]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-all.h
update
[mirror_qemu.git] / cpu-all.h
1 /*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40 #include "bswap.h"
41
42 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43 #define BSWAP_NEEDED
44 #endif
45
46 #ifdef BSWAP_NEEDED
47
48 static inline uint16_t tswap16(uint16_t s)
49 {
50 return bswap16(s);
51 }
52
53 static inline uint32_t tswap32(uint32_t s)
54 {
55 return bswap32(s);
56 }
57
58 static inline uint64_t tswap64(uint64_t s)
59 {
60 return bswap64(s);
61 }
62
63 static inline void tswap16s(uint16_t *s)
64 {
65 *s = bswap16(*s);
66 }
67
68 static inline void tswap32s(uint32_t *s)
69 {
70 *s = bswap32(*s);
71 }
72
73 static inline void tswap64s(uint64_t *s)
74 {
75 *s = bswap64(*s);
76 }
77
78 #else
79
80 static inline uint16_t tswap16(uint16_t s)
81 {
82 return s;
83 }
84
85 static inline uint32_t tswap32(uint32_t s)
86 {
87 return s;
88 }
89
90 static inline uint64_t tswap64(uint64_t s)
91 {
92 return s;
93 }
94
95 static inline void tswap16s(uint16_t *s)
96 {
97 }
98
99 static inline void tswap32s(uint32_t *s)
100 {
101 }
102
103 static inline void tswap64s(uint64_t *s)
104 {
105 }
106
107 #endif
108
109 #if TARGET_LONG_SIZE == 4
110 #define tswapl(s) tswap32(s)
111 #define tswapls(s) tswap32s((uint32_t *)(s))
112 #define bswaptls(s) bswap32s(s)
113 #else
114 #define tswapl(s) tswap64(s)
115 #define tswapls(s) tswap64s((uint64_t *)(s))
116 #define bswaptls(s) bswap64s(s)
117 #endif
118
119 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121 typedef union {
122 float64 d;
123 #if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125 struct {
126 uint32_t upper;
127 uint32_t lower;
128 } l;
129 #else
130 struct {
131 uint32_t lower;
132 uint32_t upper;
133 } l;
134 #endif
135 uint64_t ll;
136 } CPU_DoubleU;
137
138 /* CPU memory access without any memory or io remapping */
139
140 /*
141 * the generic syntax for the memory accesses is:
142 *
143 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
144 *
145 * store: st{type}{size}{endian}_{access_type}(ptr, val)
146 *
147 * type is:
148 * (empty): integer access
149 * f : float access
150 *
151 * sign is:
152 * (empty): for floats or 32 bit size
153 * u : unsigned
154 * s : signed
155 *
156 * size is:
157 * b: 8 bits
158 * w: 16 bits
159 * l: 32 bits
160 * q: 64 bits
161 *
162 * endian is:
163 * (empty): target cpu endianness or 8 bit access
164 * r : reversed target cpu endianness (not implemented yet)
165 * be : big endian (not implemented yet)
166 * le : little endian (not implemented yet)
167 *
168 * access_type is:
169 * raw : host memory access
170 * user : user mode access using soft MMU
171 * kernel : kernel mode access using soft MMU
172 */
173 static inline int ldub_p(void *ptr)
174 {
175 return *(uint8_t *)ptr;
176 }
177
178 static inline int ldsb_p(void *ptr)
179 {
180 return *(int8_t *)ptr;
181 }
182
183 static inline void stb_p(void *ptr, int v)
184 {
185 *(uint8_t *)ptr = v;
186 }
187
188 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
189 kernel handles unaligned load/stores may give better results, but
190 it is a system wide setting : bad */
191 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
192
193 /* conservative code for little endian unaligned accesses */
194 static inline int lduw_le_p(void *ptr)
195 {
196 #ifdef __powerpc__
197 int val;
198 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
199 return val;
200 #else
201 uint8_t *p = ptr;
202 return p[0] | (p[1] << 8);
203 #endif
204 }
205
206 static inline int ldsw_le_p(void *ptr)
207 {
208 #ifdef __powerpc__
209 int val;
210 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
211 return (int16_t)val;
212 #else
213 uint8_t *p = ptr;
214 return (int16_t)(p[0] | (p[1] << 8));
215 #endif
216 }
217
218 static inline int ldl_le_p(void *ptr)
219 {
220 #ifdef __powerpc__
221 int val;
222 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
223 return val;
224 #else
225 uint8_t *p = ptr;
226 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
227 #endif
228 }
229
230 static inline uint64_t ldq_le_p(void *ptr)
231 {
232 uint8_t *p = ptr;
233 uint32_t v1, v2;
234 v1 = ldl_le_p(p);
235 v2 = ldl_le_p(p + 4);
236 return v1 | ((uint64_t)v2 << 32);
237 }
238
239 static inline void stw_le_p(void *ptr, int v)
240 {
241 #ifdef __powerpc__
242 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
243 #else
244 uint8_t *p = ptr;
245 p[0] = v;
246 p[1] = v >> 8;
247 #endif
248 }
249
250 static inline void stl_le_p(void *ptr, int v)
251 {
252 #ifdef __powerpc__
253 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
254 #else
255 uint8_t *p = ptr;
256 p[0] = v;
257 p[1] = v >> 8;
258 p[2] = v >> 16;
259 p[3] = v >> 24;
260 #endif
261 }
262
263 static inline void stq_le_p(void *ptr, uint64_t v)
264 {
265 uint8_t *p = ptr;
266 stl_le_p(p, (uint32_t)v);
267 stl_le_p(p + 4, v >> 32);
268 }
269
270 /* float access */
271
272 static inline float32 ldfl_le_p(void *ptr)
273 {
274 union {
275 float32 f;
276 uint32_t i;
277 } u;
278 u.i = ldl_le_p(ptr);
279 return u.f;
280 }
281
282 static inline void stfl_le_p(void *ptr, float32 v)
283 {
284 union {
285 float32 f;
286 uint32_t i;
287 } u;
288 u.f = v;
289 stl_le_p(ptr, u.i);
290 }
291
292 static inline float64 ldfq_le_p(void *ptr)
293 {
294 CPU_DoubleU u;
295 u.l.lower = ldl_le_p(ptr);
296 u.l.upper = ldl_le_p(ptr + 4);
297 return u.d;
298 }
299
300 static inline void stfq_le_p(void *ptr, float64 v)
301 {
302 CPU_DoubleU u;
303 u.d = v;
304 stl_le_p(ptr, u.l.lower);
305 stl_le_p(ptr + 4, u.l.upper);
306 }
307
308 #else
309
310 static inline int lduw_le_p(void *ptr)
311 {
312 return *(uint16_t *)ptr;
313 }
314
315 static inline int ldsw_le_p(void *ptr)
316 {
317 return *(int16_t *)ptr;
318 }
319
320 static inline int ldl_le_p(void *ptr)
321 {
322 return *(uint32_t *)ptr;
323 }
324
325 static inline uint64_t ldq_le_p(void *ptr)
326 {
327 return *(uint64_t *)ptr;
328 }
329
330 static inline void stw_le_p(void *ptr, int v)
331 {
332 *(uint16_t *)ptr = v;
333 }
334
335 static inline void stl_le_p(void *ptr, int v)
336 {
337 *(uint32_t *)ptr = v;
338 }
339
340 static inline void stq_le_p(void *ptr, uint64_t v)
341 {
342 *(uint64_t *)ptr = v;
343 }
344
345 /* float access */
346
347 static inline float32 ldfl_le_p(void *ptr)
348 {
349 return *(float32 *)ptr;
350 }
351
352 static inline float64 ldfq_le_p(void *ptr)
353 {
354 return *(float64 *)ptr;
355 }
356
357 static inline void stfl_le_p(void *ptr, float32 v)
358 {
359 *(float32 *)ptr = v;
360 }
361
362 static inline void stfq_le_p(void *ptr, float64 v)
363 {
364 *(float64 *)ptr = v;
365 }
366 #endif
367
368 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
369
370 static inline int lduw_be_p(void *ptr)
371 {
372 #if defined(__i386__)
373 int val;
374 asm volatile ("movzwl %1, %0\n"
375 "xchgb %b0, %h0\n"
376 : "=q" (val)
377 : "m" (*(uint16_t *)ptr));
378 return val;
379 #else
380 uint8_t *b = (uint8_t *) ptr;
381 return ((b[0] << 8) | b[1]);
382 #endif
383 }
384
385 static inline int ldsw_be_p(void *ptr)
386 {
387 #if defined(__i386__)
388 int val;
389 asm volatile ("movzwl %1, %0\n"
390 "xchgb %b0, %h0\n"
391 : "=q" (val)
392 : "m" (*(uint16_t *)ptr));
393 return (int16_t)val;
394 #else
395 uint8_t *b = (uint8_t *) ptr;
396 return (int16_t)((b[0] << 8) | b[1]);
397 #endif
398 }
399
400 static inline int ldl_be_p(void *ptr)
401 {
402 #if defined(__i386__) || defined(__x86_64__)
403 int val;
404 asm volatile ("movl %1, %0\n"
405 "bswap %0\n"
406 : "=r" (val)
407 : "m" (*(uint32_t *)ptr));
408 return val;
409 #else
410 uint8_t *b = (uint8_t *) ptr;
411 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
412 #endif
413 }
414
415 static inline uint64_t ldq_be_p(void *ptr)
416 {
417 uint32_t a,b;
418 a = ldl_be_p(ptr);
419 b = ldl_be_p(ptr+4);
420 return (((uint64_t)a<<32)|b);
421 }
422
423 static inline void stw_be_p(void *ptr, int v)
424 {
425 #if defined(__i386__)
426 asm volatile ("xchgb %b0, %h0\n"
427 "movw %w0, %1\n"
428 : "=q" (v)
429 : "m" (*(uint16_t *)ptr), "0" (v));
430 #else
431 uint8_t *d = (uint8_t *) ptr;
432 d[0] = v >> 8;
433 d[1] = v;
434 #endif
435 }
436
437 static inline void stl_be_p(void *ptr, int v)
438 {
439 #if defined(__i386__) || defined(__x86_64__)
440 asm volatile ("bswap %0\n"
441 "movl %0, %1\n"
442 : "=r" (v)
443 : "m" (*(uint32_t *)ptr), "0" (v));
444 #else
445 uint8_t *d = (uint8_t *) ptr;
446 d[0] = v >> 24;
447 d[1] = v >> 16;
448 d[2] = v >> 8;
449 d[3] = v;
450 #endif
451 }
452
453 static inline void stq_be_p(void *ptr, uint64_t v)
454 {
455 stl_be_p(ptr, v >> 32);
456 stl_be_p(ptr + 4, v);
457 }
458
459 /* float access */
460
461 static inline float32 ldfl_be_p(void *ptr)
462 {
463 union {
464 float32 f;
465 uint32_t i;
466 } u;
467 u.i = ldl_be_p(ptr);
468 return u.f;
469 }
470
471 static inline void stfl_be_p(void *ptr, float32 v)
472 {
473 union {
474 float32 f;
475 uint32_t i;
476 } u;
477 u.f = v;
478 stl_be_p(ptr, u.i);
479 }
480
481 static inline float64 ldfq_be_p(void *ptr)
482 {
483 CPU_DoubleU u;
484 u.l.upper = ldl_be_p(ptr);
485 u.l.lower = ldl_be_p(ptr + 4);
486 return u.d;
487 }
488
489 static inline void stfq_be_p(void *ptr, float64 v)
490 {
491 CPU_DoubleU u;
492 u.d = v;
493 stl_be_p(ptr, u.l.upper);
494 stl_be_p(ptr + 4, u.l.lower);
495 }
496
497 #else
498
499 static inline int lduw_be_p(void *ptr)
500 {
501 return *(uint16_t *)ptr;
502 }
503
504 static inline int ldsw_be_p(void *ptr)
505 {
506 return *(int16_t *)ptr;
507 }
508
509 static inline int ldl_be_p(void *ptr)
510 {
511 return *(uint32_t *)ptr;
512 }
513
514 static inline uint64_t ldq_be_p(void *ptr)
515 {
516 return *(uint64_t *)ptr;
517 }
518
519 static inline void stw_be_p(void *ptr, int v)
520 {
521 *(uint16_t *)ptr = v;
522 }
523
524 static inline void stl_be_p(void *ptr, int v)
525 {
526 *(uint32_t *)ptr = v;
527 }
528
529 static inline void stq_be_p(void *ptr, uint64_t v)
530 {
531 *(uint64_t *)ptr = v;
532 }
533
534 /* float access */
535
536 static inline float32 ldfl_be_p(void *ptr)
537 {
538 return *(float32 *)ptr;
539 }
540
541 static inline float64 ldfq_be_p(void *ptr)
542 {
543 return *(float64 *)ptr;
544 }
545
546 static inline void stfl_be_p(void *ptr, float32 v)
547 {
548 *(float32 *)ptr = v;
549 }
550
551 static inline void stfq_be_p(void *ptr, float64 v)
552 {
553 *(float64 *)ptr = v;
554 }
555
556 #endif
557
558 /* target CPU memory access functions */
559 #if defined(TARGET_WORDS_BIGENDIAN)
560 #define lduw_p(p) lduw_be_p(p)
561 #define ldsw_p(p) ldsw_be_p(p)
562 #define ldl_p(p) ldl_be_p(p)
563 #define ldq_p(p) ldq_be_p(p)
564 #define ldfl_p(p) ldfl_be_p(p)
565 #define ldfq_p(p) ldfq_be_p(p)
566 #define stw_p(p, v) stw_be_p(p, v)
567 #define stl_p(p, v) stl_be_p(p, v)
568 #define stq_p(p, v) stq_be_p(p, v)
569 #define stfl_p(p, v) stfl_be_p(p, v)
570 #define stfq_p(p, v) stfq_be_p(p, v)
571 #else
572 #define lduw_p(p) lduw_le_p(p)
573 #define ldsw_p(p) ldsw_le_p(p)
574 #define ldl_p(p) ldl_le_p(p)
575 #define ldq_p(p) ldq_le_p(p)
576 #define ldfl_p(p) ldfl_le_p(p)
577 #define ldfq_p(p) ldfq_le_p(p)
578 #define stw_p(p, v) stw_le_p(p, v)
579 #define stl_p(p, v) stl_le_p(p, v)
580 #define stq_p(p, v) stq_le_p(p, v)
581 #define stfl_p(p, v) stfl_le_p(p, v)
582 #define stfq_p(p, v) stfq_le_p(p, v)
583 #endif
584
585 /* MMU memory access macros */
586
587 #if defined(CONFIG_USER_ONLY)
588 /* On some host systems the guest address space is reserved on the host.
589 * This allows the guest address space to be offset to a convenient location.
590 */
591 //#define GUEST_BASE 0x20000000
592 #define GUEST_BASE 0
593
594 /* All direct uses of g2h and h2g need to go away for usermode softmmu. */
595 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
596 #define h2g(x) ((target_ulong)(x - GUEST_BASE))
597
598 #define saddr(x) g2h(x)
599 #define laddr(x) g2h(x)
600
601 #else /* !CONFIG_USER_ONLY */
602 /* NOTE: we use double casts if pointers and target_ulong have
603 different sizes */
604 #define saddr(x) (uint8_t *)(long)(x)
605 #define laddr(x) (uint8_t *)(long)(x)
606 #endif
607
608 #define ldub_raw(p) ldub_p(laddr((p)))
609 #define ldsb_raw(p) ldsb_p(laddr((p)))
610 #define lduw_raw(p) lduw_p(laddr((p)))
611 #define ldsw_raw(p) ldsw_p(laddr((p)))
612 #define ldl_raw(p) ldl_p(laddr((p)))
613 #define ldq_raw(p) ldq_p(laddr((p)))
614 #define ldfl_raw(p) ldfl_p(laddr((p)))
615 #define ldfq_raw(p) ldfq_p(laddr((p)))
616 #define stb_raw(p, v) stb_p(saddr((p)), v)
617 #define stw_raw(p, v) stw_p(saddr((p)), v)
618 #define stl_raw(p, v) stl_p(saddr((p)), v)
619 #define stq_raw(p, v) stq_p(saddr((p)), v)
620 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
621 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
622
623
624 #if defined(CONFIG_USER_ONLY)
625
626 /* if user mode, no other memory access functions */
627 #define ldub(p) ldub_raw(p)
628 #define ldsb(p) ldsb_raw(p)
629 #define lduw(p) lduw_raw(p)
630 #define ldsw(p) ldsw_raw(p)
631 #define ldl(p) ldl_raw(p)
632 #define ldq(p) ldq_raw(p)
633 #define ldfl(p) ldfl_raw(p)
634 #define ldfq(p) ldfq_raw(p)
635 #define stb(p, v) stb_raw(p, v)
636 #define stw(p, v) stw_raw(p, v)
637 #define stl(p, v) stl_raw(p, v)
638 #define stq(p, v) stq_raw(p, v)
639 #define stfl(p, v) stfl_raw(p, v)
640 #define stfq(p, v) stfq_raw(p, v)
641
642 #define ldub_code(p) ldub_raw(p)
643 #define ldsb_code(p) ldsb_raw(p)
644 #define lduw_code(p) lduw_raw(p)
645 #define ldsw_code(p) ldsw_raw(p)
646 #define ldl_code(p) ldl_raw(p)
647
648 #define ldub_kernel(p) ldub_raw(p)
649 #define ldsb_kernel(p) ldsb_raw(p)
650 #define lduw_kernel(p) lduw_raw(p)
651 #define ldsw_kernel(p) ldsw_raw(p)
652 #define ldl_kernel(p) ldl_raw(p)
653 #define ldfl_kernel(p) ldfl_raw(p)
654 #define ldfq_kernel(p) ldfq_raw(p)
655 #define stb_kernel(p, v) stb_raw(p, v)
656 #define stw_kernel(p, v) stw_raw(p, v)
657 #define stl_kernel(p, v) stl_raw(p, v)
658 #define stq_kernel(p, v) stq_raw(p, v)
659 #define stfl_kernel(p, v) stfl_raw(p, v)
660 #define stfq_kernel(p, vt) stfq_raw(p, v)
661
662 #endif /* defined(CONFIG_USER_ONLY) */
663
664 /* page related stuff */
665
666 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
667 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
668 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
669
670 /* ??? These should be the larger of unsigned long and target_ulong. */
671 extern unsigned long qemu_real_host_page_size;
672 extern unsigned long qemu_host_page_bits;
673 extern unsigned long qemu_host_page_size;
674 extern unsigned long qemu_host_page_mask;
675
676 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
677
678 /* same as PROT_xxx */
679 #define PAGE_READ 0x0001
680 #define PAGE_WRITE 0x0002
681 #define PAGE_EXEC 0x0004
682 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
683 #define PAGE_VALID 0x0008
684 /* original state of the write flag (used when tracking self-modifying
685 code */
686 #define PAGE_WRITE_ORG 0x0010
687
688 void page_dump(FILE *f);
689 int page_get_flags(target_ulong address);
690 void page_set_flags(target_ulong start, target_ulong end, int flags);
691 void page_unprotect_range(target_ulong data, target_ulong data_size);
692
693 #define SINGLE_CPU_DEFINES
694 #ifdef SINGLE_CPU_DEFINES
695
696 #if defined(TARGET_I386)
697
698 #define CPUState CPUX86State
699 #define cpu_init cpu_x86_init
700 #define cpu_exec cpu_x86_exec
701 #define cpu_gen_code cpu_x86_gen_code
702 #define cpu_signal_handler cpu_x86_signal_handler
703
704 #elif defined(TARGET_ARM)
705
706 #define CPUState CPUARMState
707 #define cpu_init cpu_arm_init
708 #define cpu_exec cpu_arm_exec
709 #define cpu_gen_code cpu_arm_gen_code
710 #define cpu_signal_handler cpu_arm_signal_handler
711
712 #elif defined(TARGET_SPARC)
713
714 #define CPUState CPUSPARCState
715 #define cpu_init cpu_sparc_init
716 #define cpu_exec cpu_sparc_exec
717 #define cpu_gen_code cpu_sparc_gen_code
718 #define cpu_signal_handler cpu_sparc_signal_handler
719
720 #elif defined(TARGET_PPC)
721
722 #define CPUState CPUPPCState
723 #define cpu_init cpu_ppc_init
724 #define cpu_exec cpu_ppc_exec
725 #define cpu_gen_code cpu_ppc_gen_code
726 #define cpu_signal_handler cpu_ppc_signal_handler
727
728 #elif defined(TARGET_MIPS)
729 #define CPUState CPUMIPSState
730 #define cpu_init cpu_mips_init
731 #define cpu_exec cpu_mips_exec
732 #define cpu_gen_code cpu_mips_gen_code
733 #define cpu_signal_handler cpu_mips_signal_handler
734
735 #elif defined(TARGET_SH4)
736 #define CPUState CPUSH4State
737 #define cpu_init cpu_sh4_init
738 #define cpu_exec cpu_sh4_exec
739 #define cpu_gen_code cpu_sh4_gen_code
740 #define cpu_signal_handler cpu_sh4_signal_handler
741
742 #else
743
744 #error unsupported target CPU
745
746 #endif
747
748 #endif /* SINGLE_CPU_DEFINES */
749
750 void cpu_dump_state(CPUState *env, FILE *f,
751 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
752 int flags);
753
754 void cpu_abort(CPUState *env, const char *fmt, ...);
755 extern CPUState *first_cpu;
756 extern CPUState *cpu_single_env;
757 extern int code_copy_enabled;
758
759 #define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
760 #define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
761 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
762 #define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
763 #define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
764 #define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
765 #define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
766
767 void cpu_interrupt(CPUState *s, int mask);
768 void cpu_reset_interrupt(CPUState *env, int mask);
769
770 int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
771 int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
772 void cpu_single_step(CPUState *env, int enabled);
773 void cpu_reset(CPUState *s);
774
775 /* Return the physical page corresponding to a virtual one. Use it
776 only for debugging because no protection checks are done. Return -1
777 if no page found. */
778 target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
779
780 #define CPU_LOG_TB_OUT_ASM (1 << 0)
781 #define CPU_LOG_TB_IN_ASM (1 << 1)
782 #define CPU_LOG_TB_OP (1 << 2)
783 #define CPU_LOG_TB_OP_OPT (1 << 3)
784 #define CPU_LOG_INT (1 << 4)
785 #define CPU_LOG_EXEC (1 << 5)
786 #define CPU_LOG_PCALL (1 << 6)
787 #define CPU_LOG_IOPORT (1 << 7)
788 #define CPU_LOG_TB_CPU (1 << 8)
789
790 /* define log items */
791 typedef struct CPULogItem {
792 int mask;
793 const char *name;
794 const char *help;
795 } CPULogItem;
796
797 extern CPULogItem cpu_log_items[];
798
799 void cpu_set_log(int log_flags);
800 void cpu_set_log_filename(const char *filename);
801 int cpu_str_to_log_mask(const char *str);
802
803 /* IO ports API */
804
805 /* NOTE: as these functions may be even used when there is an isa
806 brige on non x86 targets, we always defined them */
807 #ifndef NO_CPU_IO_DEFS
808 void cpu_outb(CPUState *env, int addr, int val);
809 void cpu_outw(CPUState *env, int addr, int val);
810 void cpu_outl(CPUState *env, int addr, int val);
811 int cpu_inb(CPUState *env, int addr);
812 int cpu_inw(CPUState *env, int addr);
813 int cpu_inl(CPUState *env, int addr);
814 #endif
815
816 /* memory API */
817
818 extern int phys_ram_size;
819 extern int phys_ram_fd;
820 extern uint8_t *phys_ram_base;
821 extern uint8_t *phys_ram_dirty;
822
823 /* physical memory access */
824 #define TLB_INVALID_MASK (1 << 3)
825 #define IO_MEM_SHIFT 4
826 #define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
827
828 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
829 #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
830 #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
831 #define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
832 /* acts like a ROM when read and like a device when written. As an
833 exception, the write memory callback gets the ram offset instead of
834 the physical address */
835 #define IO_MEM_ROMD (1)
836
837 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
838 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
839
840 void cpu_register_physical_memory(target_phys_addr_t start_addr,
841 unsigned long size,
842 unsigned long phys_offset);
843 uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
844 int cpu_register_io_memory(int io_index,
845 CPUReadMemoryFunc **mem_read,
846 CPUWriteMemoryFunc **mem_write,
847 void *opaque);
848 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
849 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
850
851 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
852 int len, int is_write);
853 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
854 uint8_t *buf, int len)
855 {
856 cpu_physical_memory_rw(addr, buf, len, 0);
857 }
858 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
859 const uint8_t *buf, int len)
860 {
861 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
862 }
863 uint32_t ldub_phys(target_phys_addr_t addr);
864 uint32_t lduw_phys(target_phys_addr_t addr);
865 uint32_t ldl_phys(target_phys_addr_t addr);
866 uint64_t ldq_phys(target_phys_addr_t addr);
867 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
868 void stb_phys(target_phys_addr_t addr, uint32_t val);
869 void stw_phys(target_phys_addr_t addr, uint32_t val);
870 void stl_phys(target_phys_addr_t addr, uint32_t val);
871 void stq_phys(target_phys_addr_t addr, uint64_t val);
872
873 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
874 const uint8_t *buf, int len);
875 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
876 uint8_t *buf, int len, int is_write);
877
878 #define VGA_DIRTY_FLAG 0x01
879 #define CODE_DIRTY_FLAG 0x02
880
881 /* read dirty bit (return 0 or 1) */
882 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
883 {
884 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
885 }
886
887 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
888 int dirty_flags)
889 {
890 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
891 }
892
893 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
894 {
895 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
896 }
897
898 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
899 int dirty_flags);
900 void cpu_tlb_update_dirty(CPUState *env);
901
902 void dump_exec_info(FILE *f,
903 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
904
905 /*******************************************/
906 /* host CPU ticks (if available) */
907
908 #if defined(__powerpc__)
909
910 static inline uint32_t get_tbl(void)
911 {
912 uint32_t tbl;
913 asm volatile("mftb %0" : "=r" (tbl));
914 return tbl;
915 }
916
917 static inline uint32_t get_tbu(void)
918 {
919 uint32_t tbl;
920 asm volatile("mftbu %0" : "=r" (tbl));
921 return tbl;
922 }
923
924 static inline int64_t cpu_get_real_ticks(void)
925 {
926 uint32_t l, h, h1;
927 /* NOTE: we test if wrapping has occurred */
928 do {
929 h = get_tbu();
930 l = get_tbl();
931 h1 = get_tbu();
932 } while (h != h1);
933 return ((int64_t)h << 32) | l;
934 }
935
936 #elif defined(__i386__)
937
938 static inline int64_t cpu_get_real_ticks(void)
939 {
940 int64_t val;
941 asm volatile ("rdtsc" : "=A" (val));
942 return val;
943 }
944
945 #elif defined(__x86_64__)
946
947 static inline int64_t cpu_get_real_ticks(void)
948 {
949 uint32_t low,high;
950 int64_t val;
951 asm volatile("rdtsc" : "=a" (low), "=d" (high));
952 val = high;
953 val <<= 32;
954 val |= low;
955 return val;
956 }
957
958 #elif defined(__ia64)
959
960 static inline int64_t cpu_get_real_ticks(void)
961 {
962 int64_t val;
963 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
964 return val;
965 }
966
967 #elif defined(__s390__)
968
969 static inline int64_t cpu_get_real_ticks(void)
970 {
971 int64_t val;
972 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
973 return val;
974 }
975
976 #elif defined(__sparc_v9__)
977
978 static inline int64_t cpu_get_real_ticks (void)
979 {
980 #if defined(_LP64)
981 uint64_t rval;
982 asm volatile("rd %%tick,%0" : "=r"(rval));
983 return rval;
984 #else
985 union {
986 uint64_t i64;
987 struct {
988 uint32_t high;
989 uint32_t low;
990 } i32;
991 } rval;
992 asm volatile("rd %%tick,%1; srlx %1,32,%0"
993 : "=r"(rval.i32.high), "=r"(rval.i32.low));
994 return rval.i64;
995 #endif
996 }
997 #else
998 /* The host CPU doesn't have an easily accessible cycle counter.
999 Just return a monotonically increasing vlue. This will be totally wrong,
1000 but hopefully better than nothing. */
1001 static inline int64_t cpu_get_real_ticks (void)
1002 {
1003 static int64_t ticks = 0;
1004 return ticks++;
1005 }
1006 #endif
1007
1008 /* profiling */
1009 #ifdef CONFIG_PROFILER
1010 static inline int64_t profile_getclock(void)
1011 {
1012 return cpu_get_real_ticks();
1013 }
1014
1015 extern int64_t kqemu_time, kqemu_time_start;
1016 extern int64_t qemu_time, qemu_time_start;
1017 extern int64_t tlb_flush_time;
1018 extern int64_t kqemu_exec_count;
1019 extern int64_t dev_time;
1020 extern int64_t kqemu_ret_int_count;
1021 extern int64_t kqemu_ret_excp_count;
1022 extern int64_t kqemu_ret_intr_count;
1023
1024 #endif
1025
1026 #endif /* CPU_ALL_H */