxt<'tcx> {
326 fn tcx(&self) -> TyCtxt<'tcx> {
327 self.tcx
328 }
329
330 fn item_def_id(&self) -> Option<DefId> {
331 Some(self.item_def_id)
332 }
333
334 fn default_constness_for_trait_bounds(&self) -> hir::Constness {
335 if let Some(fn_like) = FnLikeNode::from_node(self.node()) {
336 fn_like.constness()
337 } else {
338 hir::Constness::NotConst
339 }
340 }
341
342 fn get_type_parameter_bounds(
343 &self,
344 span: Span,
345 def_id: DefId,
346 assoc_name: Ident,
347 ) -> ty::GenericPredicates<'tcx> {
348 self.tcx.at(span).type_param_predicates((
349 self.item_def_id,
350 def_id.expect_local(),
351 assoc_name,
352 ))
353 }
354
355 fn re_infer(&self, _: Option<&ty::GenericParamDef>, _: Span) -> Option<ty::Region<'tcx>> {
356 None
357 }
358
359 fn allow_ty_infer(&self) -> bool {
360 false
361 }
362
363 fn ty_infer(&self, _: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx> {
364 self.tcx().ty_error_with_message(span, "bad_placeholder_type")
365 }
366
367 fn ct_infer(
368 &self,
369 ty: Ty<'tcx>,
370 _: Option<&ty::GenericParamDef>,
371 span: Span,
372 ) -> &'tcx Const<'tcx> {
373 bad_placeholder_type(self.tcx(), vec![span]).emit();
374 // Typeck doesn't expect erased regions to be returned from `type_of`.
375 let ty = self.tcx.fold_regions(ty, &mut false, |r, _| match r {
376 ty::ReErased => self.tcx.lifetimes.re_static,
377 _ => r,
378 });
379 self.tcx().const_error(ty)
380 }
381
382 fn projected_ty_from_poly_trait_ref(
383 &self,
384 span: Span,
385 item_def_id: DefId,
386 item_segment: &hir::PathSegment<'_>,
387 poly_trait_ref: ty::PolyTraitRef<'tcx>,
388 ) -> Ty<'tcx> {
389 if let Some(trait_ref) = poly_trait_ref.no_bound_vars() {
390 let item_substs = <dyn AstConv<'tcx>>::create_substs_for_associated_item(
391 self,
392 self.tcx,
393 span,
394 item_def_id,
395 item_segment,
396 trait_ref.substs,
397 );
398 self.tcx().mk_projection(item_def_id, item_substs)
399 } else {
400 // There are no late-bound regions; we can just ignore the binder.
401 let mut err = struct_span_err!(
402 self.tcx().sess,
403 span,
404 E0212,
405 "cannot use the associated type of a trait \
406 with uninferred generic parameters"
407 );
408
409 match self.node() {
410 hir::Node::Field(_) | hir::Node::Ctor(_) | hir::Node::Variant(_) => {
411 let item =
412 self.tcx.hir().expect_item(self.tcx.hir().get_parent_item(self.hir_id()));
413 match &item.kind {
414 hir::ItemKind::Enum(_, generics)
415 | hir::ItemKind::Struct(_, generics)
416 | hir::ItemKind::Union(_, generics) => {
417 let lt_name = get_new_lifetime_name(self.tcx, poly_trait_ref, generics);
418 let (lt_sp, sugg) = match generics.params {
419 [] => (generics.span, format!("<{}>", lt_name)),
420 [bound, ..] => {
421 (bound.span.shrink_to_lo(), format!("{}, ", lt_name))
422 }
423 };
424 let suggestions = vec![
425 (lt_sp, sugg),
426 (
427 span,
428 format!(
429 "{}::{}",
430 // Replace the existing lifetimes with a new named lifetime.
431 self.tcx
432 .replace_late_bound_regions(poly_trait_ref, |_| {
433 self.tcx.mk_region(ty::ReEarlyBound(
434 ty::EarlyBoundRegion {
435 def_id: item_def_id,
436 index: 0,
437 name: Symbol::intern(&lt_name),
438 },
439 ))
440 })
441 .0,
442 item_segment.ident
443 ),
444 ),
445 ];
446 err.multipart_suggestion(
447 "use a fully qualified path with explicit lifetimes",
448 suggestions,
449 Applicability::MaybeIncorrect,
450 );
451 }
452 _ => {}
453 }
454 }
455 hir::Node::Item(hir::Item {
456 kind:
457 hir::ItemKind::Struct(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Union(..),
458 ..
459 }) => {}
460 hir::Node::Item(_)
461 | hir::Node::ForeignItem(_)
462 | hir::Node::TraitItem(_)
463 | hir::Node::ImplItem(_) => {
464 err.span_suggestion(
465 span,
466 "use a fully qualified path with inferred lifetimes",
467 format!(
468 "{}::{}",
469 // Erase named lt, we want `<A as B<'_>::C`, not `<A as B<'a>::C`.
470 self.tcx.anonymize_late_bound_regions(poly_trait_ref).skip_binder(),
471 item_segment.ident
472 ),
473 Applicability::MaybeIncorrect,
474 );
475 }
476 _ => {}
477 }
478 err.emit();
479 self.tcx().ty_error()
480 }
481 }
482
483 fn normalize_ty(&self, _span: Span, ty: Ty<'tcx>) -> Ty<'tcx> {
484 // Types in item signatures are not normalized to avoid undue dependencies.
485 ty
486 }
487
488 fn set_tainted_by_errors(&self) {
489 // There's no obvious place to track this, so just let it go.
490 }
491
492 fn record_ty(&self, _hir_id: hir::HirId, _ty: Ty<'tcx>, _span: Span) {
493 // There's no place to record types from signatures?
494 }
495 }
496
497 /// Synthesize a new lifetime name that doesn't clash with any of the lifetimes already present.
498 fn get_new_lifetime_name<'tcx>(
499 tcx: TyCtxt<'tcx>,
500 poly_trait_ref: ty::PolyTraitRef<'tcx>,
501 generics: &hir::Generics<'tcx>,
502 ) -> String {
503 let existing_lifetimes = tcx
504 .collect_referenced_late_bound_regions(&poly_trait_ref)
505 .into_iter()
506 .filter_map(|lt| {
507 if let ty::BoundRegionKind::BrNamed(_, name) = lt {
508 Some(name.as_str().to_string())
509 } else {
510 None
511 }
512 })
513 .chain(generics.params.iter().filter_map(|param| {
514 if let hir::GenericParamKind::Lifetime { .. } = &param.kind {
515 Some(param.name.ident().as_str().to_string())
516 } else {
517 None
518 }
519 }))
520 .collect::<FxHashSet<String>>();
521
522 let a_to_z_repeat_n = |n| {
523 (b'a'..=b'z').map(move |c| {
524 let mut s = '\''.to_string();
525 s.extend(std::iter::repeat(char::from(c)).take(n));
526 s
527 })
528 };
529
530 // If all single char lifetime names are present, we wrap around and double the chars.
531 (1..).flat_map(a_to_z_repeat_n).find(|lt| !existing_lifetimes.contains(lt.as_str())).unwrap()
532 }
533
534 /// Returns the predicates defined on `item_def_id` of the form
535 /// `X: Foo` where `X` is the type parameter `def_id`.
536 fn type_param_predicates(
537 tcx: TyCtxt<'_>,
538 (item_def_id, def_id, assoc_name): (DefId, LocalDefId, Ident),
539 ) -> ty::GenericPredicates<'_> {
540 use rustc_hir::*;
541
542 // In the AST, bounds can derive from two places. Either
543 // written inline like `<T: Foo>` or in a where-clause like
544 // `where T: Foo`.
545
546 let param_id = tcx.hir().local_def_id_to_hir_id(def_id);
547 let param_owner = tcx.hir().ty_param_owner(param_id);
548 let param_owner_def_id = tcx.hir().local_def_id(param_owner);
549 let generics = tcx.generics_of(param_owner_def_id);
550 let index = generics.param_def_id_to_index[&def_id.to_def_id()];
551 let ty = tcx.mk_ty_param(index, tcx.hir().ty_param_name(param_id));
552
553 // Don't look for bounds where the type parameter isn't in scope.
554 let parent = if item_def_id == param_owner_def_id.to_def_id() {
555 None
556 } else {
557 tcx.generics_of(item_def_id).parent
558 };
559
560 let mut result = parent
561 .map(|parent| {
562 let icx = ItemCtxt::new(tcx, parent);
563 icx.get_type_parameter_bounds(DUMMY_SP, def_id.to_def_id(), assoc_name)
564 })
565 .unwrap_or_default();
566 let mut extend = None;
567
568 let item_hir_id = tcx.hir().local_def_id_to_hir_id(item_def_id.expect_local());
569 let ast_generics = match tcx.hir().get(item_hir_id) {
570 Node::TraitItem(item) => &item.generics,
571
572 Node::ImplItem(item) => &item.generics,
573
574 Node::Item(item) => {
575 match item.kind {
576 ItemKind::Fn(.., ref generics, _)
577 | ItemKind::Impl(hir::Impl { ref generics, .. })
578 | ItemKind::TyAlias(_, ref generics)
579 | ItemKind::OpaqueTy(OpaqueTy { ref generics, impl_trait_fn: None, .. })
580 | ItemKind::Enum(_, ref generics)
581 | ItemKind::Struct(_, ref generics)
582 | ItemKind::Union(_, ref generics) => generics,
583 ItemKind::Trait(_, _, ref generics, ..) => {
584 // Implied `Self: Trait` and supertrait bounds.
585 if param_id == item_hir_id {
586 let identity_trait_ref = ty::TraitRef::identity(tcx, item_def_id);
587 extend =
588 Some((identity_trait_ref.without_const().to_predicate(tcx), item.span));
589 }
590 generics
591 }
592 _ => return result,
593 }
594 }
595
596 Node::ForeignItem(item) => match item.kind {
597 ForeignItemKind::Fn(_, _, ref generics) => generics,
598 _ => return result,
599 },
600
601 _ => return result,
602 };
603
604 let icx = ItemCtxt::new(tcx, item_def_id);
605 let extra_predicates = extend.into_iter().chain(
606 icx.type_parameter_bounds_in_generics(
607 ast_generics,
608 param_id,
609 ty,
610 OnlySelfBounds(true),
611 Some(assoc_name),
612 )
613 .into_iter()
614 .filter(|(predicate, _)| match predicate.kind().skip_binder() {
615 ty::PredicateKind::Trait(data, _) => data.self_ty().is_param(index),
616 _ => false,
617 }),
618 );
619 result.predicates =
620 tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(extra_predicates));
621 result
622 }
623
624 impl ItemCtxt<'tcx> {
625 /// Finds bounds from `hir::Generics`. This requires scanning through the
626 /// AST. We do this to avoid having to convert *all* the bounds, which
627 /// would create artificial cycles. Instead, we can only convert the
628 /// bounds for a type parameter `X` if `X::Foo` is used.
629 fn type_parameter_bounds_in_generics(
630 &self,
631 ast_generics: &'tcx hir::Generics<'tcx>,
632 param_id: hir::HirId,
633 ty: Ty<'tcx>,
634 only_self_bounds: OnlySelfBounds,
635 assoc_name: Option<Ident>,
636 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
637 let constness = self.default_constness_for_trait_bounds();
638 let from_ty_params = ast_generics
639 .params
640 .iter()
641 .filter_map(|param| match param.kind {
642 GenericParamKind::Type { .. } if param.hir_id == param_id => Some(&param.bounds),
643 _ => None,
644 })
645 .flat_map(|bounds| bounds.iter())
646 .filter(|b| match assoc_name {
647 Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
648 None => true,
649 })
650 .flat_map(|b| predicates_from_bound(self, ty, b, constness));
651
652 let from_where_clauses = ast_generics
653 .where_clause
654 .predicates
655 .iter()
656 .filter_map(|wp| match *wp {
657 hir::WherePredicate::BoundPredicate(ref bp) => Some(bp),
658 _ => None,
659 })
660 .flat_map(|bp| {
661 let bt = if is_param(self.tcx, &bp.bounded_ty, param_id) {
662 Some(ty)
663 } else if !only_self_bounds.0 {
664 Some(self.to_ty(&bp.bounded_ty))
665 } else {
666 None
667 };
668 bp.bounds
669 .iter()
670 .filter(|b| match assoc_name {
671 Some(assoc_name) => self.bound_defines_assoc_item(b, assoc_name),
672 None => true,
673 })
674 .filter_map(move |b| bt.map(|bt| (bt, b)))
675 })
676 .flat_map(|(bt, b)| predicates_from_bound(self, bt, b, constness));
677
678 from_ty_params.chain(from_where_clauses).collect()
679 }
680
681 fn bound_defines_assoc_item(&self, b: &hir::GenericBound<'_>, assoc_name: Ident) -> bool {
682 debug!("bound_defines_assoc_item(b={:?}, assoc_name={:?})", b, assoc_name);
683
684 match b {
685 hir::GenericBound::Trait(poly_trait_ref, _) => {
686 let trait_ref = &poly_trait_ref.trait_ref;
687 if let Some(trait_did) = trait_ref.trait_def_id() {
688 self.tcx.trait_may_define_assoc_type(trait_did, assoc_name)
689 } else {
690 false
691 }
692 }
693 _ => false,
694 }
695 }
696 }
697
698 /// Tests whether this is the AST for a reference to the type
699 /// parameter with ID `param_id`. We use this so as to avoid running
700 /// `ast_ty_to_ty`, because we want to avoid triggering an all-out
701 /// conversion of the type to avoid inducing unnecessary cycles.
702 fn is_param(tcx: TyCtxt<'_>, ast_ty: &hir::Ty<'_>, param_id: hir::HirId) -> bool {
703 if let hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) = ast_ty.kind {
704 match path.res {
705 Res::SelfTy(Some(def_id), None) | Res::Def(DefKind::TyParam, def_id) => {
706 def_id == tcx.hir().local_def_id(param_id).to_def_id()
707 }
708 _ => false,
709 }
710 } else {
711 false
712 }
713 }
714
715 fn convert_item(tcx: TyCtxt<'_>, item_id: hir::ItemId) {
716 let it = tcx.hir().item(item_id);
717 debug!("convert: item {} with id {}", it.ident, it.hir_id());
718 let def_id = item_id.def_id;
719
720 match it.kind {
721 // These don't define types.
722 hir::ItemKind::ExternCrate(_)
723 | hir::ItemKind::Use(..)
724 | hir::ItemKind::Mod(_)
725 | hir::ItemKind::GlobalAsm(_) => {}
726 hir::ItemKind::ForeignMod { items, .. } => {
727 for item in items {
728 let item = tcx.hir().foreign_item(item.id);
729 tcx.ensure().generics_of(item.def_id);
730 tcx.ensure().type_of(item.def_id);
731 tcx.ensure().predicates_of(item.def_id);
732 if let hir::ForeignItemKind::Fn(..) = item.kind {
733 tcx.ensure().fn_sig(item.def_id);
734 }
735 }
736 }
737 hir::ItemKind::Enum(ref enum_definition, _) => {
738 tcx.ensure().generics_of(def_id);
739 tcx.ensure().type_of(def_id);
740 tcx.ensure().predicates_of(def_id);
741 convert_enum_variant_types(tcx, def_id.to_def_id(), &enum_definition.variants);
742 }
743 hir::ItemKind::Impl { .. } => {
744 tcx.ensure().generics_of(def_id);
745 tcx.ensure().type_of(def_id);
746 tcx.ensure().impl_trait_ref(def_id);
747 tcx.ensure().predicates_of(def_id);
748 }
749 hir::ItemKind::Trait(..) => {
750 tcx.ensure().generics_of(def_id);
751 tcx.ensure().trait_def(def_id);
752 tcx.at(it.span).super_predicates_of(def_id);
753 tcx.ensure().predicates_of(def_id);
754 }
755 hir::ItemKind::TraitAlias(..) => {
756 tcx.ensure().generics_of(def_id);
757 tcx.at(it.span).super_predicates_of(def_id);
758 tcx.ensure().predicates_of(def_id);
759 }
760 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
761 tcx.ensure().generics_of(def_id);
762 tcx.ensure().type_of(def_id);
763 tcx.ensure().predicates_of(def_id);
764
765 for f in struct_def.fields() {
766 let def_id = tcx.hir().local_def_id(f.hir_id);
767 tcx.ensure().generics_of(def_id);
768 tcx.ensure().type_of(def_id);
769 tcx.ensure().predicates_of(def_id);
770 }
771
772 if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
773 convert_variant_ctor(tcx, ctor_hir_id);
774 }
775 }
776
777 // Desugared from `impl Trait`, so visited by the function's return type.
778 hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn: Some(_), .. }) => {}
779
780 // Don't call `type_of` on opaque types, since that depends on type
781 // checking function bodies. `check_item_type` ensures that it's called
782 // instead.
783 hir::ItemKind::OpaqueTy(..) => {
784 tcx.ensure().generics_of(def_id);
785 tcx.ensure().predicates_of(def_id);
786 tcx.ensure().explicit_item_bounds(def_id);
787 }
788 hir::ItemKind::TyAlias(..)
789 | hir::ItemKind::Static(..)
790 | hir::ItemKind::Const(..)
791 | hir::ItemKind::Fn(..) => {
792 tcx.ensure().generics_of(def_id);
793 tcx.ensure().type_of(def_id);
794 tcx.ensure().predicates_of(def_id);
795 match it.kind {
796 hir::ItemKind::Fn(..) => tcx.ensure().fn_sig(def_id),
797 hir::ItemKind::OpaqueTy(..) => tcx.ensure().item_bounds(def_id),
798 _ => (),
799 }
800 }
801 }
802 }
803
804 fn convert_trait_item(tcx: TyCtxt<'_>, trait_item_id: hir::TraitItemId) {
805 let trait_item = tcx.hir().trait_item(trait_item_id);
806 tcx.ensure().generics_of(trait_item_id.def_id);
807
808 match trait_item.kind {
809 hir::TraitItemKind::Fn(..) => {
810 tcx.ensure().type_of(trait_item_id.def_id);
811 tcx.ensure().fn_sig(trait_item_id.def_id);
812 }
813
814 hir::TraitItemKind::Const(.., Some(_)) => {
815 tcx.ensure().type_of(trait_item_id.def_id);
816 }
817
818 hir::TraitItemKind::Const(..) => {
819 tcx.ensure().type_of(trait_item_id.def_id);
820 // Account for `const C: _;`.
821 let mut visitor = PlaceholderHirTyCollector::default();
822 visitor.visit_trait_item(trait_item);
823 placeholder_type_error(tcx, None, &[], visitor.0, false, None);
824 }
825
826 hir::TraitItemKind::Type(_, Some(_)) => {
827 tcx.ensure().item_bounds(trait_item_id.def_id);
828 tcx.ensure().type_of(trait_item_id.def_id);
829 // Account for `type T = _;`.
830 let mut visitor = PlaceholderHirTyCollector::default();
831 visitor.visit_trait_item(trait_item);
832 placeholder_type_error(tcx, None, &[], visitor.0, false, None);
833 }
834
835 hir::TraitItemKind::Type(_, None) => {
836 tcx.ensure().item_bounds(trait_item_id.def_id);
837 // #74612: Visit and try to find bad placeholders
838 // even if there is no concrete type.
839 let mut visitor = PlaceholderHirTyCollector::default();
840 visitor.visit_trait_item(trait_item);
841
842 placeholder_type_error(tcx, None, &[], visitor.0, false, None);
843 }
844 };
845
846 tcx.ensure().predicates_of(trait_item_id.def_id);
847 }
848
849 fn convert_impl_item(tcx: TyCtxt<'_>, impl_item_id: hir::ImplItemId) {
850 let def_id = impl_item_id.def_id;
851 tcx.ensure().generics_of(def_id);
852 tcx.ensure().type_of(def_id);
853 tcx.ensure().predicates_of(def_id);
854 let impl_item = tcx.hir().impl_item(impl_item_id);
855 match impl_item.kind {
856 hir::ImplItemKind::Fn(..) => {
857 tcx.ensure().fn_sig(def_id);
858 }
859 hir::ImplItemKind::TyAlias(_) => {
860 // Account for `type T = _;`
861 let mut visitor = PlaceholderHirTyCollector::default();
862 visitor.visit_impl_item(impl_item);
863
864 placeholder_type_error(tcx, None, &[], visitor.0, false, None);
865 }
866 hir::ImplItemKind::Const(..) => {}
867 }
868 }
869
870 fn convert_variant_ctor(tcx: TyCtxt<'_>, ctor_id: hir::HirId) {
871 let def_id = tcx.hir().local_def_id(ctor_id);
872 tcx.ensure().generics_of(def_id);
873 tcx.ensure().type_of(def_id);
874 tcx.ensure().predicates_of(def_id);
875 }
876
877 fn convert_enum_variant_types(tcx: TyCtxt<'_>, def_id: DefId, variants: &[hir::Variant<'_>]) {
878 let def = tcx.adt_def(def_id);
879 let repr_type = def.repr.discr_type();
880 let initial = repr_type.initial_discriminant(tcx);
881 let mut prev_discr = None::<Discr<'_>>;
882
883 // fill the discriminant values and field types
884 for variant in variants {
885 let wrapped_discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
886 prev_discr = Some(
887 if let Some(ref e) = variant.disr_expr {
888 let expr_did = tcx.hir().local_def_id(e.hir_id);
889 def.eval_explicit_discr(tcx, expr_did.to_def_id())
890 } else if let Some(discr) = repr_type.disr_incr(tcx, prev_discr) {
891 Some(discr)
892 } else {
893 struct_span_err!(tcx.sess, variant.span, E0370, "enum discriminant overflowed")
894 .span_label(
895 variant.span,
896 format!("overflowed on value after {}", prev_discr.unwrap()),
897 )
898 .note(&format!(
899 "explicitly set `{} = {}` if that is desired outcome",
900 variant.ident, wrapped_discr
901 ))
902 .emit();
903 None
904 }
905 .unwrap_or(wrapped_discr),
906 );
907
908 for f in variant.data.fields() {
909 let def_id = tcx.hir().local_def_id(f.hir_id);
910 tcx.ensure().generics_of(def_id);
911 tcx.ensure().type_of(def_id);
912 tcx.ensure().predicates_of(def_id);
913 }
914
915 // Convert the ctor, if any. This also registers the variant as
916 // an item.
917 if let Some(ctor_hir_id) = variant.data.ctor_hir_id() {
918 convert_variant_ctor(tcx, ctor_hir_id);
919 }
920 }
921 }
922
923 fn convert_variant(
924 tcx: TyCtxt<'_>,
925 variant_did: Option<LocalDefId>,
926 ctor_did: Option<LocalDefId>,
927 ident: Ident,
928 discr: ty::VariantDiscr,
929 def: &hir::VariantData<'_>,
930 adt_kind: ty::AdtKind,
931 parent_did: LocalDefId,
932 ) -> ty::VariantDef {
933 let mut seen_fields: FxHashMap<Ident, Span> = Default::default();
934 let fields = def
935 .fields()
936 .iter()
937 .map(|f| {
938 let fid = tcx.hir().local_def_id(f.hir_id);
939 let dup_span = seen_fields.get(&f.ident.normalize_to_macros_2_0()).cloned();
940 if let Some(prev_span) = dup_span {
941 tcx.sess.emit_err(errors::FieldAlreadyDeclared {
942 field_name: f.ident,
943 span: f.span,
944 prev_span,
945 });
946 } else {
947 seen_fields.insert(f.ident.normalize_to_macros_2_0(), f.span);
948 }
949
950 ty::FieldDef { did: fid.to_def_id(), ident: f.ident, vis: tcx.visibility(fid) }
951 })
952 .collect();
953 let recovered = match def {
954 hir::VariantData::Struct(_, r) => *r,
955 _ => false,
956 };
957 ty::VariantDef::new(
958 ident,
959 variant_did.map(LocalDefId::to_def_id),
960 ctor_did.map(LocalDefId::to_def_id),
961 discr,
962 fields,
963 CtorKind::from_hir(def),
964 adt_kind,
965 parent_did.to_def_id(),
966 recovered,
967 adt_kind == AdtKind::Struct && tcx.has_attr(parent_did.to_def_id(), sym::non_exhaustive)
968 || variant_did.map_or(false, |variant_did| {
969 tcx.has_attr(variant_did.to_def_id(), sym::non_exhaustive)
970 }),
971 )
972 }
973
974 fn adt_def(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::AdtDef {
975 use rustc_hir::*;
976
977 let def_id = def_id.expect_local();
978 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
979 let item = match tcx.hir().get(hir_id) {
980 Node::Item(item) => item,
981 _ => bug!(),
982 };
983
984 let repr = ReprOptions::new(tcx, def_id.to_def_id());
985 let (kind, variants) = match item.kind {
986 ItemKind::Enum(ref def, _) => {
987 let mut distance_from_explicit = 0;
988 let variants = def
989 .variants
990 .iter()
991 .map(|v| {
992 let variant_did = Some(tcx.hir().local_def_id(v.id));
993 let ctor_did =
994 v.data.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
995
996 let discr = if let Some(ref e) = v.disr_expr {
997 distance_from_explicit = 0;
998 ty::VariantDiscr::Explicit(tcx.hir().local_def_id(e.hir_id).to_def_id())
999 } else {
1000 ty::VariantDiscr::Relative(distance_from_explicit)
1001 };
1002 distance_from_explicit += 1;
1003
1004 convert_variant(
1005 tcx,
1006 variant_did,
1007 ctor_did,
1008 v.ident,
1009 discr,
1010 &v.data,
1011 AdtKind::Enum,
1012 def_id,
1013 )
1014 })
1015 .collect();
1016
1017 (AdtKind::Enum, variants)
1018 }
1019 ItemKind::Struct(ref def, _) => {
1020 let variant_did = None::<LocalDefId>;
1021 let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1022
1023 let variants = std::iter::once(convert_variant(
1024 tcx,
1025 variant_did,
1026 ctor_did,
1027 item.ident,
1028 ty::VariantDiscr::Relative(0),
1029 def,
1030 AdtKind::Struct,
1031 def_id,
1032 ))
1033 .collect();
1034
1035 (AdtKind::Struct, variants)
1036 }
1037 ItemKind::Union(ref def, _) => {
1038 let variant_did = None;
1039 let ctor_did = def.ctor_hir_id().map(|hir_id| tcx.hir().local_def_id(hir_id));
1040
1041 let variants = std::iter::once(convert_variant(
1042 tcx,
1043 variant_did,
1044 ctor_did,
1045 item.ident,
1046 ty::VariantDiscr::Relative(0),
1047 def,
1048 AdtKind::Union,
1049 def_id,
1050 ))
1051 .collect();
1052
1053 (AdtKind::Union, variants)
1054 }
1055 _ => bug!(),
1056 };
1057 tcx.alloc_adt_def(def_id.to_def_id(), kind, variants, repr)
1058 }
1059
1060 /// Ensures that the super-predicates of the trait with a `DefId`
1061 /// of `trait_def_id` are converted and stored. This also ensures that
1062 /// the transitive super-predicates are converted.
1063 fn super_predicates_of(tcx: TyCtxt<'_>, trait_def_id: DefId) -> ty::GenericPredicates<'_> {
1064 debug!("super_predicates(trait_def_id={:?})", trait_def_id);
1065 tcx.super_predicates_that_define_assoc_type((trait_def_id, None))
1066 }
1067
1068 /// Ensures that the super-predicates of the trait with a `DefId`
1069 /// of `trait_def_id` are converted and stored. This also ensures that
1070 /// the transitive super-predicates are converted.
1071 fn super_predicates_that_define_assoc_type(
1072 tcx: TyCtxt<'_>,
1073 (trait_def_id, assoc_name): (DefId, Option<Ident>),
1074 ) -> ty::GenericPredicates<'_> {
1075 debug!(
1076 "super_predicates_that_define_assoc_type(trait_def_id={:?}, assoc_name={:?})",
1077 trait_def_id, assoc_name
1078 );
1079 if trait_def_id.is_local() {
1080 debug!("super_predicates_that_define_assoc_type: local trait_def_id={:?}", trait_def_id);
1081 let trait_hir_id = tcx.hir().local_def_id_to_hir_id(trait_def_id.expect_local());
1082
1083 let item = match tcx.hir().get(trait_hir_id) {
1084 Node::Item(item) => item,
1085 _ => bug!("trait_node_id {} is not an item", trait_hir_id),
1086 };
1087
1088 let (generics, bounds) = match item.kind {
1089 hir::ItemKind::Trait(.., ref generics, ref supertraits, _) => (generics, supertraits),
1090 hir::ItemKind::TraitAlias(ref generics, ref supertraits) => (generics, supertraits),
1091 _ => span_bug!(item.span, "super_predicates invoked on non-trait"),
1092 };
1093
1094 let icx = ItemCtxt::new(tcx, trait_def_id);
1095
1096 // Convert the bounds that follow the colon, e.g., `Bar + Zed` in `trait Foo: Bar + Zed`.
1097 let self_param_ty = tcx.types.self_param;
1098 let superbounds1 = if let Some(assoc_name) = assoc_name {
1099 <dyn AstConv<'_>>::compute_bounds_that_match_assoc_type(
1100 &icx,
1101 self_param_ty,
1102 &bounds,
1103 SizedByDefault::No,
1104 item.span,
1105 assoc_name,
1106 )
1107 } else {
1108 <dyn AstConv<'_>>::compute_bounds(
1109 &icx,
1110 self_param_ty,
1111 &bounds,
1112 SizedByDefault::No,
1113 item.span,
1114 )
1115 };
1116
1117 let superbounds1 = superbounds1.predicates(tcx, self_param_ty);
1118
1119 // Convert any explicit superbounds in the where-clause,
1120 // e.g., `trait Foo where Self: Bar`.
1121 // In the case of trait aliases, however, we include all bounds in the where-clause,
1122 // so e.g., `trait Foo = where u32: PartialEq<Self>` would include `u32: PartialEq<Self>`
1123 // as one of its "superpredicates".
1124 let is_trait_alias = tcx.is_trait_alias(trait_def_id);
1125 let superbounds2 = icx.type_parameter_bounds_in_generics(
1126 generics,
1127 item.hir_id(),
1128 self_param_ty,
1129 OnlySelfBounds(!is_trait_alias),
1130 assoc_name,
1131 );
1132
1133 // Combine the two lists to form the complete set of superbounds:
1134 let superbounds = &*tcx.arena.alloc_from_iter(superbounds1.into_iter().chain(superbounds2));
1135
1136 // Now require that immediate supertraits are converted,
1137 // which will, in turn, reach indirect supertraits.
1138 if assoc_name.is_none() {
1139 // Now require that immediate supertraits are converted,
1140 // which will, in turn, reach indirect supertraits.
1141 for &(pred, span) in superbounds {
1142 debug!("superbound: {:?}", pred);
1143 if let ty::PredicateKind::Trait(bound, _) = pred.kind().skip_binder() {
1144 tcx.at(span).super_predicates_of(bound.def_id());
1145 }
1146 }
1147 }
1148
1149 ty::GenericPredicates { parent: None, predicates: superbounds }
1150 } else {
1151 // if `assoc_name` is None, then the query should've been redirected to an
1152 // external provider
1153 assert!(assoc_name.is_some());
1154 tcx.super_predicates_of(trait_def_id)
1155 }
1156 }
1157
1158 fn trait_def(tcx: TyCtxt<'_>, def_id: DefId) -> ty::TraitDef {
1159 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1160 let item = tcx.hir().expect_item(hir_id);
1161
1162 let (is_auto, unsafety) = match item.kind {
1163 hir::ItemKind::Trait(is_auto, unsafety, ..) => (is_auto == hir::IsAuto::Yes, unsafety),
1164 hir::ItemKind::TraitAlias(..) => (false, hir::Unsafety::Normal),
1165 _ => span_bug!(item.span, "trait_def_of_item invoked on non-trait"),
1166 };
1167
1168 let paren_sugar = tcx.has_attr(def_id, sym::rustc_paren_sugar);
1169 if paren_sugar && !tcx.features().unboxed_closures {
1170 tcx.sess
1171 .struct_span_err(
1172 item.span,
1173 "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
1174 which traits can use parenthetical notation",
1175 )
1176 .help("add `#![feature(unboxed_closures)]` to the crate attributes to use it")
1177 .emit();
1178 }
1179
1180 let is_marker = tcx.has_attr(def_id, sym::marker);
1181 let spec_kind = if tcx.has_attr(def_id, sym::rustc_unsafe_specialization_marker) {
1182 ty::trait_def::TraitSpecializationKind::Marker
1183 } else if tcx.has_attr(def_id, sym::rustc_specialization_trait) {
1184 ty::trait_def::TraitSpecializationKind::AlwaysApplicable
1185 } else {
1186 ty::trait_def::TraitSpecializationKind::None
1187 };
1188 let def_path_hash = tcx.def_path_hash(def_id);
1189 ty::TraitDef::new(def_id, unsafety, paren_sugar, is_auto, is_marker, spec_kind, def_path_hash)
1190 }
1191
1192 fn has_late_bound_regions<'tcx>(tcx: TyCtxt<'tcx>, node: Node<'tcx>) -> Option<Span> {
1193 struct LateBoundRegionsDetector<'tcx> {
1194 tcx: TyCtxt<'tcx>,
1195 outer_index: ty::DebruijnIndex,
1196 has_late_bound_regions: Option<Span>,
1197 }
1198
1199 impl Visitor<'tcx> for LateBoundRegionsDetector<'tcx> {
1200 type Map = intravisit::ErasedMap<'tcx>;
1201
1202 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1203 NestedVisitorMap::None
1204 }
1205
1206 fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
1207 if self.has_late_bound_regions.is_some() {
1208 return;
1209 }
1210 match ty.kind {
1211 hir::TyKind::BareFn(..) => {
1212 self.outer_index.shift_in(1);
1213 intravisit::walk_ty(self, ty);
1214 self.outer_index.shift_out(1);
1215 }
1216 _ => intravisit::walk_ty(self, ty),
1217 }
1218 }
1219
1220 fn visit_poly_trait_ref(
1221 &mut self,
1222 tr: &'tcx hir::PolyTraitRef<'tcx>,
1223 m: hir::TraitBoundModifier,
1224 ) {
1225 if self.has_late_bound_regions.is_some() {
1226 return;
1227 }
1228 self.outer_index.shift_in(1);
1229 intravisit::walk_poly_trait_ref(self, tr, m);
1230 self.outer_index.shift_out(1);
1231 }
1232
1233 fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
1234 if self.has_late_bound_regions.is_some() {
1235 return;
1236 }
1237
1238 match self.tcx.named_region(lt.hir_id) {
1239 Some(rl::Region::Static | rl::Region::EarlyBound(..)) => {}
1240 Some(
1241 rl::Region::LateBound(debruijn, _, _) | rl::Region::LateBoundAnon(debruijn, _),
1242 ) if debruijn < self.outer_index => {}
1243 Some(
1244 rl::Region::LateBound(..)
1245 | rl::Region::LateBoundAnon(..)
1246 | rl::Region::Free(..),
1247 )
1248 | None => {
1249 self.has_late_bound_regions = Some(lt.span);
1250 }
1251 }
1252 }
1253 }
1254
1255 fn has_late_bound_regions<'tcx>(
1256 tcx: TyCtxt<'tcx>,
1257 generics: &'tcx hir::Generics<'tcx>,
1258 decl: &'tcx hir::FnDecl<'tcx>,
1259 ) -> Option<Span> {
1260 let mut visitor = LateBoundRegionsDetector {
1261 tcx,
1262 outer_index: ty::INNERMOST,
1263 has_late_bound_regions: None,
1264 };
1265 for param in generics.params {
1266 if let GenericParamKind::Lifetime { .. } = param.kind {
1267 if tcx.is_late_bound(param.hir_id) {
1268 return Some(param.span);
1269 }
1270 }
1271 }
1272 visitor.visit_fn_decl(decl);
1273 visitor.has_late_bound_regions
1274 }
1275
1276 match node {
1277 Node::TraitItem(item) => match item.kind {
1278 hir::TraitItemKind::Fn(ref sig, _) => {
1279 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1280 }
1281 _ => None,
1282 },
1283 Node::ImplItem(item) => match item.kind {
1284 hir::ImplItemKind::Fn(ref sig, _) => {
1285 has_late_bound_regions(tcx, &item.generics, &sig.decl)
1286 }
1287 _ => None,
1288 },
1289 Node::ForeignItem(item) => match item.kind {
1290 hir::ForeignItemKind::Fn(ref fn_decl, _, ref generics) => {
1291 has_late_bound_regions(tcx, generics, fn_decl)
1292 }
1293 _ => None,
1294 },
1295 Node::Item(item) => match item.kind {
1296 hir::ItemKind::Fn(ref sig, .., ref generics, _) => {
1297 has_late_bound_regions(tcx, generics, &sig.decl)
1298 }
1299 _ => None,
1300 },
1301 _ => None,
1302 }
1303 }
1304
1305 struct AnonConstInParamListDetector {
1306 in_param_list: bool,
1307 found_anon_const_in_list: bool,
1308 ct: HirId,
1309 }
1310
1311 impl<'v> Visitor<'v> for AnonConstInParamListDetector {
1312 type Map = intravisit::ErasedMap<'v>;
1313
1314 fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
1315 NestedVisitorMap::None
1316 }
1317
1318 fn visit_generic_param(&mut self, p: &'v hir::GenericParam<'v>) {
1319 let prev = self.in_param_list;
1320 self.in_param_list = true;
1321 intravisit::walk_generic_param(self, p);
1322 self.in_param_list = prev;
1323 }
1324
1325 fn visit_anon_const(&mut self, c: &'v hir::AnonConst) {
1326 if self.in_param_list && self.ct == c.hir_id {
1327 self.found_anon_const_in_list = true;
1328 } else {
1329 intravisit::walk_anon_const(self, c)
1330 }
1331 }
1332 }
1333
1334 fn generics_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Generics {
1335 use rustc_hir::*;
1336
1337 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1338
1339 let node = tcx.hir().get(hir_id);
1340 let parent_def_id = match node {
1341 Node::ImplItem(_)
1342 | Node::TraitItem(_)
1343 | Node::Variant(_)
1344 | Node::Ctor(..)
1345 | Node::Field(_) => {
1346 let parent_id = tcx.hir().get_parent_item(hir_id);
1347 Some(tcx.hir().local_def_id(parent_id).to_def_id())
1348 }
1349 // FIXME(#43408) always enable this once `lazy_normalization` is
1350 // stable enough and does not need a feature gate anymore.
1351 Node::AnonConst(_) => {
1352 let parent_id = tcx.hir().get_parent_item(hir_id);
1353 let parent_def_id = tcx.hir().local_def_id(parent_id);
1354
1355 let mut in_param_list = false;
1356 for (_parent, node) in tcx.hir().parent_iter(hir_id) {
1357 if let Some(generics) = node.generics() {
1358 let mut visitor = AnonConstInParamListDetector {
1359 in_param_list: false,
1360 found_anon_const_in_list: false,
1361 ct: hir_id,
1362 };
1363
1364 visitor.visit_generics(generics);
1365 in_param_list = visitor.found_anon_const_in_list;
1366 break;
1367 }
1368 }
1369
1370 if in_param_list {
1371 // We do not allow generic parameters in anon consts if we are inside
1372 // of a param list.
1373 //
1374 // This affects both default type bindings, e.g. `struct<T, U = [u8; std::mem::size_of::<T>()]>(T, U)`,
1375 // and the types of const parameters, e.g. `struct V<const N: usize, const M: [u8; N]>();`.
1376 None
1377 } else if tcx.lazy_normalization() {
1378 // HACK(eddyb) this provides the correct generics when
1379 // `feature(const_generics)` is enabled, so that const expressions
1380 // used with const generics, e.g. `Foo<{N+1}>`, can work at all.
1381 //
1382 // Note that we do not supply the parent generics when using
1383 // `min_const_generics`.
1384 Some(parent_def_id.to_def_id())
1385 } else {
1386 let parent_node = tcx.hir().get(tcx.hir().get_parent_node(hir_id));
1387 match parent_node {
1388 // HACK(eddyb) this provides the correct generics for repeat
1389 // expressions' count (i.e. `N` in `[x; N]`), and explicit
1390 // `enum` discriminants (i.e. `D` in `enum Foo { Bar = D }`),
1391 // as they shouldn't be able to cause query cycle errors.
1392 Node::Expr(&Expr { kind: ExprKind::Repeat(_, ref constant), .. })
1393 | Node::Variant(Variant { disr_expr: Some(ref constant), .. })
1394 if constant.hir_id == hir_id =>
1395 {
1396 Some(parent_def_id.to_def_id())
1397 }
1398
1399 _ => None,
1400 }
1401 }
1402 }
1403 Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1404 Some(tcx.closure_base_def_id(def_id))
1405 }
1406 Node::Item(item) => match item.kind {
1407 ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
1408 impl_trait_fn.or_else(|| {
1409 let parent_id = tcx.hir().get_parent_item(hir_id);
1410 assert!(parent_id != hir_id && parent_id != CRATE_HIR_ID);
1411 debug!("generics_of: parent of opaque ty {:?} is {:?}", def_id, parent_id);
1412 // Opaque types are always nested within another item, and
1413 // inherit the generics of the item.
1414 Some(tcx.hir().local_def_id(parent_id).to_def_id())
1415 })
1416 }
1417 _ => None,
1418 },
1419 _ => None,
1420 };
1421
1422 let mut opt_self = None;
1423 let mut allow_defaults = false;
1424
1425 let no_generics = hir::Generics::empty();
1426 let ast_generics = match node {
1427 Node::TraitItem(item) => &item.generics,
1428
1429 Node::ImplItem(item) => &item.generics,
1430
1431 Node::Item(item) => {
1432 match item.kind {
1433 ItemKind::Fn(.., ref generics, _)
1434 | ItemKind::Impl(hir::Impl { ref generics, .. }) => generics,
1435
1436 ItemKind::TyAlias(_, ref generics)
1437 | ItemKind::Enum(_, ref generics)
1438 | ItemKind::Struct(_, ref generics)
1439 | ItemKind::OpaqueTy(hir::OpaqueTy { ref generics, .. })
1440 | ItemKind::Union(_, ref generics) => {
1441 allow_defaults = true;
1442 generics
1443 }
1444
1445 ItemKind::Trait(_, _, ref generics, ..)
1446 | ItemKind::TraitAlias(ref generics, ..) => {
1447 // Add in the self type parameter.
1448 //
1449 // Something of a hack: use the node id for the trait, also as
1450 // the node id for the Self type parameter.
1451 let param_id = item.def_id;
1452
1453 opt_self = Some(ty::GenericParamDef {
1454 index: 0,
1455 name: kw::SelfUpper,
1456 def_id: param_id.to_def_id(),
1457 pure_wrt_drop: false,
1458 kind: ty::GenericParamDefKind::Type {
1459 has_default: false,
1460 object_lifetime_default: rl::Set1::Empty,
1461 synthetic: None,
1462 },
1463 });
1464
1465 allow_defaults = true;
1466 generics
1467 }
1468
1469 _ => &no_generics,
1470 }
1471 }
1472
1473 Node::ForeignItem(item) => match item.kind {
1474 ForeignItemKind::Static(..) => &no_generics,
1475 ForeignItemKind::Fn(_, _, ref generics) => generics,
1476 ForeignItemKind::Type => &no_generics,
1477 },
1478
1479 _ => &no_generics,
1480 };
1481
1482 let has_self = opt_self.is_some();
1483 let mut parent_has_self = false;
1484 let mut own_start = has_self as u32;
1485 let parent_count = parent_def_id.map_or(0, |def_id| {
1486 let generics = tcx.generics_of(def_id);
1487 assert_eq!(has_self, false);
1488 parent_has_self = generics.has_self;
1489 own_start = generics.count() as u32;
1490 generics.parent_count + generics.params.len()
1491 });
1492
1493 let mut params: Vec<_> = Vec::with_capacity(ast_generics.params.len() + has_self as usize);
1494
1495 if let Some(opt_self) = opt_self {
1496 params.push(opt_self);
1497 }
1498
1499 let early_lifetimes = early_bound_lifetimes_from_generics(tcx, ast_generics);
1500 params.extend(early_lifetimes.enumerate().map(|(i, param)| ty::GenericParamDef {
1501 name: param.name.ident().name,
1502 index: own_start + i as u32,
1503 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1504 pure_wrt_drop: param.pure_wrt_drop,
1505 kind: ty::GenericParamDefKind::Lifetime,
1506 }));
1507
1508 let object_lifetime_defaults = tcx.object_lifetime_defaults(hir_id);
1509
1510 // Now create the real type and const parameters.
1511 let type_start = own_start - has_self as u32 + params.len() as u32;
1512 let mut i = 0;
1513
1514 params.extend(ast_generics.params.iter().filter_map(|param| match param.kind {
1515 GenericParamKind::Lifetime { .. } => None,
1516 GenericParamKind::Type { ref default, synthetic, .. } => {
1517 if !allow_defaults && default.is_some() {
1518 if !tcx.features().default_type_parameter_fallback {
1519 tcx.struct_span_lint_hir(
1520 lint::builtin::INVALID_TYPE_PARAM_DEFAULT,
1521 param.hir_id,
1522 param.span,
1523 |lint| {
1524 lint.build(
1525 "defaults for type parameters are only allowed in \
1526 `struct`, `enum`, `type`, or `trait` definitions.",
1527 )
1528 .emit();
1529 },
1530 );
1531 }
1532 }
1533
1534 let kind = ty::GenericParamDefKind::Type {
1535 has_default: default.is_some(),
1536 object_lifetime_default: object_lifetime_defaults
1537 .as_ref()
1538 .map_or(rl::Set1::Empty, |o| o[i]),
1539 synthetic,
1540 };
1541
1542 let param_def = ty::GenericParamDef {
1543 index: type_start + i as u32,
1544 name: param.name.ident().name,
1545 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1546 pure_wrt_drop: param.pure_wrt_drop,
1547 kind,
1548 };
1549 i += 1;
1550 Some(param_def)
1551 }
1552 GenericParamKind::Const { .. } => {
1553 let param_def = ty::GenericParamDef {
1554 index: type_start + i as u32,
1555 name: param.name.ident().name,
1556 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
1557 pure_wrt_drop: param.pure_wrt_drop,
1558 kind: ty::GenericParamDefKind::Const,
1559 };
1560 i += 1;
1561 Some(param_def)
1562 }
1563 }));
1564
1565 // provide junk type parameter defs - the only place that
1566 // cares about anything but the length is instantiation,
1567 // and we don't do that for closures.
1568 if let Node::Expr(&hir::Expr { kind: hir::ExprKind::Closure(.., gen), .. }) = node {
1569 let dummy_args = if gen.is_some() {
1570 &["<resume_ty>", "<yield_ty>", "<return_ty>", "<witness>", "<upvars>"][..]
1571 } else {
1572 &["<closure_kind>", "<closure_signature>", "<upvars>"][..]
1573 };
1574
1575 params.extend(dummy_args.iter().enumerate().map(|(i, &arg)| ty::GenericParamDef {
1576 index: type_start + i as u32,
1577 name: Symbol::intern(arg),
1578 def_id,
1579 pure_wrt_drop: false,
1580 kind: ty::GenericParamDefKind::Type {
1581 has_default: false,
1582 object_lifetime_default: rl::Set1::Empty,
1583 synthetic: None,
1584 },
1585 }));
1586 }
1587
1588 let param_def_id_to_index = params.iter().map(|param| (param.def_id, param.index)).collect();
1589
1590 ty::Generics {
1591 parent: parent_def_id,
1592 parent_count,
1593 params,
1594 param_def_id_to_index,
1595 has_self: has_self || parent_has_self,
1596 has_late_bound_regions: has_late_bound_regions(tcx, node),
1597 }
1598 }
1599
1600 fn are_suggestable_generic_args(generic_args: &[hir::GenericArg<'_>]) -> bool {
1601 generic_args
1602 .iter()
1603 .filter_map(|arg| match arg {
1604 hir::GenericArg::Type(ty) => Some(ty),
1605 _ => None,
1606 })
1607 .any(is_suggestable_infer_ty)
1608 }
1609
1610 /// Whether `ty` is a type with `_` placeholders that can be inferred. Used in diagnostics only to
1611 /// use inference to provide suggestions for the appropriate type if possible.
1612 fn is_suggestable_infer_ty(ty: &hir::Ty<'_>) -> bool {
1613 use hir::TyKind::*;
1614 match &ty.kind {
1615 Infer => true,
1616 Slice(ty) | Array(ty, _) => is_suggestable_infer_ty(ty),
1617 Tup(tys) => tys.iter().any(is_suggestable_infer_ty),
1618 Ptr(mut_ty) | Rptr(_, mut_ty) => is_suggestable_infer_ty(mut_ty.ty),
1619 OpaqueDef(_, generic_args) => are_suggestable_generic_args(generic_args),
1620 Path(hir::QPath::TypeRelative(ty, segment)) => {
1621 is_suggestable_infer_ty(ty) || are_suggestable_generic_args(segment.args().args)
1622 }
1623 Path(hir::QPath::Resolved(ty_opt, hir::Path { segments, .. })) => {
1624 ty_opt.map_or(false, is_suggestable_infer_ty)
1625 || segments.iter().any(|segment| are_suggestable_generic_args(segment.args().args))
1626 }
1627 _ => false,
1628 }
1629 }
1630
1631 pub fn get_infer_ret_ty(output: &'hir hir::FnRetTy<'hir>) -> Option<&'hir hir::Ty<'hir>> {
1632 if let hir::FnRetTy::Return(ref ty) = output {
1633 if is_suggestable_infer_ty(ty) {
1634 return Some(&**ty);
1635 }
1636 }
1637 None
1638 }
1639
1640 fn fn_sig(tcx: TyCtxt<'_>, def_id: DefId) -> ty::PolyFnSig<'_> {
1641 use rustc_hir::Node::*;
1642 use rustc_hir::*;
1643
1644 let def_id = def_id.expect_local();
1645 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
1646
1647 let icx = ItemCtxt::new(tcx, def_id.to_def_id());
1648
1649 match tcx.hir().get(hir_id) {
1650 TraitItem(hir::TraitItem {
1651 kind: TraitItemKind::Fn(sig, TraitFn::Provided(_)),
1652 ident,
1653 generics,
1654 ..
1655 })
1656 | ImplItem(hir::ImplItem { kind: ImplItemKind::Fn(sig, _), ident, generics, .. })
1657 | Item(hir::Item { kind: ItemKind::Fn(sig, generics, _), ident, .. }) => {
1658 match get_infer_ret_ty(&sig.decl.output) {
1659 Some(ty) => {
1660 let fn_sig = tcx.typeck(def_id).liberated_fn_sigs()[hir_id];
1661 // Typeck doesn't expect erased regions to be returned from `type_of`.
1662 let fn_sig = tcx.fold_regions(fn_sig, &mut false, |r, _| match r {
1663 ty::ReErased => tcx.lifetimes.re_static,
1664 _ => r,
1665 });
1666
1667 let mut visitor = PlaceholderHirTyCollector::default();
1668 visitor.visit_ty(ty);
1669 let mut diag = bad_placeholder_type(tcx, visitor.0);
1670 let ret_ty = fn_sig.output();
1671 if ret_ty != tcx.ty_error() {
1672 if !ret_ty.is_closure() {
1673 let ret_ty_str = match ret_ty.kind() {
1674 // Suggest a function pointer return type instead of a unique function definition
1675 // (e.g. `fn() -> i32` instead of `fn() -> i32 { f }`, the latter of which is invalid
1676 // syntax)
1677 ty::FnDef(..) => ret_ty.fn_sig(tcx).to_string(),
1678 _ => ret_ty.to_string(),
1679 };
1680 diag.span_suggestion(
1681 ty.span,
1682 "replace with the correct return type",
1683 ret_ty_str,
1684 Applicability::MaybeIncorrect,
1685 );
1686 } else {
1687 // We're dealing with a closure, so we should suggest using `impl Fn` or trait bounds
1688 // to prevent the user from getting a papercut while trying to use the unique closure
1689 // syntax (e.g. `[closure@src/lib.rs:2:5: 2:9]`).
1690 diag.help("consider using an `Fn`, `FnMut`, or `FnOnce` trait bound");
1691 diag.note("for more information on `Fn` traits and closure types, see https://doc.rust-lang.org/book/ch13-01-closures.html");
1692 }
1693 }
1694 diag.emit();
1695
1696 ty::Binder::bind(fn_sig)
1697 }
1698 None => <dyn AstConv<'_>>::ty_of_fn(
1699 &icx,
1700 sig.header.unsafety,
1701 sig.header.abi,
1702 &sig.decl,
1703 &generics,
1704 Some(ident.span),
1705 None,
1706 ),
1707 }
1708 }
1709
1710 TraitItem(hir::TraitItem {
1711 kind: TraitItemKind::Fn(FnSig { header, decl, span: _ }, _),
1712 ident,
1713 generics,
1714 ..
1715 }) => <dyn AstConv<'_>>::ty_of_fn(
1716 &icx,
1717 header.unsafety,
1718 header.abi,
1719 decl,
1720 &generics,
1721 Some(ident.span),
1722 None,
1723 ),
1724
1725 ForeignItem(&hir::ForeignItem {
1726 kind: ForeignItemKind::Fn(ref fn_decl, _, _),
1727 ident,
1728 ..
1729 }) => {
1730 let abi = tcx.hir().get_foreign_abi(hir_id);
1731 compute_sig_of_foreign_fn_decl(tcx, def_id.to_def_id(), fn_decl, abi, ident)
1732 }
1733
1734 Ctor(data) | Variant(hir::Variant { data, .. }) if data.ctor_hir_id().is_some() => {
1735 let ty = tcx.type_of(tcx.hir().get_parent_did(hir_id).to_def_id());
1736 let inputs =
1737 data.fields().iter().map(|f| tcx.type_of(tcx.hir().local_def_id(f.hir_id)));
1738 ty::Binder::bind(tcx.mk_fn_sig(
1739 inputs,
1740 ty,
1741 false,
1742 hir::Unsafety::Normal,
1743 abi::Abi::Rust,
1744 ))
1745 }
1746
1747 Expr(&hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => {
1748 // Closure signatures are not like other function
1749 // signatures and cannot be accessed through `fn_sig`. For
1750 // example, a closure signature excludes the `self`
1751 // argument. In any case they are embedded within the
1752 // closure type as part of the `ClosureSubsts`.
1753 //
1754 // To get the signature of a closure, you should use the
1755 // `sig` method on the `ClosureSubsts`:
1756 //
1757 // substs.as_closure().sig(def_id, tcx)
1758 bug!(
1759 "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
1760 );
1761 }
1762
1763 x => {
1764 bug!("unexpected sort of node in fn_sig(): {:?}", x);
1765 }
1766 }
1767 }
1768
1769 fn impl_trait_ref(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::TraitRef<'_>> {
1770 let icx = ItemCtxt::new(tcx, def_id);
1771
1772 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1773 match tcx.hir().expect_item(hir_id).kind {
1774 hir::ItemKind::Impl(ref impl_) => impl_.of_trait.as_ref().map(|ast_trait_ref| {
1775 let selfty = tcx.type_of(def_id);
1776 <dyn AstConv<'_>>::instantiate_mono_trait_ref(&icx, ast_trait_ref, selfty)
1777 }),
1778 _ => bug!(),
1779 }
1780 }
1781
1782 fn impl_polarity(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ImplPolarity {
1783 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1784 let is_rustc_reservation = tcx.has_attr(def_id, sym::rustc_reservation_impl);
1785 let item = tcx.hir().expect_item(hir_id);
1786 match &item.kind {
1787 hir::ItemKind::Impl(hir::Impl {
1788 polarity: hir::ImplPolarity::Negative(span),
1789 of_trait,
1790 ..
1791 }) => {
1792 if is_rustc_reservation {
1793 let span = span.to(of_trait.as_ref().map_or(*span, |t| t.path.span));
1794 tcx.sess.span_err(span, "reservation impls can't be negative");
1795 }
1796 ty::ImplPolarity::Negative
1797 }
1798 hir::ItemKind::Impl(hir::Impl {
1799 polarity: hir::ImplPolarity::Positive,
1800 of_trait: None,
1801 ..
1802 }) => {
1803 if is_rustc_reservation {
1804 tcx.sess.span_err(item.span, "reservation impls can't be inherent");
1805 }
1806 ty::ImplPolarity::Positive
1807 }
1808 hir::ItemKind::Impl(hir::Impl {
1809 polarity: hir::ImplPolarity::Positive,
1810 of_trait: Some(_),
1811 ..
1812 }) => {
1813 if is_rustc_reservation {
1814 ty::ImplPolarity::Reservation
1815 } else {
1816 ty::ImplPolarity::Positive
1817 }
1818 }
1819 item => bug!("impl_polarity: {:?} not an impl", item),
1820 }
1821 }
1822
1823 /// Returns the early-bound lifetimes declared in this generics
1824 /// listing. For anything other than fns/methods, this is just all
1825 /// the lifetimes that are declared. For fns or methods, we have to
1826 /// screen out those that do not appear in any where-clauses etc using
1827 /// `resolve_lifetime::early_bound_lifetimes`.
1828 fn early_bound_lifetimes_from_generics<'a, 'tcx: 'a>(
1829 tcx: TyCtxt<'tcx>,
1830 generics: &'a hir::Generics<'a>,
1831 ) -> impl Iterator<Item = &'a hir::GenericParam<'a>> + Captures<'tcx> {
1832 generics.params.iter().filter(move |param| match param.kind {
1833 GenericParamKind::Lifetime { .. } => !tcx.is_late_bound(param.hir_id),
1834 _ => false,
1835 })
1836 }
1837
1838 /// Returns a list of type predicates for the definition with ID `def_id`, including inferred
1839 /// lifetime constraints. This includes all predicates returned by `explicit_predicates_of`, plus
1840 /// inferred constraints concerning which regions outlive other regions.
1841 fn predicates_defined_on(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1842 debug!("predicates_defined_on({:?})", def_id);
1843 let mut result = tcx.explicit_predicates_of(def_id);
1844 debug!("predicates_defined_on: explicit_predicates_of({:?}) = {:?}", def_id, result,);
1845 let inferred_outlives = tcx.inferred_outlives_of(def_id);
1846 if !inferred_outlives.is_empty() {
1847 debug!(
1848 "predicates_defined_on: inferred_outlives_of({:?}) = {:?}",
1849 def_id, inferred_outlives,
1850 );
1851 if result.predicates.is_empty() {
1852 result.predicates = inferred_outlives;
1853 } else {
1854 result.predicates = tcx
1855 .arena
1856 .alloc_from_iter(result.predicates.iter().chain(inferred_outlives).copied());
1857 }
1858 }
1859
1860 debug!("predicates_defined_on({:?}) = {:?}", def_id, result);
1861 result
1862 }
1863
1864 /// Returns a list of all type predicates (explicit and implicit) for the definition with
1865 /// ID `def_id`. This includes all predicates returned by `predicates_defined_on`, plus
1866 /// `Self: Trait` predicates for traits.
1867 fn predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1868 let mut result = tcx.predicates_defined_on(def_id);
1869
1870 if tcx.is_trait(def_id) {
1871 // For traits, add `Self: Trait` predicate. This is
1872 // not part of the predicates that a user writes, but it
1873 // is something that one must prove in order to invoke a
1874 // method or project an associated type.
1875 //
1876 // In the chalk setup, this predicate is not part of the
1877 // "predicates" for a trait item. But it is useful in
1878 // rustc because if you directly (e.g.) invoke a trait
1879 // method like `Trait::method(...)`, you must naturally
1880 // prove that the trait applies to the types that were
1881 // used, and adding the predicate into this list ensures
1882 // that this is done.
1883 let span = tcx.sess.source_map().guess_head_span(tcx.def_span(def_id));
1884 result.predicates =
1885 tcx.arena.alloc_from_iter(result.predicates.iter().copied().chain(std::iter::once((
1886 ty::TraitRef::identity(tcx, def_id).without_const().to_predicate(tcx),
1887 span,
1888 ))));
1889 }
1890 debug!("predicates_of(def_id={:?}) = {:?}", def_id, result);
1891 result
1892 }
1893
1894 /// Returns a list of user-specified type predicates for the definition with ID `def_id`.
1895 /// N.B., this does not include any implied/inferred constraints.
1896 fn gather_explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
1897 use rustc_hir::*;
1898
1899 debug!("explicit_predicates_of(def_id={:?})", def_id);
1900
1901 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
1902 let node = tcx.hir().get(hir_id);
1903
1904 let mut is_trait = None;
1905 let mut is_default_impl_trait = None;
1906
1907 let icx = ItemCtxt::new(tcx, def_id);
1908 let constness = icx.default_constness_for_trait_bounds();
1909
1910 const NO_GENERICS: &hir::Generics<'_> = &hir::Generics::empty();
1911
1912 // We use an `IndexSet` to preserves order of insertion.
1913 // Preserving the order of insertion is important here so as not to break UI tests.
1914 let mut predicates: FxIndexSet<(ty::Predicate<'_>, Span)> = FxIndexSet::default();
1915
1916 let ast_generics = match node {
1917 Node::TraitItem(item) => &item.generics,
1918
1919 Node::ImplItem(item) => &item.generics,
1920
1921 Node::Item(item) => {
1922 match item.kind {
1923 ItemKind::Impl(ref impl_) => {
1924 if impl_.defaultness.is_default() {
1925 is_default_impl_trait = tcx.impl_trait_ref(def_id);
1926 }
1927 &impl_.generics
1928 }
1929 ItemKind::Fn(.., ref generics, _)
1930 | ItemKind::TyAlias(_, ref generics)
1931 | ItemKind::Enum(_, ref generics)
1932 | ItemKind::Struct(_, ref generics)
1933 | ItemKind::Union(_, ref generics) => generics,
1934
1935 ItemKind::Trait(_, _, ref generics, ..) => {
1936 is_trait = Some(ty::TraitRef::identity(tcx, def_id));
1937 generics
1938 }
1939 ItemKind::TraitAlias(ref generics, _) => {
1940 is_trait = Some(ty::TraitRef::identity(tcx, def_id));
1941 generics
1942 }
1943 ItemKind::OpaqueTy(OpaqueTy {
1944 bounds: _,
1945 impl_trait_fn,
1946 ref generics,
1947 origin: _,
1948 }) => {
1949 if impl_trait_fn.is_some() {
1950 // return-position impl trait
1951 //
1952 // We don't inherit predicates from the parent here:
1953 // If we have, say `fn f<'a, T: 'a>() -> impl Sized {}`
1954 // then the return type is `f::<'static, T>::{{opaque}}`.
1955 //
1956 // If we inherited the predicates of `f` then we would
1957 // require that `T: 'static` to show that the return
1958 // type is well-formed.
1959 //
1960 // The only way to have something with this opaque type
1961 // is from the return type of the containing function,
1962 // which will ensure that the function's predicates
1963 // hold.
1964 return ty::GenericPredicates { parent: None, predicates: &[] };
1965 } else {
1966 // type-alias impl trait
1967 generics
1968 }
1969 }
1970
1971 _ => NO_GENERICS,
1972 }
1973 }
1974
1975 Node::ForeignItem(item) => match item.kind {
1976 ForeignItemKind::Static(..) => NO_GENERICS,
1977 ForeignItemKind::Fn(_, _, ref generics) => generics,
1978 ForeignItemKind::Type => NO_GENERICS,
1979 },
1980
1981 _ => NO_GENERICS,
1982 };
1983
1984 let generics = tcx.generics_of(def_id);
1985 let parent_count = generics.parent_count as u32;
1986 let has_own_self = generics.has_self && parent_count == 0;
1987
1988 // Below we'll consider the bounds on the type parameters (including `Self`)
1989 // and the explicit where-clauses, but to get the full set of predicates
1990 // on a trait we need to add in the supertrait bounds and bounds found on
1991 // associated types.
1992 if let Some(_trait_ref) = is_trait {
1993 predicates.extend(tcx.super_predicates_of(def_id).predicates.iter().cloned());
1994 }
1995
1996 // In default impls, we can assume that the self type implements
1997 // the trait. So in:
1998 //
1999 // default impl Foo for Bar { .. }
2000 //
2001 // we add a default where clause `Foo: Bar`. We do a similar thing for traits
2002 // (see below). Recall that a default impl is not itself an impl, but rather a
2003 // set of defaults that can be incorporated into another impl.
2004 if let Some(trait_ref) = is_default_impl_trait {
2005 predicates.insert((
2006 trait_ref.to_poly_trait_ref().without_const().to_predicate(tcx),
2007 tcx.def_span(def_id),
2008 ));
2009 }
2010
2011 // Collect the region predicates that were declared inline as
2012 // well. In the case of parameters declared on a fn or method, we
2013 // have to be careful to only iterate over early-bound regions.
2014 let mut index = parent_count + has_own_self as u32;
2015 for param in early_bound_lifetimes_from_generics(tcx, ast_generics) {
2016 let region = tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion {
2017 def_id: tcx.hir().local_def_id(param.hir_id).to_def_id(),
2018 index,
2019 name: param.name.ident().name,
2020 }));
2021 index += 1;
2022
2023 match param.kind {
2024 GenericParamKind::Lifetime { .. } => {
2025 param.bounds.iter().for_each(|bound| match bound {
2026 hir::GenericBound::Outlives(lt) => {
2027 let bound = <dyn AstConv<'_>>::ast_region_to_region(&icx, &lt, None);
2028 let outlives = ty::Binder::bind(ty::OutlivesPredicate(region, bound));
2029 predicates.insert((outlives.to_predicate(tcx), lt.span));
2030 }
2031 _ => bug!(),
2032 });
2033 }
2034 _ => bug!(),
2035 }
2036 }
2037
2038 // Collect the predicates that were written inline by the user on each
2039 // type parameter (e.g., `<T: Foo>`).
2040 for param in ast_generics.params {
2041 match param.kind {
2042 // We already dealt with early bound lifetimes above.
2043 GenericParamKind::Lifetime { .. } => (),
2044 GenericParamKind::Type { .. } => {
2045 let name = param.name.ident().name;
2046 let param_ty = ty::ParamTy::new(index, name).to_ty(tcx);
2047 index += 1;
2048
2049 let sized = SizedByDefault::Yes;
2050 let bounds = <dyn AstConv<'_>>::compute_bounds(
2051 &icx,
2052 param_ty,
2053 &param.bounds,
2054 sized,
2055 param.span,
2056 );
2057 predicates.extend(bounds.predicates(tcx, param_ty));
2058 }
2059 GenericParamKind::Const { .. } => {
2060 // Bounds on const parameters are currently not possible.
2061 debug_assert!(param.bounds.is_empty());
2062 index += 1;
2063 }
2064 }
2065 }
2066
2067 // Add in the bounds that appear in the where-clause.
2068 let where_clause = &ast_generics.where_clause;
2069 for predicate in where_clause.predicates {
2070 match predicate {
2071 hir::WherePredicate::BoundPredicate(bound_pred) => {
2072 let ty = icx.to_ty(&bound_pred.bounded_ty);
2073
2074 // Keep the type around in a dummy predicate, in case of no bounds.
2075 // That way, `where Ty:` is not a complete noop (see #53696) and `Ty`
2076 // is still checked for WF.
2077 if bound_pred.bounds.is_empty() {
2078 if let ty::Param(_) = ty.kind() {
2079 // This is a `where T:`, which can be in the HIR from the
2080 // transformation that moves `?Sized` to `T`'s declaration.
2081 // We can skip the predicate because type parameters are
2082 // trivially WF, but also we *should*, to avoid exposing
2083 // users who never wrote `where Type:,` themselves, to
2084 // compiler/tooling bugs from not handling WF predicates.
2085 } else {
2086 let span = bound_pred.bounded_ty.span;
2087 let re_root_empty = tcx.lifetimes.re_root_empty;
2088 let predicate = ty::Binder::bind(ty::PredicateKind::TypeOutlives(
2089 ty::OutlivesPredicate(ty, re_root_empty),
2090 ));
2091 predicates.insert((predicate.to_predicate(tcx), span));
2092 }
2093 }
2094
2095 for bound in bound_pred.bounds.iter() {
2096 match bound {
2097 hir::GenericBound::Trait(poly_trait_ref, modifier) => {
2098 let constness = match modifier {
2099 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2100 hir::TraitBoundModifier::None => constness,
2101 hir::TraitBoundModifier::Maybe => bug!("this wasn't handled"),
2102 };
2103
2104 let mut bounds = Bounds::default();
2105 let _ = <dyn AstConv<'_>>::instantiate_poly_trait_ref(
2106 &icx,
2107 &poly_trait_ref,
2108 constness,
2109 ty,
2110 &mut bounds,
2111 );
2112 predicates.extend(bounds.predicates(tcx, ty));
2113 }
2114
2115 &hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
2116 let mut bounds = Bounds::default();
2117 <dyn AstConv<'_>>::instantiate_lang_item_trait_ref(
2118 &icx,
2119 lang_item,
2120 span,
2121 hir_id,
2122 args,
2123 ty,
2124 &mut bounds,
2125 );
2126 predicates.extend(bounds.predicates(tcx, ty));
2127 }
2128
2129 hir::GenericBound::Outlives(lifetime) => {
2130 let region =
2131 <dyn AstConv<'_>>::ast_region_to_region(&icx, lifetime, None);
2132 predicates.insert((
2133 ty::Binder::bind(ty::PredicateKind::TypeOutlives(
2134 ty::OutlivesPredicate(ty, region),
2135 ))
2136 .to_predicate(tcx),
2137 lifetime.span,
2138 ));
2139 }
2140 }
2141 }
2142 }
2143
2144 hir::WherePredicate::RegionPredicate(region_pred) => {
2145 let r1 = <dyn AstConv<'_>>::ast_region_to_region(&icx, &region_pred.lifetime, None);
2146 predicates.extend(region_pred.bounds.iter().map(|bound| {
2147 let (r2, span) = match bound {
2148 hir::GenericBound::Outlives(lt) => {
2149 (<dyn AstConv<'_>>::ast_region_to_region(&icx, lt, None), lt.span)
2150 }
2151 _ => bug!(),
2152 };
2153 let pred = ty::PredicateKind::RegionOutlives(ty::OutlivesPredicate(r1, r2))
2154 .to_predicate(icx.tcx);
2155
2156 (pred, span)
2157 }))
2158 }
2159
2160 hir::WherePredicate::EqPredicate(..) => {
2161 // FIXME(#20041)
2162 }
2163 }
2164 }
2165
2166 if tcx.features().const_evaluatable_checked {
2167 predicates.extend(const_evaluatable_predicates_of(tcx, def_id.expect_local()));
2168 }
2169
2170 let mut predicates: Vec<_> = predicates.into_iter().collect();
2171
2172 // Subtle: before we store the predicates into the tcx, we
2173 // sort them so that predicates like `T: Foo<Item=U>` come
2174 // before uses of `U`. This avoids false ambiguity errors
2175 // in trait checking. See `setup_constraining_predicates`
2176 // for details.
2177 if let Node::Item(&Item { kind: ItemKind::Impl { .. }, .. }) = node {
2178 let self_ty = tcx.type_of(def_id);
2179 let trait_ref = tcx.impl_trait_ref(def_id);
2180 cgp::setup_constraining_predicates(
2181 tcx,
2182 &mut predicates,
2183 trait_ref,
2184 &mut cgp::parameters_for_impl(self_ty, trait_ref),
2185 );
2186 }
2187
2188 let result = ty::GenericPredicates {
2189 parent: generics.parent,
2190 predicates: tcx.arena.alloc_from_iter(predicates),
2191 };
2192 debug!("explicit_predicates_of(def_id={:?}) = {:?}", def_id, result);
2193 result
2194 }
2195
2196 fn const_evaluatable_predicates_of<'tcx>(
2197 tcx: TyCtxt<'tcx>,
2198 def_id: LocalDefId,
2199 ) -> FxIndexSet<(ty::Predicate<'tcx>, Span)> {
2200 struct ConstCollector<'tcx> {
2201 tcx: TyCtxt<'tcx>,
2202 preds: FxIndexSet<(ty::Predicate<'tcx>, Span)>,
2203 }
2204
2205 impl<'tcx> intravisit::Visitor<'tcx> for ConstCollector<'tcx> {
2206 type Map = Map<'tcx>;
2207
2208 fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
2209 intravisit::NestedVisitorMap::None
2210 }
2211
2212 fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
2213 let def_id = self.tcx.hir().local_def_id(c.hir_id);
2214 let ct = ty::Const::from_anon_const(self.tcx, def_id);
2215 if let ty::ConstKind::Unevaluated(def, substs, None) = ct.val {
2216 let span = self.tcx.hir().span(c.hir_id);
2217 self.preds.insert((
2218 ty::PredicateKind::ConstEvaluatable(def, substs).to_predicate(self.tcx),
2219 span,
2220 ));
2221 }
2222 }
2223 }
2224
2225 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2226 let node = tcx.hir().get(hir_id);
2227
2228 let mut collector = ConstCollector { tcx, preds: FxIndexSet::default() };
2229 if let hir::Node::Item(item) = node {
2230 if let hir::ItemKind::Impl(ref impl_) = item.kind {
2231 if let Some(of_trait) = &impl_.of_trait {
2232 debug!("const_evaluatable_predicates_of({:?}): visit impl trait_ref", def_id);
2233 collector.visit_trait_ref(of_trait);
2234 }
2235
2236 debug!("const_evaluatable_predicates_of({:?}): visit_self_ty", def_id);
2237 collector.visit_ty(impl_.self_ty);
2238 }
2239 }
2240
2241 if let Some(generics) = node.generics() {
2242 debug!("const_evaluatable_predicates_of({:?}): visit_generics", def_id);
2243 collector.visit_generics(generics);
2244 }
2245
2246 if let Some(fn_sig) = tcx.hir().fn_sig_by_hir_id(hir_id) {
2247 debug!("const_evaluatable_predicates_of({:?}): visit_fn_decl", def_id);
2248 collector.visit_fn_decl(fn_sig.decl);
2249 }
2250 debug!("const_evaluatable_predicates_of({:?}) = {:?}", def_id, collector.preds);
2251
2252 collector.preds
2253 }
2254
2255 fn trait_explicit_predicates_and_bounds(
2256 tcx: TyCtxt<'_>,
2257 def_id: LocalDefId,
2258 ) -> ty::GenericPredicates<'_> {
2259 assert_eq!(tcx.def_kind(def_id), DefKind::Trait);
2260 gather_explicit_predicates_of(tcx, def_id.to_def_id())
2261 }
2262
2263 fn explicit_predicates_of(tcx: TyCtxt<'_>, def_id: DefId) -> ty::GenericPredicates<'_> {
2264 if let DefKind::Trait = tcx.def_kind(def_id) {
2265 // Remove bounds on associated types from the predicates, they will be
2266 // returned by `explicit_item_bounds`.
2267 let predicates_and_bounds = tcx.trait_explicit_predicates_and_bounds(def_id.expect_local());
2268 let trait_identity_substs = InternalSubsts::identity_for_item(tcx, def_id);
2269
2270 let is_assoc_item_ty = |ty: Ty<'_>| {
2271 // For a predicate from a where clause to become a bound on an
2272 // associated type:
2273 // * It must use the identity substs of the item.
2274 // * Since any generic parameters on the item are not in scope,
2275 // this means that the item is not a GAT, and its identity
2276 // substs are the same as the trait's.
2277 // * It must be an associated type for this trait (*not* a
2278 // supertrait).
2279 if let ty::Projection(projection) = ty.kind() {
2280 projection.substs == trait_identity_substs
2281 && tcx.associated_item(projection.item_def_id).container.id() == def_id
2282 } else {
2283 false
2284 }
2285 };
2286
2287 let predicates: Vec<_> = predicates_and_bounds
2288 .predicates
2289 .iter()
2290 .copied()
2291 .filter(|(pred, _)| match pred.kind().skip_binder() {
2292 ty::PredicateKind::Trait(tr, _) => !is_assoc_item_ty(tr.self_ty()),
2293 ty::PredicateKind::Projection(proj) => {
2294 !is_assoc_item_ty(proj.projection_ty.self_ty())
2295 }
2296 ty::PredicateKind::TypeOutlives(outlives) => !is_assoc_item_ty(outlives.0),
2297 _ => true,
2298 })
2299 .collect();
2300 if predicates.len() == predicates_and_bounds.predicates.len() {
2301 predicates_and_bounds
2302 } else {
2303 ty::GenericPredicates {
2304 parent: predicates_and_bounds.parent,
2305 predicates: tcx.arena.alloc_slice(&predicates),
2306 }
2307 }
2308 } else {
2309 gather_explicit_predicates_of(tcx, def_id)
2310 }
2311 }
2312
2313 fn projection_ty_from_predicates(
2314 tcx: TyCtxt<'tcx>,
2315 key: (
2316 // ty_def_id
2317 DefId,
2318 // def_id of `N` in `<T as Trait>::N`
2319 DefId,
2320 ),
2321 ) -> Option<ty::ProjectionTy<'tcx>> {
2322 let (ty_def_id, item_def_id) = key;
2323 let mut projection_ty = None;
2324 for (predicate, _) in tcx.predicates_of(ty_def_id).predicates {
2325 if let ty::PredicateKind::Projection(projection_predicate) = predicate.kind().skip_binder()
2326 {
2327 if item_def_id == projection_predicate.projection_ty.item_def_id {
2328 projection_ty = Some(projection_predicate.projection_ty);
2329 break;
2330 }
2331 }
2332 }
2333 projection_ty
2334 }
2335
2336 /// Converts a specific `GenericBound` from the AST into a set of
2337 /// predicates that apply to the self type. A vector is returned
2338 /// because this can be anywhere from zero predicates (`T: ?Sized` adds no
2339 /// predicates) to one (`T: Foo`) to many (`T: Bar<X = i32>` adds `T: Bar`
2340 /// and `<T as Bar>::X == i32`).
2341 fn predicates_from_bound<'tcx>(
2342 astconv: &dyn AstConv<'tcx>,
2343 param_ty: Ty<'tcx>,
2344 bound: &'tcx hir::GenericBound<'tcx>,
2345 constness: hir::Constness,
2346 ) -> Vec<(ty::Predicate<'tcx>, Span)> {
2347 match *bound {
2348 hir::GenericBound::Trait(ref tr, modifier) => {
2349 let constness = match modifier {
2350 hir::TraitBoundModifier::Maybe => return vec![],
2351 hir::TraitBoundModifier::MaybeConst => hir::Constness::NotConst,
2352 hir::TraitBoundModifier::None => constness,
2353 };
2354
2355 let mut bounds = Bounds::default();
2356 let _ = astconv.instantiate_poly_trait_ref(tr, constness, param_ty, &mut bounds);
2357 bounds.predicates(astconv.tcx(), param_ty)
2358 }
2359 hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => {
2360 let mut bounds = Bounds::default();
2361 astconv.instantiate_lang_item_trait_ref(
2362 lang_item,
2363 span,
2364 hir_id,
2365 args,
2366 param_ty,
2367 &mut bounds,
2368 );
2369 bounds.predicates(astconv.tcx(), param_ty)
2370 }
2371 hir::GenericBound::Outlives(ref lifetime) => {
2372 let region = astconv.ast_region_to_region(lifetime, None);
2373 let pred = ty::PredicateKind::TypeOutlives(ty::OutlivesPredicate(param_ty, region))
2374 .to_predicate(astconv.tcx());
2375 vec![(pred, lifetime.span)]
2376 }
2377 }
2378 }
2379
2380 fn compute_sig_of_foreign_fn_decl<'tcx>(
2381 tcx: TyCtxt<'tcx>,
2382 def_id: DefId,
2383 decl: &'tcx hir::FnDecl<'tcx>,
2384 abi: abi::Abi,
2385 ident: Ident,
2386 ) -> ty::PolyFnSig<'tcx> {
2387 let unsafety = if abi == abi::Abi::RustIntrinsic {
2388 intrinsic_operation_unsafety(tcx.item_name(def_id))
2389 } else {
2390 hir::Unsafety::Unsafe
2391 };
2392 let fty = <dyn AstConv<'_>>::ty_of_fn(
2393 &ItemCtxt::new(tcx, def_id),
2394 unsafety,
2395 abi,
2396 decl,
2397 &hir::Generics::empty(),
2398 Some(ident.span),
2399 None,
2400 );
2401
2402 // Feature gate SIMD types in FFI, since I am not sure that the
2403 // ABIs are handled at all correctly. -huonw
2404 if abi != abi::Abi::RustIntrinsic
2405 && abi != abi::Abi::PlatformIntrinsic
2406 && !tcx.features().simd_ffi
2407 {
2408 let check = |ast_ty: &hir::Ty<'_>, ty: Ty<'_>| {
2409 if ty.is_simd() {
2410 let snip = tcx
2411 .sess
2412 .source_map()
2413 .span_to_snippet(ast_ty.span)
2414 .map_or_else(|_| String::new(), |s| format!(" `{}`", s));
2415 tcx.sess
2416 .struct_span_err(
2417 ast_ty.span,
2418 &format!(
2419 "use of SIMD type{} in FFI is highly experimental and \
2420 may result in invalid code",
2421 snip
2422 ),
2423 )
2424 .help("add `#![feature(simd_ffi)]` to the crate attributes to enable")
2425 .emit();
2426 }
2427 };
2428 for (input, ty) in decl.inputs.iter().zip(fty.inputs().skip_binder()) {
2429 check(&input, ty)
2430 }
2431 if let hir::FnRetTy::Return(ref ty) = decl.output {
2432 check(&ty, fty.output().skip_binder())
2433 }
2434 }
2435
2436 fty
2437 }
2438
2439 fn is_foreign_item(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2440 match tcx.hir().get_if_local(def_id) {
2441 Some(Node::ForeignItem(..)) => true,
2442 Some(_) => false,
2443 _ => bug!("is_foreign_item applied to non-local def-id {:?}", def_id),
2444 }
2445 }
2446
2447 fn static_mutability(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::Mutability> {
2448 match tcx.hir().get_if_local(def_id) {
2449 Some(
2450 Node::Item(&hir::Item { kind: hir::ItemKind::Static(_, mutbl, _), .. })
2451 | Node::ForeignItem(&hir::ForeignItem {
2452 kind: hir::ForeignItemKind::Static(_, mutbl),
2453 ..
2454 }),
2455 ) => Some(mutbl),
2456 Some(_) => None,
2457 _ => bug!("static_mutability applied to non-local def-id {:?}", def_id),
2458 }
2459 }
2460
2461 fn generator_kind(tcx: TyCtxt<'_>, def_id: DefId) -> Option<hir::GeneratorKind> {
2462 match tcx.hir().get_if_local(def_id) {
2463 Some(Node::Expr(&rustc_hir::Expr {
2464 kind: rustc_hir::ExprKind::Closure(_, _, body_id, _, _),
2465 ..
2466 })) => tcx.hir().body(body_id).generator_kind(),
2467 Some(_) => None,
2468 _ => bug!("generator_kind applied to non-local def-id {:?}", def_id),
2469 }
2470 }
2471
2472 fn from_target_feature(
2473 tcx: TyCtxt<'_>,
2474 id: DefId,
2475 attr: &ast::Attribute,
2476 supported_target_features: &FxHashMap<String, Option<Symbol>>,
2477 target_features: &mut Vec<Symbol>,
2478 ) {
2479 let list = match attr.meta_item_list() {
2480 Some(list) => list,
2481 None => return,
2482 };
2483 let bad_item = |span| {
2484 let msg = "malformed `target_feature` attribute input";
2485 let code = "enable = \"..\"".to_owned();
2486 tcx.sess
2487 .struct_span_err(span, &msg)
2488 .span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders)
2489 .emit();
2490 };
2491 let rust_features = tcx.features();
2492 for item in list {
2493 // Only `enable = ...` is accepted in the meta-item list.
2494 if !item.has_name(sym::enable) {
2495 bad_item(item.span());
2496 continue;
2497 }
2498
2499 // Must be of the form `enable = "..."` (a string).
2500 let value = match item.value_str() {
2501 Some(value) => value,
2502 None => {
2503 bad_item(item.span());
2504 continue;
2505 }
2506 };
2507
2508 // We allow comma separation to enable multiple features.
2509 target_features.extend(value.as_str().split(',').filter_map(|feature| {
2510 let feature_gate = match supported_target_features.get(feature) {
2511 Some(g) => g,
2512 None => {
2513 let msg =
2514 format!("the feature named `{}` is not valid for this target", feature);
2515 let mut err = tcx.sess.struct_span_err(item.span(), &msg);
2516 err.span_label(
2517 item.span(),
2518 format!("`{}` is not valid for this target", feature),
2519 );
2520 if let Some(stripped) = feature.strip_prefix('+') {
2521 let valid = supported_target_features.contains_key(stripped);
2522 if valid {
2523 err.help("consider removing the leading `+` in the feature name");
2524 }
2525 }
2526 err.emit();
2527 return None;
2528 }
2529 };
2530
2531 // Only allow features whose feature gates have been enabled.
2532 let allowed = match feature_gate.as_ref().copied() {
2533 Some(sym::arm_target_feature) => rust_features.arm_target_feature,
2534 Some(sym::aarch64_target_feature) => rust_features.aarch64_target_feature,
2535 Some(sym::hexagon_target_feature) => rust_features.hexagon_target_feature,
2536 Some(sym::powerpc_target_feature) => rust_features.powerpc_target_feature,
2537 Some(sym::mips_target_feature) => rust_features.mips_target_feature,
2538 Some(sym::riscv_target_feature) => rust_features.riscv_target_feature,
2539 Some(sym::avx512_target_feature) => rust_features.avx512_target_feature,
2540 Some(sym::sse4a_target_feature) => rust_features.sse4a_target_feature,
2541 Some(sym::tbm_target_feature) => rust_features.tbm_target_feature,
2542 Some(sym::wasm_target_feature) => rust_features.wasm_target_feature,
2543 Some(sym::cmpxchg16b_target_feature) => rust_features.cmpxchg16b_target_feature,
2544 Some(sym::adx_target_feature) => rust_features.adx_target_feature,
2545 Some(sym::movbe_target_feature) => rust_features.movbe_target_feature,
2546 Some(sym::rtm_target_feature) => rust_features.rtm_target_feature,
2547 Some(sym::f16c_target_feature) => rust_features.f16c_target_feature,
2548 Some(sym::ermsb_target_feature) => rust_features.ermsb_target_feature,
2549 Some(name) => bug!("unknown target feature gate {}", name),
2550 None => true,
2551 };
2552 if !allowed && id.is_local() {
2553 feature_err(
2554 &tcx.sess.parse_sess,
2555 feature_gate.unwrap(),
2556 item.span(),
2557 &format!("the target feature `{}` is currently unstable", feature),
2558 )
2559 .emit();
2560 }
2561 Some(Symbol::intern(feature))
2562 }));
2563 }
2564 }
2565
2566 fn linkage_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: &str) -> Linkage {
2567 use rustc_middle::mir::mono::Linkage::*;
2568
2569 // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
2570 // applicable to variable declarations and may not really make sense for
2571 // Rust code in the first place but allow them anyway and trust that the
2572 // user knows what s/he's doing. Who knows, unanticipated use cases may pop
2573 // up in the future.
2574 //
2575 // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
2576 // and don't have to be, LLVM treats them as no-ops.
2577 match name {
2578 "appending" => Appending,
2579 "available_externally" => AvailableExternally,
2580 "common" => Common,
2581 "extern_weak" => ExternalWeak,
2582 "external" => External,
2583 "internal" => Internal,
2584 "linkonce" => LinkOnceAny,
2585 "linkonce_odr" => LinkOnceODR,
2586 "private" => Private,
2587 "weak" => WeakAny,
2588 "weak_odr" => WeakODR,
2589 _ => {
2590 let span = tcx.hir().span_if_local(def_id);
2591 if let Some(span) = span {
2592 tcx.sess.span_fatal(span, "invalid linkage specified")
2593 } else {
2594 tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
2595 }
2596 }
2597 }
2598 }
2599
2600 fn codegen_fn_attrs(tcx: TyCtxt<'_>, id: DefId) -> CodegenFnAttrs {
2601 let attrs = tcx.get_attrs(id);
2602
2603 let mut codegen_fn_attrs = CodegenFnAttrs::new();
2604 if should_inherit_track_caller(tcx, id) {
2605 codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2606 }
2607
2608 let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
2609
2610 let mut inline_span = None;
2611 let mut link_ordinal_span = None;
2612 let mut no_sanitize_span = None;
2613 for attr in attrs.iter() {
2614 if tcx.sess.check_name(attr, sym::cold) {
2615 codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD;
2616 } else if tcx.sess.check_name(attr, sym::rustc_allocator) {
2617 codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR;
2618 } else if tcx.sess.check_name(attr, sym::unwind) {
2619 codegen_fn_attrs.flags |= CodegenFnAttrFlags::UNWIND;
2620 } else if tcx.sess.check_name(attr, sym::ffi_returns_twice) {
2621 if tcx.is_foreign_item(id) {
2622 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_RETURNS_TWICE;
2623 } else {
2624 // `#[ffi_returns_twice]` is only allowed `extern fn`s.
2625 struct_span_err!(
2626 tcx.sess,
2627 attr.span,
2628 E0724,
2629 "`#[ffi_returns_twice]` may only be used on foreign functions"
2630 )
2631 .emit();
2632 }
2633 } else if tcx.sess.check_name(attr, sym::ffi_pure) {
2634 if tcx.is_foreign_item(id) {
2635 if attrs.iter().any(|a| tcx.sess.check_name(a, sym::ffi_const)) {
2636 // `#[ffi_const]` functions cannot be `#[ffi_pure]`
2637 struct_span_err!(
2638 tcx.sess,
2639 attr.span,
2640 E0757,
2641 "`#[ffi_const]` function cannot be `#[ffi_pure]`"
2642 )
2643 .emit();
2644 } else {
2645 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE;
2646 }
2647 } else {
2648 // `#[ffi_pure]` is only allowed on foreign functions
2649 struct_span_err!(
2650 tcx.sess,
2651 attr.span,
2652 E0755,
2653 "`#[ffi_pure]` may only be used on foreign functions"
2654 )
2655 .emit();
2656 }
2657 } else if tcx.sess.check_name(attr, sym::ffi_const) {
2658 if tcx.is_foreign_item(id) {
2659 codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST;
2660 } else {
2661 // `#[ffi_const]` is only allowed on foreign functions
2662 struct_span_err!(
2663 tcx.sess,
2664 attr.span,
2665 E0756,
2666 "`#[ffi_const]` may only be used on foreign functions"
2667 )
2668 .emit();
2669 }
2670 } else if tcx.sess.check_name(attr, sym::rustc_allocator_nounwind) {
2671 codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_ALLOCATOR_NOUNWIND;
2672 } else if tcx.sess.check_name(attr, sym::naked) {
2673 codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED;
2674 } else if tcx.sess.check_name(attr, sym::no_mangle) {
2675 codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2676 } else if tcx.sess.check_name(attr, sym::rustc_std_internal_symbol) {
2677 codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2678 } else if tcx.sess.check_name(attr, sym::used) {
2679 codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
2680 } else if tcx.sess.check_name(attr, sym::cmse_nonsecure_entry) {
2681 if !matches!(tcx.fn_sig(id).abi(), abi::Abi::C { .. }) {
2682 struct_span_err!(
2683 tcx.sess,
2684 attr.span,
2685 E0776,
2686 "`#[cmse_nonsecure_entry]` requires C ABI"
2687 )
2688 .emit();
2689 }
2690 if !tcx.sess.target.llvm_target.contains("thumbv8m") {
2691 struct_span_err!(tcx.sess, attr.span, E0775, "`#[cmse_nonsecure_entry]` is only valid for targets with the TrustZone-M extension")
2692 .emit();
2693 }
2694 codegen_fn_attrs.flags |= CodegenFnAttrFlags::CMSE_NONSECURE_ENTRY;
2695 } else if tcx.sess.check_name(attr, sym::thread_local) {
2696 codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL;
2697 } else if tcx.sess.check_name(attr, sym::track_caller) {
2698 if tcx.is_closure(id) || tcx.fn_sig(id).abi() != abi::Abi::Rust {
2699 struct_span_err!(tcx.sess, attr.span, E0737, "`#[track_caller]` requires Rust ABI")
2700 .emit();
2701 }
2702 codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
2703 } else if tcx.sess.check_name(attr, sym::export_name) {
2704 if let Some(s) = attr.value_str() {
2705 if s.as_str().contains('\0') {
2706 // `#[export_name = ...]` will be converted to a null-terminated string,
2707 // so it may not contain any null characters.
2708 struct_span_err!(
2709 tcx.sess,
2710 attr.span,
2711 E0648,
2712 "`export_name` may not contain null characters"
2713 )
2714 .emit();
2715 }
2716 codegen_fn_attrs.export_name = Some(s);
2717 }
2718 } else if tcx.sess.check_name(attr, sym::target_feature) {
2719 if !tcx.is_closure(id) && tcx.fn_sig(id).unsafety() == hir::Unsafety::Normal {
2720 if !tcx.features().target_feature_11 {
2721 let mut err = feature_err(
2722 &tcx.sess.parse_sess,
2723 sym::target_feature_11,
2724 attr.span,
2725 "`#[target_feature(..)]` can only be applied to `unsafe` functions",
2726 );
2727 err.span_label(tcx.def_span(id), "not an `unsafe` function");
2728 err.emit();
2729 } else if let Some(local_id) = id.as_local() {
2730 check_target_feature_trait_unsafe(tcx, local_id, attr.span);
2731 }
2732 }
2733 from_target_feature(
2734 tcx,
2735 id,
2736 attr,
2737 &supported_target_features,
2738 &mut codegen_fn_attrs.target_features,
2739 );
2740 } else if tcx.sess.check_name(attr, sym::linkage) {
2741 if let Some(val) = attr.value_str() {
2742 codegen_fn_attrs.linkage = Some(linkage_by_name(tcx, id, &val.as_str()));
2743 }
2744 } else if tcx.sess.check_name(attr, sym::link_section) {
2745 if let Some(val) = attr.value_str() {
2746 if val.as_str().bytes().any(|b| b == 0) {
2747 let msg = format!(
2748 "illegal null byte in link_section \
2749 value: `{}`",
2750 &val
2751 );
2752 tcx.sess.span_err(attr.span, &msg);
2753 } else {
2754 codegen_fn_attrs.link_section = Some(val);
2755 }
2756 }
2757 } else if tcx.sess.check_name(attr, sym::link_name) {
2758 codegen_fn_attrs.link_name = attr.value_str();
2759 } else if tcx.sess.check_name(attr, sym::link_ordinal) {
2760 link_ordinal_span = Some(attr.span);
2761 if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
2762 codegen_fn_attrs.link_ordinal = ordinal;
2763 }
2764 } else if tcx.sess.check_name(attr, sym::no_sanitize) {
2765 no_sanitize_span = Some(attr.span);
2766 if let Some(list) = attr.meta_item_list() {
2767 for item in list.iter() {
2768 if item.has_name(sym::address) {
2769 codegen_fn_attrs.no_sanitize |= SanitizerSet::ADDRESS;
2770 } else if item.has_name(sym::memory) {
2771 codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY;
2772 } else if item.has_name(sym::thread) {
2773 codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD;
2774 } else if item.has_name(sym::hwaddress) {
2775 codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS;
2776 } else {
2777 tcx.sess
2778 .struct_span_err(item.span(), "invalid argument for `no_sanitize`")
2779 .note("expected one of: `address`, `hwaddress`, `memory` or `thread`")
2780 .emit();
2781 }
2782 }
2783 }
2784 } else if tcx.sess.check_name(attr, sym::instruction_set) {
2785 codegen_fn_attrs.instruction_set = match attr.meta().map(|i| i.kind) {
2786 Some(MetaItemKind::List(ref items)) => match items.as_slice() {
2787 [NestedMetaItem::MetaItem(set)] => {
2788 let segments =
2789 set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
2790 match segments.as_slice() {
2791 [sym::arm, sym::a32] | [sym::arm, sym::t32] => {
2792 if !tcx.sess.target.has_thumb_interworking {
2793 struct_span_err!(
2794 tcx.sess.diagnostic(),
2795 attr.span,
2796 E0779,
2797 "target does not support `#[instruction_set]`"
2798 )
2799 .emit();
2800 None
2801 } else if segments[1] == sym::a32 {
2802 Some(InstructionSetAttr::ArmA32)
2803 } else if segments[1] == sym::t32 {
2804 Some(InstructionSetAttr::ArmT32)
2805 } else {
2806 unreachable!()
2807 }
2808 }
2809 _ => {
2810 struct_span_err!(
2811 tcx.sess.diagnostic(),
2812 attr.span,
2813 E0779,
2814 "invalid instruction set specified",
2815 )
2816 .emit();
2817 None
2818 }
2819 }
2820 }
2821 [] => {
2822 struct_span_err!(
2823 tcx.sess.diagnostic(),
2824 attr.span,
2825 E0778,
2826 "`#[instruction_set]` requires an argument"
2827 )
2828 .emit();
2829 None
2830 }
2831 _ => {
2832 struct_span_err!(
2833 tcx.sess.diagnostic(),
2834 attr.span,
2835 E0779,
2836 "cannot specify more than one instruction set"
2837 )
2838 .emit();
2839 None
2840 }
2841 },
2842 _ => {
2843 struct_span_err!(
2844 tcx.sess.diagnostic(),
2845 attr.span,
2846 E0778,
2847 "must specify an instruction set"
2848 )
2849 .emit();
2850 None
2851 }
2852 };
2853 }
2854 }
2855
2856 codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
2857 if !attr.has_name(sym::inline) {
2858 return ia;
2859 }
2860 match attr.meta().map(|i| i.kind) {
2861 Some(MetaItemKind::Word) => {
2862 tcx.sess.mark_attr_used(attr);
2863 InlineAttr::Hint
2864 }
2865 Some(MetaItemKind::List(ref items)) => {
2866 tcx.sess.mark_attr_used(attr);
2867 inline_span = Some(attr.span);
2868 if items.len() != 1 {
2869 struct_span_err!(
2870 tcx.sess.diagnostic(),
2871 attr.span,
2872 E0534,
2873 "expected one argument"
2874 )
2875 .emit();
2876 InlineAttr::None
2877 } else if list_contains_name(&items[..], sym::always) {
2878 InlineAttr::Always
2879 } else if list_contains_name(&items[..], sym::never) {
2880 InlineAttr::Never
2881 } else {
2882 struct_span_err!(
2883 tcx.sess.diagnostic(),
2884 items[0].span(),
2885 E0535,
2886 "invalid argument"
2887 )
2888 .emit();
2889
2890 InlineAttr::None
2891 }
2892 }
2893 Some(MetaItemKind::NameValue(_)) => ia,
2894 None => ia,
2895 }
2896 });
2897
2898 codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
2899 if !attr.has_name(sym::optimize) {
2900 return ia;
2901 }
2902 let err = |sp, s| struct_span_err!(tcx.sess.diagnostic(), sp, E0722, "{}", s).emit();
2903 match attr.meta().map(|i| i.kind) {
2904 Some(MetaItemKind::Word) => {
2905 err(attr.span, "expected one argument");
2906 ia
2907 }
2908 Some(MetaItemKind::List(ref items)) => {
2909 tcx.sess.mark_attr_used(attr);
2910 inline_span = Some(attr.span);
2911 if items.len() != 1 {
2912 err(attr.span, "expected one argument");
2913 OptimizeAttr::None
2914 } else if list_contains_name(&items[..], sym::size) {
2915 OptimizeAttr::Size
2916 } else if list_contains_name(&items[..], sym::speed) {
2917 OptimizeAttr::Speed
2918 } else {
2919 err(items[0].span(), "invalid argument");
2920 OptimizeAttr::None
2921 }
2922 }
2923 Some(MetaItemKind::NameValue(_)) => ia,
2924 None => ia,
2925 }
2926 });
2927
2928 // #73631: closures inherit `#[target_feature]` annotations
2929 if tcx.features().target_feature_11 && tcx.is_closure(id) {
2930 let owner_id = tcx.parent(id).expect("closure should have a parent");
2931 codegen_fn_attrs
2932 .target_features
2933 .extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied())
2934 }
2935
2936 // If a function uses #[target_feature] it can't be inlined into general
2937 // purpose functions as they wouldn't have the right target features
2938 // enabled. For that reason we also forbid #[inline(always)] as it can't be
2939 // respected.
2940 if !codegen_fn_attrs.target_features.is_empty() {
2941 if codegen_fn_attrs.inline == InlineAttr::Always {
2942 if let Some(span) = inline_span {
2943 tcx.sess.span_err(
2944 span,
2945 "cannot use `#[inline(always)]` with \
2946 `#[target_feature]`",
2947 );
2948 }
2949 }
2950 }
2951
2952 if !codegen_fn_attrs.no_sanitize.is_empty() {
2953 if codegen_fn_attrs.inline == InlineAttr::Always {
2954 if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
2955 let hir_id = tcx.hir().local_def_id_to_hir_id(id.expect_local());
2956 tcx.struct_span_lint_hir(
2957 lint::builtin::INLINE_NO_SANITIZE,
2958 hir_id,
2959 no_sanitize_span,
2960 |lint| {
2961 lint.build("`no_sanitize` will have no effect after inlining")
2962 .span_note(inline_span, "inlining requested here")
2963 .emit();
2964 },
2965 )
2966 }
2967 }
2968 }
2969
2970 // Weak lang items have the same semantics as "std internal" symbols in the
2971 // sense that they're preserved through all our LTO passes and only
2972 // strippable by the linker.
2973 //
2974 // Additionally weak lang items have predetermined symbol names.
2975 if tcx.is_weak_lang_item(id) {
2976 codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
2977 }
2978 let check_name = |attr, sym| tcx.sess.check_name(attr, sym);
2979 if let Some(name) = weak_lang_items::link_name(check_name, &attrs) {
2980 codegen_fn_attrs.export_name = Some(name);
2981 codegen_fn_attrs.link_name = Some(name);
2982 }
2983 check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
2984
2985 // Internal symbols to the standard library all have no_mangle semantics in
2986 // that they have defined symbol names present in the function name. This
2987 // also applies to weak symbols where they all have known symbol names.
2988 if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
2989 codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
2990 }
2991
2992 codegen_fn_attrs
2993 }
2994
2995 /// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
2996 /// applied to the method prototype.
2997 fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
2998 if let Some(impl_item) = tcx.opt_associated_item(def_id) {
2999 if let ty::AssocItemContainer::ImplContainer(impl_def_id) = impl_item.container {
3000 if let Some(trait_def_id) = tcx.trait_id_of_impl(impl_def_id) {
3001 if let Some(trait_item) = tcx
3002 .associated_items(trait_def_id)
3003 .filter_by_name_unhygienic(impl_item.ident.name)
3004 .find(move |trait_item| {
3005 trait_item.kind == ty::AssocKind::Fn
3006 && tcx.hygienic_eq(impl_item.ident, trait_item.ident, trait_def_id)
3007 })
3008 {
3009 return tcx
3010 .codegen_fn_attrs(trait_item.def_id)
3011 .flags
3012 .intersects(CodegenFnAttrFlags::TRACK_CALLER);
3013 }
3014 }
3015 }
3016 }
3017
3018 false
3019 }
3020
3021 fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<usize> {
3022 use rustc_ast::{Lit, LitIntType, LitKind};
3023 let meta_item_list = attr.meta_item_list();
3024 let meta_item_list: Option<&[ast::NestedMetaItem]> = meta_item_list.as_ref().map(Vec::as_ref);
3025 let sole_meta_list = match meta_item_list {
3026 Some([item]) => item.literal(),
3027 _ => None,
3028 };
3029 if let Some(Lit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) = sole_meta_list {
3030 if *ordinal <= usize::MAX as u128 {
3031 Some(*ordinal as usize)
3032 } else {
3033 let msg = format!("ordinal value in `link_ordinal` is too large: `{}`", &ordinal);
3034 tcx.sess
3035 .struct_span_err(attr.span, &msg)
3036 .note("the value may not exceed `usize::MAX`")
3037 .emit();
3038 None
3039 }
3040 } else {
3041 tcx.sess
3042 .struct_span_err(attr.span, "illegal ordinal format in `link_ordinal`")
3043 .note("an unsuffixed integer value, e.g., `1`, is expected")
3044 .emit();
3045 None
3046 }
3047 }
3048
3049 fn check_link_name_xor_ordinal(
3050 tcx: TyCtxt<'_>,
3051 codegen_fn_attrs: &CodegenFnAttrs,
3052 inline_span: Option<Span>,
3053 ) {
3054 if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
3055 return;
3056 }
3057 let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
3058 if let Some(span) = inline_span {
3059 tcx.sess.span_err(span, msg);
3060 } else {
3061 tcx.sess.err(msg);
3062 }
3063 }
3064
3065 /// Checks the function annotated with `#[target_feature]` is not a safe
3066 /// trait method implementation, reporting an error if it is.
3067 fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) {
3068 let hir_id = tcx.hir().local_def_id_to_hir_id(id);
3069 let node = tcx.hir().get(hir_id);
3070 if let Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }) = node {
3071 let parent_id = tcx.hir().get_parent_item(hir_id);
3072 let parent_item = tcx.hir().expect_item(parent_id);
3073 if let hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) = parent_item.kind {
3074 tcx.sess
3075 .struct_span_err(
3076 attr_span,
3077 "`#[target_feature(..)]` cannot be applied to safe trait method",
3078 )
3079 .span_label(attr_span, "cannot be applied to safe trait method")
3080 .span_label(tcx.def_span(id), "not an `unsafe` function")
3081 .emit();
3082 }
3083 }
3084 }