]> git.proxmox.com Git - rustc.git/blob - compiler/rustc_typeck/src/impl_wf_check/min_specialization.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / impl_wf_check / min_specialization.rs
1 //! # Minimal Specialization
2 //!
3 //! This module contains the checks for sound specialization used when the
4 //! `min_specialization` feature is enabled. This requires that the impl is
5 //! *always applicable*.
6 //!
7 //! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
8 //! that all the bounds of `impl2` are satisfied, and all of the bounds of
9 //! `impl1` are satisfied for some choice of lifetimes then we know that
10 //! `impl1` applies for any choice of lifetimes.
11 //!
12 //! ## Basic approach
13 //!
14 //! To enforce this requirement on specializations we take the following
15 //! approach:
16 //!
17 //! 1. Match up the substs for `impl2` so that the implemented trait and
18 //! self-type match those for `impl1`.
19 //! 2. Check for any direct use of `'static` in the substs of `impl2`.
20 //! 3. Check that all of the generic parameters of `impl1` occur at most once
21 //! in the *unconstrained* substs for `impl2`. A parameter is constrained if
22 //! its value is completely determined by an associated type projection
23 //! predicate.
24 //! 4. Check that all predicates on `impl1` either exist on `impl2` (after
25 //! matching substs), or are well-formed predicates for the trait's type
26 //! arguments.
27 //!
28 //! ## Example
29 //!
30 //! Suppose we have the following always applicable impl:
31 //!
32 //! ```rust
33 //! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
34 //! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
35 //! ```
36 //!
37 //! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
38 //! constrained to be `<I as Iterator>::Item`, so we check only
39 //! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
40 //! predicates of `impl1` are only `T: Sized`, which is also a predicate of
41 //! `impl2`. So this specialization is sound.
42 //!
43 //! ## Extensions
44 //!
45 //! Unfortunately not all specializations in the standard library are allowed
46 //! by this. So there are two extensions to these rules that allow specializing
47 //! on some traits: that is, using them as bounds on the specializing impl,
48 //! even when they don't occur in the base impl.
49 //!
50 //! ### rustc_specialization_trait
51 //!
52 //! If a trait is always applicable, then it's sound to specialize on it. We
53 //! check trait is always applicable in the same way as impls, except that step
54 //! 4 is now "all predicates on `impl1` are always applicable". We require that
55 //! `specialization` or `min_specialization` is enabled to implement these
56 //! traits.
57 //!
58 //! ### rustc_unsafe_specialization_marker
59 //!
60 //! There are also some specialization on traits with no methods, including the
61 //! stable `FusedIterator` trait. We allow marking marker traits with an
62 //! unstable attribute that means we ignore them in point 3 of the checks
63 //! above. This is unsound, in the sense that the specialized impl may be used
64 //! when it doesn't apply, but we allow it in the short term since it can't
65 //! cause use after frees with purely safe code in the same way as specializing
66 //! on traits with methods can.
67
68 use crate::constrained_generic_params as cgp;
69
70 use rustc_data_structures::fx::FxHashSet;
71 use rustc_hir::def_id::{DefId, LocalDefId};
72 use rustc_infer::infer::outlives::env::OutlivesEnvironment;
73 use rustc_infer::infer::{InferCtxt, RegionckMode, TyCtxtInferExt};
74 use rustc_infer::traits::specialization_graph::Node;
75 use rustc_middle::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
76 use rustc_middle::ty::trait_def::TraitSpecializationKind;
77 use rustc_middle::ty::{self, TyCtxt, TypeFoldable};
78 use rustc_span::Span;
79 use rustc_trait_selection::traits::{self, translate_substs, wf};
80
81 pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: DefId, span: Span) {
82 if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
83 tcx.infer_ctxt().enter(|infcx| {
84 check_always_applicable(&infcx, impl_def_id, node, span);
85 });
86 }
87 }
88
89 fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: DefId) -> Option<Node> {
90 let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
91 let trait_def = tcx.trait_def(trait_ref.def_id);
92
93 let impl2_node = trait_def.ancestors(tcx, impl1_def_id).ok()?.nth(1)?;
94
95 let always_applicable_trait =
96 matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
97 if impl2_node.is_from_trait() && !always_applicable_trait {
98 // Implementing a normal trait isn't a specialization.
99 return None;
100 }
101 Some(impl2_node)
102 }
103
104 /// Check that `impl1` is a sound specialization
105 fn check_always_applicable(
106 infcx: &InferCtxt<'_, '_>,
107 impl1_def_id: DefId,
108 impl2_node: Node,
109 span: Span,
110 ) {
111 if let Some((impl1_substs, impl2_substs)) =
112 get_impl_substs(infcx, impl1_def_id, impl2_node, span)
113 {
114 let impl2_def_id = impl2_node.def_id();
115 debug!(
116 "check_always_applicable(\nimpl1_def_id={:?},\nimpl2_def_id={:?},\nimpl2_substs={:?}\n)",
117 impl1_def_id, impl2_def_id, impl2_substs
118 );
119
120 let tcx = infcx.tcx;
121
122 let parent_substs = if impl2_node.is_from_trait() {
123 impl2_substs.to_vec()
124 } else {
125 unconstrained_parent_impl_substs(tcx, impl2_def_id, impl2_substs)
126 };
127
128 check_static_lifetimes(tcx, &parent_substs, span);
129 check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
130
131 check_predicates(
132 infcx,
133 impl1_def_id.expect_local(),
134 impl1_substs,
135 impl2_node,
136 impl2_substs,
137 span,
138 );
139 }
140 }
141
142 /// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
143 /// substitutions `(S1, S2)` that equate their trait references. The returned
144 /// types are expressed in terms of the generics of `impl1`.
145 ///
146 /// Example
147 ///
148 /// impl<A, B> Foo<A> for B { /* impl2 */ }
149 /// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
150 ///
151 /// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
152 fn get_impl_substs<'tcx>(
153 infcx: &InferCtxt<'_, 'tcx>,
154 impl1_def_id: DefId,
155 impl2_node: Node,
156 span: Span,
157 ) -> Option<(SubstsRef<'tcx>, SubstsRef<'tcx>)> {
158 let tcx = infcx.tcx;
159 let param_env = tcx.param_env(impl1_def_id);
160
161 let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id);
162 let impl2_substs = translate_substs(infcx, param_env, impl1_def_id, impl1_substs, impl2_node);
163
164 // Conservatively use an empty `ParamEnv`.
165 let outlives_env = OutlivesEnvironment::new(ty::ParamEnv::empty());
166 infcx.resolve_regions_and_report_errors(impl1_def_id, &outlives_env, RegionckMode::default());
167 let Ok(impl2_substs) = infcx.fully_resolve(impl2_substs) else {
168 tcx.sess.struct_span_err(span, "could not resolve substs on overridden impl").emit();
169 return None;
170 };
171 Some((impl1_substs, impl2_substs))
172 }
173
174 /// Returns a list of all of the unconstrained subst of the given impl.
175 ///
176 /// For example given the impl:
177 ///
178 /// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
179 ///
180 /// This would return the substs corresponding to `['a, I]`, because knowing
181 /// `'a` and `I` determines the value of `T`.
182 fn unconstrained_parent_impl_substs<'tcx>(
183 tcx: TyCtxt<'tcx>,
184 impl_def_id: DefId,
185 impl_substs: SubstsRef<'tcx>,
186 ) -> Vec<GenericArg<'tcx>> {
187 let impl_generic_predicates = tcx.predicates_of(impl_def_id);
188 let mut unconstrained_parameters = FxHashSet::default();
189 let mut constrained_params = FxHashSet::default();
190 let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
191
192 // Unfortunately the functions in `constrained_generic_parameters` don't do
193 // what we want here. We want only a list of constrained parameters while
194 // the functions in `cgp` add the constrained parameters to a list of
195 // unconstrained parameters.
196 for (predicate, _) in impl_generic_predicates.predicates.iter() {
197 if let ty::PredicateKind::Projection(proj) = predicate.kind().skip_binder() {
198 let projection_ty = proj.projection_ty;
199 let projected_ty = proj.term;
200
201 let unbound_trait_ref = projection_ty.trait_ref(tcx);
202 if Some(unbound_trait_ref) == impl_trait_ref {
203 continue;
204 }
205
206 unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
207
208 for param in cgp::parameters_for(&projected_ty, false) {
209 if !unconstrained_parameters.contains(&param) {
210 constrained_params.insert(param.0);
211 }
212 }
213
214 unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
215 }
216 }
217
218 impl_substs
219 .iter()
220 .enumerate()
221 .filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
222 .map(|(_, arg)| arg)
223 .collect()
224 }
225
226 /// Check that parameters of the derived impl don't occur more than once in the
227 /// equated substs of the base impl.
228 ///
229 /// For example forbid the following:
230 ///
231 /// impl<A> Tr for A { }
232 /// impl<B> Tr for (B, B) { }
233 ///
234 /// Note that only consider the unconstrained parameters of the base impl:
235 ///
236 /// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
237 /// impl<T> Tr<T> for Vec<T> { }
238 ///
239 /// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
240 /// but `S` is constrained in the parent impl, so `parent_substs` is only
241 /// `[Vec<T>]`. This means we allow this impl.
242 fn check_duplicate_params<'tcx>(
243 tcx: TyCtxt<'tcx>,
244 impl1_substs: SubstsRef<'tcx>,
245 parent_substs: &Vec<GenericArg<'tcx>>,
246 span: Span,
247 ) {
248 let mut base_params = cgp::parameters_for(parent_substs, true);
249 base_params.sort_by_key(|param| param.0);
250 if let (_, [duplicate, ..]) = base_params.partition_dedup() {
251 let param = impl1_substs[duplicate.0 as usize];
252 tcx.sess
253 .struct_span_err(span, &format!("specializing impl repeats parameter `{}`", param))
254 .emit();
255 }
256 }
257
258 /// Check that `'static` lifetimes are not introduced by the specializing impl.
259 ///
260 /// For example forbid the following:
261 ///
262 /// impl<A> Tr for A { }
263 /// impl Tr for &'static i32 { }
264 fn check_static_lifetimes<'tcx>(
265 tcx: TyCtxt<'tcx>,
266 parent_substs: &Vec<GenericArg<'tcx>>,
267 span: Span,
268 ) {
269 if tcx.any_free_region_meets(parent_substs, |r| r.is_static()) {
270 tcx.sess.struct_span_err(span, "cannot specialize on `'static` lifetime").emit();
271 }
272 }
273
274 /// Check whether predicates on the specializing impl (`impl1`) are allowed.
275 ///
276 /// Each predicate `P` must be:
277 ///
278 /// * global (not reference any parameters)
279 /// * `T: Tr` predicate where `Tr` is an always-applicable trait
280 /// * on the base `impl impl2`
281 /// * Currently this check is done using syntactic equality, which is
282 /// conservative but generally sufficient.
283 /// * a well-formed predicate of a type argument of the trait being implemented,
284 /// including the `Self`-type.
285 fn check_predicates<'tcx>(
286 infcx: &InferCtxt<'_, 'tcx>,
287 impl1_def_id: LocalDefId,
288 impl1_substs: SubstsRef<'tcx>,
289 impl2_node: Node,
290 impl2_substs: SubstsRef<'tcx>,
291 span: Span,
292 ) {
293 let tcx = infcx.tcx;
294 let impl1_predicates: Vec<_> = traits::elaborate_predicates(
295 tcx,
296 tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs).predicates.into_iter(),
297 )
298 .map(|obligation| obligation.predicate)
299 .collect();
300
301 let mut impl2_predicates = if impl2_node.is_from_trait() {
302 // Always applicable traits have to be always applicable without any
303 // assumptions.
304 Vec::new()
305 } else {
306 traits::elaborate_predicates(
307 tcx,
308 tcx.predicates_of(impl2_node.def_id())
309 .instantiate(tcx, impl2_substs)
310 .predicates
311 .into_iter(),
312 )
313 .map(|obligation| obligation.predicate)
314 .collect()
315 };
316 debug!(
317 "check_always_applicable(\nimpl1_predicates={:?},\nimpl2_predicates={:?}\n)",
318 impl1_predicates, impl2_predicates,
319 );
320
321 // Since impls of always applicable traits don't get to assume anything, we
322 // can also assume their supertraits apply.
323 //
324 // For example, we allow:
325 //
326 // #[rustc_specialization_trait]
327 // trait AlwaysApplicable: Debug { }
328 //
329 // impl<T> Tr for T { }
330 // impl<T: AlwaysApplicable> Tr for T { }
331 //
332 // Specializing on `AlwaysApplicable` allows also specializing on `Debug`
333 // which is sound because we forbid impls like the following
334 //
335 // impl<D: Debug> AlwaysApplicable for D { }
336 let always_applicable_traits = impl1_predicates.iter().copied().filter(|&predicate| {
337 matches!(
338 trait_predicate_kind(tcx, predicate),
339 Some(TraitSpecializationKind::AlwaysApplicable)
340 )
341 });
342
343 // Include the well-formed predicates of the type parameters of the impl.
344 for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().substs {
345 if let Some(obligations) = wf::obligations(
346 infcx,
347 tcx.param_env(impl1_def_id),
348 tcx.hir().local_def_id_to_hir_id(impl1_def_id),
349 0,
350 arg,
351 span,
352 ) {
353 impl2_predicates.extend(
354 traits::elaborate_obligations(tcx, obligations)
355 .map(|obligation| obligation.predicate),
356 )
357 }
358 }
359 impl2_predicates.extend(
360 traits::elaborate_predicates(tcx, always_applicable_traits)
361 .map(|obligation| obligation.predicate),
362 );
363
364 for predicate in impl1_predicates {
365 if !impl2_predicates.contains(&predicate) {
366 check_specialization_on(tcx, predicate, span)
367 }
368 }
369 }
370
371 fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, predicate: ty::Predicate<'tcx>, span: Span) {
372 debug!("can_specialize_on(predicate = {:?})", predicate);
373 match predicate.kind().skip_binder() {
374 // Global predicates are either always true or always false, so we
375 // are fine to specialize on.
376 _ if predicate.is_global() => (),
377 // We allow specializing on explicitly marked traits with no associated
378 // items.
379 ty::PredicateKind::Trait(ty::TraitPredicate {
380 trait_ref,
381 constness: ty::BoundConstness::NotConst,
382 polarity: _,
383 }) => {
384 if !matches!(
385 trait_predicate_kind(tcx, predicate),
386 Some(TraitSpecializationKind::Marker)
387 ) {
388 tcx.sess
389 .struct_span_err(
390 span,
391 &format!(
392 "cannot specialize on trait `{}`",
393 tcx.def_path_str(trait_ref.def_id),
394 ),
395 )
396 .emit();
397 }
398 }
399 _ => {
400 tcx.sess
401 .struct_span_err(span, &format!("cannot specialize on `{:?}`", predicate))
402 .emit();
403 }
404 }
405 }
406
407 fn trait_predicate_kind<'tcx>(
408 tcx: TyCtxt<'tcx>,
409 predicate: ty::Predicate<'tcx>,
410 ) -> Option<TraitSpecializationKind> {
411 match predicate.kind().skip_binder() {
412 ty::PredicateKind::Trait(ty::TraitPredicate {
413 trait_ref,
414 constness: ty::BoundConstness::NotConst,
415 polarity: _,
416 }) => Some(tcx.trait_def(trait_ref.def_id).specialization_kind),
417 ty::PredicateKind::Trait(_)
418 | ty::PredicateKind::RegionOutlives(_)
419 | ty::PredicateKind::TypeOutlives(_)
420 | ty::PredicateKind::Projection(_)
421 | ty::PredicateKind::WellFormed(_)
422 | ty::PredicateKind::Subtype(_)
423 | ty::PredicateKind::Coerce(_)
424 | ty::PredicateKind::ObjectSafe(_)
425 | ty::PredicateKind::ClosureKind(..)
426 | ty::PredicateKind::ConstEvaluatable(..)
427 | ty::PredicateKind::ConstEquate(..)
428 | ty::PredicateKind::TypeWellFormedFromEnv(..) => None,
429 }
430 }