]> git.proxmox.com Git - qemu.git/blob - cpu-all.h
69b1f725c8c84aeb580f49582dbc7db9d6d54947
[qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41 #include "softfloat.h"
42
43 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46
47 #ifdef BSWAP_NEEDED
48
49 static inline uint16_t tswap16(uint16_t s)
50 {
51 return bswap16(s);
52 }
53
54 static inline uint32_t tswap32(uint32_t s)
55 {
56 return bswap32(s);
57 }
58
59 static inline uint64_t tswap64(uint64_t s)
60 {
61 return bswap64(s);
62 }
63
64 static inline void tswap16s(uint16_t *s)
65 {
66 *s = bswap16(*s);
67 }
68
69 static inline void tswap32s(uint32_t *s)
70 {
71 *s = bswap32(*s);
72 }
73
74 static inline void tswap64s(uint64_t *s)
75 {
76 *s = bswap64(*s);
77 }
78
79 #else
80
81 static inline uint16_t tswap16(uint16_t s)
82 {
83 return s;
84 }
85
86 static inline uint32_t tswap32(uint32_t s)
87 {
88 return s;
89 }
90
91 static inline uint64_t tswap64(uint64_t s)
92 {
93 return s;
94 }
95
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107
108 #endif
109
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119
120 typedef union {
121 float32 f;
122 uint32_t l;
123 } CPU_FloatU;
124
125 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
127 typedef union {
128 float64 d;
129 #if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 struct {
132 uint32_t upper;
133 uint32_t lower;
134 } l;
135 #else
136 struct {
137 uint32_t lower;
138 uint32_t upper;
139 } l;
140 #endif
141 uint64_t ll;
142 } CPU_DoubleU;
143
144 #ifdef TARGET_SPARC
145 typedef union {
146 float128 q;
147 #if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159 #else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170 #endif
171 } CPU_QuadU;
172 #endif
173
174 /* CPU memory access without any memory or io remapping */
175
176 /*
177 * the generic syntax for the memory accesses is:
178 *
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 *
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 *
183 * type is:
184 * (empty): integer access
185 * f : float access
186 *
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
191 *
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
197 *
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
203 *
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
208 */
209 static inline int ldub_p(const void *ptr)
210 {
211 return *(uint8_t *)ptr;
212 }
213
214 static inline int ldsb_p(const void *ptr)
215 {
216 return *(int8_t *)ptr;
217 }
218
219 static inline void stb_p(void *ptr, int v)
220 {
221 *(uint8_t *)ptr = v;
222 }
223
224 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228
229 /* conservative code for little endian unaligned accesses */
230 static inline int lduw_le_p(const void *ptr)
231 {
232 #ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236 #else
237 uint8_t *p = ptr;
238 return p[0] | (p[1] << 8);
239 #endif
240 }
241
242 static inline int ldsw_le_p(const void *ptr)
243 {
244 #ifdef __powerpc__
245 int val;
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 return (int16_t)val;
248 #else
249 uint8_t *p = ptr;
250 return (int16_t)(p[0] | (p[1] << 8));
251 #endif
252 }
253
254 static inline int ldl_le_p(const void *ptr)
255 {
256 #ifdef __powerpc__
257 int val;
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 return val;
260 #else
261 uint8_t *p = ptr;
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263 #endif
264 }
265
266 static inline uint64_t ldq_le_p(const void *ptr)
267 {
268 uint8_t *p = ptr;
269 uint32_t v1, v2;
270 v1 = ldl_le_p(p);
271 v2 = ldl_le_p(p + 4);
272 return v1 | ((uint64_t)v2 << 32);
273 }
274
275 static inline void stw_le_p(void *ptr, int v)
276 {
277 #ifdef __powerpc__
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279 #else
280 uint8_t *p = ptr;
281 p[0] = v;
282 p[1] = v >> 8;
283 #endif
284 }
285
286 static inline void stl_le_p(void *ptr, int v)
287 {
288 #ifdef __powerpc__
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290 #else
291 uint8_t *p = ptr;
292 p[0] = v;
293 p[1] = v >> 8;
294 p[2] = v >> 16;
295 p[3] = v >> 24;
296 #endif
297 }
298
299 static inline void stq_le_p(void *ptr, uint64_t v)
300 {
301 uint8_t *p = ptr;
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
304 }
305
306 /* float access */
307
308 static inline float32 ldfl_le_p(const void *ptr)
309 {
310 union {
311 float32 f;
312 uint32_t i;
313 } u;
314 u.i = ldl_le_p(ptr);
315 return u.f;
316 }
317
318 static inline void stfl_le_p(void *ptr, float32 v)
319 {
320 union {
321 float32 f;
322 uint32_t i;
323 } u;
324 u.f = v;
325 stl_le_p(ptr, u.i);
326 }
327
328 static inline float64 ldfq_le_p(const void *ptr)
329 {
330 CPU_DoubleU u;
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
333 return u.d;
334 }
335
336 static inline void stfq_le_p(void *ptr, float64 v)
337 {
338 CPU_DoubleU u;
339 u.d = v;
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
342 }
343
344 #else
345
346 static inline int lduw_le_p(const void *ptr)
347 {
348 return *(uint16_t *)ptr;
349 }
350
351 static inline int ldsw_le_p(const void *ptr)
352 {
353 return *(int16_t *)ptr;
354 }
355
356 static inline int ldl_le_p(const void *ptr)
357 {
358 return *(uint32_t *)ptr;
359 }
360
361 static inline uint64_t ldq_le_p(const void *ptr)
362 {
363 return *(uint64_t *)ptr;
364 }
365
366 static inline void stw_le_p(void *ptr, int v)
367 {
368 *(uint16_t *)ptr = v;
369 }
370
371 static inline void stl_le_p(void *ptr, int v)
372 {
373 *(uint32_t *)ptr = v;
374 }
375
376 static inline void stq_le_p(void *ptr, uint64_t v)
377 {
378 *(uint64_t *)ptr = v;
379 }
380
381 /* float access */
382
383 static inline float32 ldfl_le_p(const void *ptr)
384 {
385 return *(float32 *)ptr;
386 }
387
388 static inline float64 ldfq_le_p(const void *ptr)
389 {
390 return *(float64 *)ptr;
391 }
392
393 static inline void stfl_le_p(void *ptr, float32 v)
394 {
395 *(float32 *)ptr = v;
396 }
397
398 static inline void stfq_le_p(void *ptr, float64 v)
399 {
400 *(float64 *)ptr = v;
401 }
402 #endif
403
404 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405
406 static inline int lduw_be_p(const void *ptr)
407 {
408 #if defined(__i386__)
409 int val;
410 asm volatile ("movzwl %1, %0\n"
411 "xchgb %b0, %h0\n"
412 : "=q" (val)
413 : "m" (*(uint16_t *)ptr));
414 return val;
415 #else
416 uint8_t *b = (uint8_t *) ptr;
417 return ((b[0] << 8) | b[1]);
418 #endif
419 }
420
421 static inline int ldsw_be_p(const void *ptr)
422 {
423 #if defined(__i386__)
424 int val;
425 asm volatile ("movzwl %1, %0\n"
426 "xchgb %b0, %h0\n"
427 : "=q" (val)
428 : "m" (*(uint16_t *)ptr));
429 return (int16_t)val;
430 #else
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
433 #endif
434 }
435
436 static inline int ldl_be_p(const void *ptr)
437 {
438 #if defined(__i386__) || defined(__x86_64__)
439 int val;
440 asm volatile ("movl %1, %0\n"
441 "bswap %0\n"
442 : "=r" (val)
443 : "m" (*(uint32_t *)ptr));
444 return val;
445 #else
446 uint8_t *b = (uint8_t *) ptr;
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448 #endif
449 }
450
451 static inline uint64_t ldq_be_p(const void *ptr)
452 {
453 uint32_t a,b;
454 a = ldl_be_p(ptr);
455 b = ldl_be_p((uint8_t *)ptr + 4);
456 return (((uint64_t)a<<32)|b);
457 }
458
459 static inline void stw_be_p(void *ptr, int v)
460 {
461 #if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
463 "movw %w0, %1\n"
464 : "=q" (v)
465 : "m" (*(uint16_t *)ptr), "0" (v));
466 #else
467 uint8_t *d = (uint8_t *) ptr;
468 d[0] = v >> 8;
469 d[1] = v;
470 #endif
471 }
472
473 static inline void stl_be_p(void *ptr, int v)
474 {
475 #if defined(__i386__) || defined(__x86_64__)
476 asm volatile ("bswap %0\n"
477 "movl %0, %1\n"
478 : "=r" (v)
479 : "m" (*(uint32_t *)ptr), "0" (v));
480 #else
481 uint8_t *d = (uint8_t *) ptr;
482 d[0] = v >> 24;
483 d[1] = v >> 16;
484 d[2] = v >> 8;
485 d[3] = v;
486 #endif
487 }
488
489 static inline void stq_be_p(void *ptr, uint64_t v)
490 {
491 stl_be_p(ptr, v >> 32);
492 stl_be_p((uint8_t *)ptr + 4, v);
493 }
494
495 /* float access */
496
497 static inline float32 ldfl_be_p(const void *ptr)
498 {
499 union {
500 float32 f;
501 uint32_t i;
502 } u;
503 u.i = ldl_be_p(ptr);
504 return u.f;
505 }
506
507 static inline void stfl_be_p(void *ptr, float32 v)
508 {
509 union {
510 float32 f;
511 uint32_t i;
512 } u;
513 u.f = v;
514 stl_be_p(ptr, u.i);
515 }
516
517 static inline float64 ldfq_be_p(const void *ptr)
518 {
519 CPU_DoubleU u;
520 u.l.upper = ldl_be_p(ptr);
521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522 return u.d;
523 }
524
525 static inline void stfq_be_p(void *ptr, float64 v)
526 {
527 CPU_DoubleU u;
528 u.d = v;
529 stl_be_p(ptr, u.l.upper);
530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531 }
532
533 #else
534
535 static inline int lduw_be_p(const void *ptr)
536 {
537 return *(uint16_t *)ptr;
538 }
539
540 static inline int ldsw_be_p(const void *ptr)
541 {
542 return *(int16_t *)ptr;
543 }
544
545 static inline int ldl_be_p(const void *ptr)
546 {
547 return *(uint32_t *)ptr;
548 }
549
550 static inline uint64_t ldq_be_p(const void *ptr)
551 {
552 return *(uint64_t *)ptr;
553 }
554
555 static inline void stw_be_p(void *ptr, int v)
556 {
557 *(uint16_t *)ptr = v;
558 }
559
560 static inline void stl_be_p(void *ptr, int v)
561 {
562 *(uint32_t *)ptr = v;
563 }
564
565 static inline void stq_be_p(void *ptr, uint64_t v)
566 {
567 *(uint64_t *)ptr = v;
568 }
569
570 /* float access */
571
572 static inline float32 ldfl_be_p(const void *ptr)
573 {
574 return *(float32 *)ptr;
575 }
576
577 static inline float64 ldfq_be_p(const void *ptr)
578 {
579 return *(float64 *)ptr;
580 }
581
582 static inline void stfl_be_p(void *ptr, float32 v)
583 {
584 *(float32 *)ptr = v;
585 }
586
587 static inline void stfq_be_p(void *ptr, float64 v)
588 {
589 *(float64 *)ptr = v;
590 }
591
592 #endif
593
594 /* target CPU memory access functions */
595 #if defined(TARGET_WORDS_BIGENDIAN)
596 #define lduw_p(p) lduw_be_p(p)
597 #define ldsw_p(p) ldsw_be_p(p)
598 #define ldl_p(p) ldl_be_p(p)
599 #define ldq_p(p) ldq_be_p(p)
600 #define ldfl_p(p) ldfl_be_p(p)
601 #define ldfq_p(p) ldfq_be_p(p)
602 #define stw_p(p, v) stw_be_p(p, v)
603 #define stl_p(p, v) stl_be_p(p, v)
604 #define stq_p(p, v) stq_be_p(p, v)
605 #define stfl_p(p, v) stfl_be_p(p, v)
606 #define stfq_p(p, v) stfq_be_p(p, v)
607 #else
608 #define lduw_p(p) lduw_le_p(p)
609 #define ldsw_p(p) ldsw_le_p(p)
610 #define ldl_p(p) ldl_le_p(p)
611 #define ldq_p(p) ldq_le_p(p)
612 #define ldfl_p(p) ldfl_le_p(p)
613 #define ldfq_p(p) ldfq_le_p(p)
614 #define stw_p(p, v) stw_le_p(p, v)
615 #define stl_p(p, v) stl_le_p(p, v)
616 #define stq_p(p, v) stq_le_p(p, v)
617 #define stfl_p(p, v) stfl_le_p(p, v)
618 #define stfq_p(p, v) stfq_le_p(p, v)
619 #endif
620
621 /* MMU memory access macros */
622
623 #if defined(CONFIG_USER_ONLY)
624 #include <assert.h>
625 #include "qemu-types.h"
626
627 /* On some host systems the guest address space is reserved on the host.
628 * This allows the guest address space to be offset to a convenient location.
629 */
630 //#define GUEST_BASE 0x20000000
631 #define GUEST_BASE 0
632
633 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
634 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
635 #define h2g(x) ({ \
636 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
637 /* Check if given address fits target address space */ \
638 assert(__ret == (abi_ulong)__ret); \
639 (abi_ulong)__ret; \
640 })
641
642 #define saddr(x) g2h(x)
643 #define laddr(x) g2h(x)
644
645 #else /* !CONFIG_USER_ONLY */
646 /* NOTE: we use double casts if pointers and target_ulong have
647 different sizes */
648 #define saddr(x) (uint8_t *)(long)(x)
649 #define laddr(x) (uint8_t *)(long)(x)
650 #endif
651
652 #define ldub_raw(p) ldub_p(laddr((p)))
653 #define ldsb_raw(p) ldsb_p(laddr((p)))
654 #define lduw_raw(p) lduw_p(laddr((p)))
655 #define ldsw_raw(p) ldsw_p(laddr((p)))
656 #define ldl_raw(p) ldl_p(laddr((p)))
657 #define ldq_raw(p) ldq_p(laddr((p)))
658 #define ldfl_raw(p) ldfl_p(laddr((p)))
659 #define ldfq_raw(p) ldfq_p(laddr((p)))
660 #define stb_raw(p, v) stb_p(saddr((p)), v)
661 #define stw_raw(p, v) stw_p(saddr((p)), v)
662 #define stl_raw(p, v) stl_p(saddr((p)), v)
663 #define stq_raw(p, v) stq_p(saddr((p)), v)
664 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
665 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
666
667
668 #if defined(CONFIG_USER_ONLY)
669
670 /* if user mode, no other memory access functions */
671 #define ldub(p) ldub_raw(p)
672 #define ldsb(p) ldsb_raw(p)
673 #define lduw(p) lduw_raw(p)
674 #define ldsw(p) ldsw_raw(p)
675 #define ldl(p) ldl_raw(p)
676 #define ldq(p) ldq_raw(p)
677 #define ldfl(p) ldfl_raw(p)
678 #define ldfq(p) ldfq_raw(p)
679 #define stb(p, v) stb_raw(p, v)
680 #define stw(p, v) stw_raw(p, v)
681 #define stl(p, v) stl_raw(p, v)
682 #define stq(p, v) stq_raw(p, v)
683 #define stfl(p, v) stfl_raw(p, v)
684 #define stfq(p, v) stfq_raw(p, v)
685
686 #define ldub_code(p) ldub_raw(p)
687 #define ldsb_code(p) ldsb_raw(p)
688 #define lduw_code(p) lduw_raw(p)
689 #define ldsw_code(p) ldsw_raw(p)
690 #define ldl_code(p) ldl_raw(p)
691 #define ldq_code(p) ldq_raw(p)
692
693 #define ldub_kernel(p) ldub_raw(p)
694 #define ldsb_kernel(p) ldsb_raw(p)
695 #define lduw_kernel(p) lduw_raw(p)
696 #define ldsw_kernel(p) ldsw_raw(p)
697 #define ldl_kernel(p) ldl_raw(p)
698 #define ldq_kernel(p) ldq_raw(p)
699 #define ldfl_kernel(p) ldfl_raw(p)
700 #define ldfq_kernel(p) ldfq_raw(p)
701 #define stb_kernel(p, v) stb_raw(p, v)
702 #define stw_kernel(p, v) stw_raw(p, v)
703 #define stl_kernel(p, v) stl_raw(p, v)
704 #define stq_kernel(p, v) stq_raw(p, v)
705 #define stfl_kernel(p, v) stfl_raw(p, v)
706 #define stfq_kernel(p, vt) stfq_raw(p, v)
707
708 #endif /* defined(CONFIG_USER_ONLY) */
709
710 /* page related stuff */
711
712 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
713 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
714 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
715
716 /* ??? These should be the larger of unsigned long and target_ulong. */
717 extern unsigned long qemu_real_host_page_size;
718 extern unsigned long qemu_host_page_bits;
719 extern unsigned long qemu_host_page_size;
720 extern unsigned long qemu_host_page_mask;
721
722 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
723
724 /* same as PROT_xxx */
725 #define PAGE_READ 0x0001
726 #define PAGE_WRITE 0x0002
727 #define PAGE_EXEC 0x0004
728 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
729 #define PAGE_VALID 0x0008
730 /* original state of the write flag (used when tracking self-modifying
731 code */
732 #define PAGE_WRITE_ORG 0x0010
733 #define PAGE_RESERVED 0x0020
734
735 void page_dump(FILE *f);
736 int page_get_flags(target_ulong address);
737 void page_set_flags(target_ulong start, target_ulong end, int flags);
738 int page_check_range(target_ulong start, target_ulong len, int flags);
739
740 void cpu_exec_init_all(unsigned long tb_size);
741 CPUState *cpu_copy(CPUState *env);
742
743 void cpu_dump_state(CPUState *env, FILE *f,
744 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
745 int flags);
746 void cpu_dump_statistics (CPUState *env, FILE *f,
747 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
748 int flags);
749
750 void cpu_abort(CPUState *env, const char *fmt, ...)
751 __attribute__ ((__format__ (__printf__, 2, 3)))
752 __attribute__ ((__noreturn__));
753 extern CPUState *first_cpu;
754 extern CPUState *cpu_single_env;
755 extern int64_t qemu_icount;
756 extern int use_icount;
757
758 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
759 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
760 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
761 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
762 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
763 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
764 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
765 #define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
766 #define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
767 #define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
768
769 void cpu_interrupt(CPUState *s, int mask);
770 void cpu_reset_interrupt(CPUState *env, int mask);
771
772 /* Breakpoint/watchpoint flags */
773 #define BP_MEM_READ 0x01
774 #define BP_MEM_WRITE 0x02
775 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
776 #define BP_STOP_BEFORE_ACCESS 0x04
777 #define BP_WATCHPOINT_HIT 0x08
778 #define BP_GDB 0x10
779 #define BP_CPU 0x20
780
781 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
782 CPUBreakpoint **breakpoint);
783 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
784 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
785 void cpu_breakpoint_remove_all(CPUState *env, int mask);
786 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
787 int flags, CPUWatchpoint **watchpoint);
788 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
789 target_ulong len, int flags);
790 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
791 void cpu_watchpoint_remove_all(CPUState *env, int mask);
792
793 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
794 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
795 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
796
797 void cpu_single_step(CPUState *env, int enabled);
798 void cpu_reset(CPUState *s);
799
800 /* Return the physical page corresponding to a virtual one. Use it
801 only for debugging because no protection checks are done. Return -1
802 if no page found. */
803 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
804
805 #define CPU_LOG_TB_OUT_ASM (1 << 0)
806 #define CPU_LOG_TB_IN_ASM (1 << 1)
807 #define CPU_LOG_TB_OP (1 << 2)
808 #define CPU_LOG_TB_OP_OPT (1 << 3)
809 #define CPU_LOG_INT (1 << 4)
810 #define CPU_LOG_EXEC (1 << 5)
811 #define CPU_LOG_PCALL (1 << 6)
812 #define CPU_LOG_IOPORT (1 << 7)
813 #define CPU_LOG_TB_CPU (1 << 8)
814
815 /* define log items */
816 typedef struct CPULogItem {
817 int mask;
818 const char *name;
819 const char *help;
820 } CPULogItem;
821
822 extern const CPULogItem cpu_log_items[];
823
824 void cpu_set_log(int log_flags);
825 void cpu_set_log_filename(const char *filename);
826 int cpu_str_to_log_mask(const char *str);
827
828 /* IO ports API */
829
830 /* NOTE: as these functions may be even used when there is an isa
831 brige on non x86 targets, we always defined them */
832 #ifndef NO_CPU_IO_DEFS
833 void cpu_outb(CPUState *env, int addr, int val);
834 void cpu_outw(CPUState *env, int addr, int val);
835 void cpu_outl(CPUState *env, int addr, int val);
836 int cpu_inb(CPUState *env, int addr);
837 int cpu_inw(CPUState *env, int addr);
838 int cpu_inl(CPUState *env, int addr);
839 #endif
840
841 /* address in the RAM (different from a physical address) */
842 #ifdef USE_KQEMU
843 typedef uint32_t ram_addr_t;
844 #else
845 typedef unsigned long ram_addr_t;
846 #endif
847
848 /* memory API */
849
850 extern ram_addr_t phys_ram_size;
851 extern int phys_ram_fd;
852 extern uint8_t *phys_ram_base;
853 extern uint8_t *phys_ram_dirty;
854 extern ram_addr_t ram_size;
855
856 /* physical memory access */
857
858 /* MMIO pages are identified by a combination of an IO device index and
859 3 flags. The ROMD code stores the page ram offset in iotlb entry,
860 so only a limited number of ids are avaiable. */
861
862 #define IO_MEM_SHIFT 3
863 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
864
865 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
866 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
867 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
868 #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
869
870 /* Acts like a ROM when read and like a device when written. */
871 #define IO_MEM_ROMD (1)
872 #define IO_MEM_SUBPAGE (2)
873 #define IO_MEM_SUBWIDTH (4)
874
875 /* Flags stored in the low bits of the TLB virtual address. These are
876 defined so that fast path ram access is all zeros. */
877 /* Zero if TLB entry is valid. */
878 #define TLB_INVALID_MASK (1 << 3)
879 /* Set if TLB entry references a clean RAM page. The iotlb entry will
880 contain the page physical address. */
881 #define TLB_NOTDIRTY (1 << 4)
882 /* Set if TLB entry is an IO callback. */
883 #define TLB_MMIO (1 << 5)
884
885 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
886 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
887
888 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
889 ram_addr_t size,
890 ram_addr_t phys_offset,
891 ram_addr_t region_offset);
892 static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
893 ram_addr_t size,
894 ram_addr_t phys_offset)
895 {
896 cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
897 }
898
899 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
900 ram_addr_t qemu_ram_alloc(ram_addr_t);
901 void qemu_ram_free(ram_addr_t addr);
902 int cpu_register_io_memory(int io_index,
903 CPUReadMemoryFunc **mem_read,
904 CPUWriteMemoryFunc **mem_write,
905 void *opaque);
906 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
907 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
908
909 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
910 int len, int is_write);
911 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
912 uint8_t *buf, int len)
913 {
914 cpu_physical_memory_rw(addr, buf, len, 0);
915 }
916 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
917 const uint8_t *buf, int len)
918 {
919 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
920 }
921 uint32_t ldub_phys(target_phys_addr_t addr);
922 uint32_t lduw_phys(target_phys_addr_t addr);
923 uint32_t ldl_phys(target_phys_addr_t addr);
924 uint64_t ldq_phys(target_phys_addr_t addr);
925 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
926 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
927 void stb_phys(target_phys_addr_t addr, uint32_t val);
928 void stw_phys(target_phys_addr_t addr, uint32_t val);
929 void stl_phys(target_phys_addr_t addr, uint32_t val);
930 void stq_phys(target_phys_addr_t addr, uint64_t val);
931
932 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
933 const uint8_t *buf, int len);
934 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
935 uint8_t *buf, int len, int is_write);
936
937 #define VGA_DIRTY_FLAG 0x01
938 #define CODE_DIRTY_FLAG 0x02
939 #define KQEMU_DIRTY_FLAG 0x04
940 #define MIGRATION_DIRTY_FLAG 0x08
941
942 /* read dirty bit (return 0 or 1) */
943 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
944 {
945 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
946 }
947
948 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
949 int dirty_flags)
950 {
951 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
952 }
953
954 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
955 {
956 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
957 }
958
959 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
960 int dirty_flags);
961 void cpu_tlb_update_dirty(CPUState *env);
962
963 int cpu_physical_memory_set_dirty_tracking(int enable);
964
965 int cpu_physical_memory_get_dirty_tracking(void);
966
967 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
968
969 void dump_exec_info(FILE *f,
970 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
971
972 /*******************************************/
973 /* host CPU ticks (if available) */
974
975 #if defined(__powerpc__)
976
977 static inline uint32_t get_tbl(void)
978 {
979 uint32_t tbl;
980 asm volatile("mftb %0" : "=r" (tbl));
981 return tbl;
982 }
983
984 static inline uint32_t get_tbu(void)
985 {
986 uint32_t tbl;
987 asm volatile("mftbu %0" : "=r" (tbl));
988 return tbl;
989 }
990
991 static inline int64_t cpu_get_real_ticks(void)
992 {
993 uint32_t l, h, h1;
994 /* NOTE: we test if wrapping has occurred */
995 do {
996 h = get_tbu();
997 l = get_tbl();
998 h1 = get_tbu();
999 } while (h != h1);
1000 return ((int64_t)h << 32) | l;
1001 }
1002
1003 #elif defined(__i386__)
1004
1005 static inline int64_t cpu_get_real_ticks(void)
1006 {
1007 int64_t val;
1008 asm volatile ("rdtsc" : "=A" (val));
1009 return val;
1010 }
1011
1012 #elif defined(__x86_64__)
1013
1014 static inline int64_t cpu_get_real_ticks(void)
1015 {
1016 uint32_t low,high;
1017 int64_t val;
1018 asm volatile("rdtsc" : "=a" (low), "=d" (high));
1019 val = high;
1020 val <<= 32;
1021 val |= low;
1022 return val;
1023 }
1024
1025 #elif defined(__hppa__)
1026
1027 static inline int64_t cpu_get_real_ticks(void)
1028 {
1029 int val;
1030 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1031 return val;
1032 }
1033
1034 #elif defined(__ia64)
1035
1036 static inline int64_t cpu_get_real_ticks(void)
1037 {
1038 int64_t val;
1039 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1040 return val;
1041 }
1042
1043 #elif defined(__s390__)
1044
1045 static inline int64_t cpu_get_real_ticks(void)
1046 {
1047 int64_t val;
1048 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1049 return val;
1050 }
1051
1052 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1053
1054 static inline int64_t cpu_get_real_ticks (void)
1055 {
1056 #if defined(_LP64)
1057 uint64_t rval;
1058 asm volatile("rd %%tick,%0" : "=r"(rval));
1059 return rval;
1060 #else
1061 union {
1062 uint64_t i64;
1063 struct {
1064 uint32_t high;
1065 uint32_t low;
1066 } i32;
1067 } rval;
1068 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1069 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1070 return rval.i64;
1071 #endif
1072 }
1073
1074 #elif defined(__mips__)
1075
1076 static inline int64_t cpu_get_real_ticks(void)
1077 {
1078 #if __mips_isa_rev >= 2
1079 uint32_t count;
1080 static uint32_t cyc_per_count = 0;
1081
1082 if (!cyc_per_count)
1083 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1084
1085 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1086 return (int64_t)(count * cyc_per_count);
1087 #else
1088 /* FIXME */
1089 static int64_t ticks = 0;
1090 return ticks++;
1091 #endif
1092 }
1093
1094 #else
1095 /* The host CPU doesn't have an easily accessible cycle counter.
1096 Just return a monotonically increasing value. This will be
1097 totally wrong, but hopefully better than nothing. */
1098 static inline int64_t cpu_get_real_ticks (void)
1099 {
1100 static int64_t ticks = 0;
1101 return ticks++;
1102 }
1103 #endif
1104
1105 /* profiling */
1106 #ifdef CONFIG_PROFILER
1107 static inline int64_t profile_getclock(void)
1108 {
1109 return cpu_get_real_ticks();
1110 }
1111
1112 extern int64_t kqemu_time, kqemu_time_start;
1113 extern int64_t qemu_time, qemu_time_start;
1114 extern int64_t tlb_flush_time;
1115 extern int64_t kqemu_exec_count;
1116 extern int64_t dev_time;
1117 extern int64_t kqemu_ret_int_count;
1118 extern int64_t kqemu_ret_excp_count;
1119 extern int64_t kqemu_ret_intr_count;
1120 #endif
1121
1122 #endif /* CPU_ALL_H */