]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
add assertions about env->current_tb
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
24
25 #include <assert.h>
26
27 #if !defined(CONFIG_SOFTMMU)
28 #undef EAX
29 #undef ECX
30 #undef EDX
31 #undef EBX
32 #undef ESP
33 #undef EBP
34 #undef ESI
35 #undef EDI
36 #undef EIP
37 #include <signal.h>
38 #ifdef __linux__
39 #include <sys/ucontext.h>
40 #endif
41 #endif
42
43 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
44 // Work around ugly bugs in glibc that mangle global register contents
45 #undef env
46 #define env cpu_single_env
47 #endif
48
49 int tb_invalidated_flag;
50
51 //#define CONFIG_DEBUG_EXEC
52 //#define DEBUG_SIGNAL
53
54 int qemu_cpu_has_work(CPUState *env)
55 {
56 return cpu_has_work(env);
57 }
58
59 void cpu_loop_exit(void)
60 {
61 env->current_tb = NULL;
62 longjmp(env->jmp_env, 1);
63 }
64
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
67 */
68 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 {
70 #if !defined(CONFIG_SOFTMMU)
71 #ifdef __linux__
72 struct ucontext *uc = puc;
73 #elif defined(__OpenBSD__)
74 struct sigcontext *uc = puc;
75 #endif
76 #endif
77
78 env = env1;
79
80 /* XXX: restore cpu registers saved in host registers */
81
82 #if !defined(CONFIG_SOFTMMU)
83 if (puc) {
84 /* XXX: use siglongjmp ? */
85 #ifdef __linux__
86 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
89 #endif
90 }
91 #endif
92 env->exception_index = -1;
93 longjmp(env->jmp_env, 1);
94 }
95
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
99 {
100 unsigned long next_tb;
101 TranslationBlock *tb;
102
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles > CF_COUNT_MASK)
106 max_cycles = CF_COUNT_MASK;
107
108 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
109 max_cycles);
110 env->current_tb = tb;
111 /* execute the generated code */
112 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
113 env->current_tb = NULL;
114
115 if ((next_tb & 3) == 2) {
116 /* Restore PC. This may happen if async event occurs before
117 the TB starts executing. */
118 cpu_pc_from_tb(env, tb);
119 }
120 tb_phys_invalidate(tb, -1);
121 tb_free(tb);
122 }
123
124 static TranslationBlock *tb_find_slow(target_ulong pc,
125 target_ulong cs_base,
126 uint64_t flags)
127 {
128 TranslationBlock *tb, **ptb1;
129 unsigned int h;
130 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
131
132 tb_invalidated_flag = 0;
133
134 /* find translated block using physical mappings */
135 phys_pc = get_phys_addr_code(env, pc);
136 phys_page1 = phys_pc & TARGET_PAGE_MASK;
137 phys_page2 = -1;
138 h = tb_phys_hash_func(phys_pc);
139 ptb1 = &tb_phys_hash[h];
140 for(;;) {
141 tb = *ptb1;
142 if (!tb)
143 goto not_found;
144 if (tb->pc == pc &&
145 tb->page_addr[0] == phys_page1 &&
146 tb->cs_base == cs_base &&
147 tb->flags == flags) {
148 /* check next page if needed */
149 if (tb->page_addr[1] != -1) {
150 virt_page2 = (pc & TARGET_PAGE_MASK) +
151 TARGET_PAGE_SIZE;
152 phys_page2 = get_phys_addr_code(env, virt_page2);
153 if (tb->page_addr[1] == phys_page2)
154 goto found;
155 } else {
156 goto found;
157 }
158 }
159 ptb1 = &tb->phys_hash_next;
160 }
161 not_found:
162 /* if no translated code available, then translate it now */
163 tb = tb_gen_code(env, pc, cs_base, flags, 0);
164
165 found:
166 /* we add the TB in the virtual pc hash table */
167 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
168 return tb;
169 }
170
171 static inline TranslationBlock *tb_find_fast(void)
172 {
173 TranslationBlock *tb;
174 target_ulong cs_base, pc;
175 int flags;
176
177 /* we record a subset of the CPU state. It will
178 always be the same before a given translated block
179 is executed. */
180 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
181 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
182 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
183 tb->flags != flags)) {
184 tb = tb_find_slow(pc, cs_base, flags);
185 }
186 return tb;
187 }
188
189 static CPUDebugExcpHandler *debug_excp_handler;
190
191 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
192 {
193 CPUDebugExcpHandler *old_handler = debug_excp_handler;
194
195 debug_excp_handler = handler;
196 return old_handler;
197 }
198
199 static void cpu_handle_debug_exception(CPUState *env)
200 {
201 CPUWatchpoint *wp;
202
203 if (!env->watchpoint_hit)
204 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
205 wp->flags &= ~BP_WATCHPOINT_HIT;
206
207 if (debug_excp_handler)
208 debug_excp_handler(env);
209 }
210
211 /* main execution loop */
212
213 int cpu_exec(CPUState *env1)
214 {
215 #define DECLARE_HOST_REGS 1
216 #include "hostregs_helper.h"
217 int ret, interrupt_request;
218 TranslationBlock *tb;
219 uint8_t *tc_ptr;
220 unsigned long next_tb;
221
222 if (cpu_halted(env1) == EXCP_HALTED)
223 return EXCP_HALTED;
224
225 cpu_single_env = env1;
226
227 /* first we save global registers */
228 #define SAVE_HOST_REGS 1
229 #include "hostregs_helper.h"
230 env = env1;
231
232 #if defined(TARGET_I386)
233 /* put eflags in CPU temporary format */
234 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
235 DF = 1 - (2 * ((env->eflags >> 10) & 1));
236 CC_OP = CC_OP_EFLAGS;
237 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
238 #elif defined(TARGET_SPARC)
239 #elif defined(TARGET_M68K)
240 env->cc_op = CC_OP_FLAGS;
241 env->cc_dest = env->sr & 0xf;
242 env->cc_x = (env->sr >> 4) & 1;
243 #elif defined(TARGET_ALPHA)
244 #elif defined(TARGET_ARM)
245 #elif defined(TARGET_PPC)
246 #elif defined(TARGET_MICROBLAZE)
247 #elif defined(TARGET_MIPS)
248 #elif defined(TARGET_SH4)
249 #elif defined(TARGET_CRIS)
250 #elif defined(TARGET_S390X)
251 /* XXXXX */
252 #else
253 #error unsupported target CPU
254 #endif
255 env->exception_index = -1;
256
257 /* prepare setjmp context for exception handling */
258 for(;;) {
259 if (setjmp(env->jmp_env) == 0) {
260 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
261 #undef env
262 env = cpu_single_env;
263 #define env cpu_single_env
264 #endif
265 assert (env->current_tb == NULL);
266 /* if an exception is pending, we execute it here */
267 if (env->exception_index >= 0) {
268 if (env->exception_index >= EXCP_INTERRUPT) {
269 /* exit request from the cpu execution loop */
270 ret = env->exception_index;
271 if (ret == EXCP_DEBUG)
272 cpu_handle_debug_exception(env);
273 break;
274 } else {
275 #if defined(CONFIG_USER_ONLY)
276 /* if user mode only, we simulate a fake exception
277 which will be handled outside the cpu execution
278 loop */
279 #if defined(TARGET_I386)
280 do_interrupt_user(env->exception_index,
281 env->exception_is_int,
282 env->error_code,
283 env->exception_next_eip);
284 /* successfully delivered */
285 env->old_exception = -1;
286 #endif
287 ret = env->exception_index;
288 break;
289 #else
290 #if defined(TARGET_I386)
291 /* simulate a real cpu exception. On i386, it can
292 trigger new exceptions, but we do not handle
293 double or triple faults yet. */
294 do_interrupt(env->exception_index,
295 env->exception_is_int,
296 env->error_code,
297 env->exception_next_eip, 0);
298 /* successfully delivered */
299 env->old_exception = -1;
300 #elif defined(TARGET_PPC)
301 do_interrupt(env);
302 #elif defined(TARGET_MICROBLAZE)
303 do_interrupt(env);
304 #elif defined(TARGET_MIPS)
305 do_interrupt(env);
306 #elif defined(TARGET_SPARC)
307 do_interrupt(env);
308 #elif defined(TARGET_ARM)
309 do_interrupt(env);
310 #elif defined(TARGET_SH4)
311 do_interrupt(env);
312 #elif defined(TARGET_ALPHA)
313 do_interrupt(env);
314 #elif defined(TARGET_CRIS)
315 do_interrupt(env);
316 #elif defined(TARGET_M68K)
317 do_interrupt(0);
318 #endif
319 #endif
320 }
321 env->exception_index = -1;
322 }
323
324 if (kvm_enabled()) {
325 kvm_cpu_exec(env);
326 longjmp(env->jmp_env, 1);
327 }
328
329 next_tb = 0; /* force lookup of first TB */
330 for(;;) {
331 interrupt_request = env->interrupt_request;
332 if (unlikely(interrupt_request)) {
333 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
334 /* Mask out external interrupts for this step. */
335 interrupt_request &= ~(CPU_INTERRUPT_HARD |
336 CPU_INTERRUPT_FIQ |
337 CPU_INTERRUPT_SMI |
338 CPU_INTERRUPT_NMI);
339 }
340 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
341 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
342 env->exception_index = EXCP_DEBUG;
343 cpu_loop_exit();
344 }
345 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
346 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
347 defined(TARGET_MICROBLAZE)
348 if (interrupt_request & CPU_INTERRUPT_HALT) {
349 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
350 env->halted = 1;
351 env->exception_index = EXCP_HLT;
352 cpu_loop_exit();
353 }
354 #endif
355 #if defined(TARGET_I386)
356 if (interrupt_request & CPU_INTERRUPT_INIT) {
357 svm_check_intercept(SVM_EXIT_INIT);
358 do_cpu_init(env);
359 env->exception_index = EXCP_HALTED;
360 cpu_loop_exit();
361 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
362 do_cpu_sipi(env);
363 } else if (env->hflags2 & HF2_GIF_MASK) {
364 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
365 !(env->hflags & HF_SMM_MASK)) {
366 svm_check_intercept(SVM_EXIT_SMI);
367 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
368 do_smm_enter();
369 next_tb = 0;
370 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
371 !(env->hflags2 & HF2_NMI_MASK)) {
372 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
373 env->hflags2 |= HF2_NMI_MASK;
374 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
375 next_tb = 0;
376 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
377 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
378 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
379 next_tb = 0;
380 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
381 (((env->hflags2 & HF2_VINTR_MASK) &&
382 (env->hflags2 & HF2_HIF_MASK)) ||
383 (!(env->hflags2 & HF2_VINTR_MASK) &&
384 (env->eflags & IF_MASK &&
385 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
386 int intno;
387 svm_check_intercept(SVM_EXIT_INTR);
388 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
389 intno = cpu_get_pic_interrupt(env);
390 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
391 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
392 #undef env
393 env = cpu_single_env;
394 #define env cpu_single_env
395 #endif
396 do_interrupt(intno, 0, 0, 0, 1);
397 /* ensure that no TB jump will be modified as
398 the program flow was changed */
399 next_tb = 0;
400 #if !defined(CONFIG_USER_ONLY)
401 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
402 (env->eflags & IF_MASK) &&
403 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
404 int intno;
405 /* FIXME: this should respect TPR */
406 svm_check_intercept(SVM_EXIT_VINTR);
407 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
408 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
409 do_interrupt(intno, 0, 0, 0, 1);
410 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
411 next_tb = 0;
412 #endif
413 }
414 }
415 #elif defined(TARGET_PPC)
416 #if 0
417 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
418 cpu_reset(env);
419 }
420 #endif
421 if (interrupt_request & CPU_INTERRUPT_HARD) {
422 ppc_hw_interrupt(env);
423 if (env->pending_interrupts == 0)
424 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
425 next_tb = 0;
426 }
427 #elif defined(TARGET_MICROBLAZE)
428 if ((interrupt_request & CPU_INTERRUPT_HARD)
429 && (env->sregs[SR_MSR] & MSR_IE)
430 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
431 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
432 env->exception_index = EXCP_IRQ;
433 do_interrupt(env);
434 next_tb = 0;
435 }
436 #elif defined(TARGET_MIPS)
437 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
438 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
439 (env->CP0_Status & (1 << CP0St_IE)) &&
440 !(env->CP0_Status & (1 << CP0St_EXL)) &&
441 !(env->CP0_Status & (1 << CP0St_ERL)) &&
442 !(env->hflags & MIPS_HFLAG_DM)) {
443 /* Raise it */
444 env->exception_index = EXCP_EXT_INTERRUPT;
445 env->error_code = 0;
446 do_interrupt(env);
447 next_tb = 0;
448 }
449 #elif defined(TARGET_SPARC)
450 if (interrupt_request & CPU_INTERRUPT_HARD) {
451 if (cpu_interrupts_enabled(env) &&
452 env->interrupt_index > 0) {
453 int pil = env->interrupt_index & 0xf;
454 int type = env->interrupt_index & 0xf0;
455
456 if (((type == TT_EXTINT) &&
457 cpu_pil_allowed(env, pil)) ||
458 type != TT_EXTINT) {
459 env->exception_index = env->interrupt_index;
460 do_interrupt(env);
461 next_tb = 0;
462 }
463 }
464 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
465 //do_interrupt(0, 0, 0, 0, 0);
466 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
467 }
468 #elif defined(TARGET_ARM)
469 if (interrupt_request & CPU_INTERRUPT_FIQ
470 && !(env->uncached_cpsr & CPSR_F)) {
471 env->exception_index = EXCP_FIQ;
472 do_interrupt(env);
473 next_tb = 0;
474 }
475 /* ARMv7-M interrupt return works by loading a magic value
476 into the PC. On real hardware the load causes the
477 return to occur. The qemu implementation performs the
478 jump normally, then does the exception return when the
479 CPU tries to execute code at the magic address.
480 This will cause the magic PC value to be pushed to
481 the stack if an interrupt occured at the wrong time.
482 We avoid this by disabling interrupts when
483 pc contains a magic address. */
484 if (interrupt_request & CPU_INTERRUPT_HARD
485 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
486 || !(env->uncached_cpsr & CPSR_I))) {
487 env->exception_index = EXCP_IRQ;
488 do_interrupt(env);
489 next_tb = 0;
490 }
491 #elif defined(TARGET_SH4)
492 if (interrupt_request & CPU_INTERRUPT_HARD) {
493 do_interrupt(env);
494 next_tb = 0;
495 }
496 #elif defined(TARGET_ALPHA)
497 if (interrupt_request & CPU_INTERRUPT_HARD) {
498 do_interrupt(env);
499 next_tb = 0;
500 }
501 #elif defined(TARGET_CRIS)
502 if (interrupt_request & CPU_INTERRUPT_HARD
503 && (env->pregs[PR_CCS] & I_FLAG)) {
504 env->exception_index = EXCP_IRQ;
505 do_interrupt(env);
506 next_tb = 0;
507 }
508 if (interrupt_request & CPU_INTERRUPT_NMI
509 && (env->pregs[PR_CCS] & M_FLAG)) {
510 env->exception_index = EXCP_NMI;
511 do_interrupt(env);
512 next_tb = 0;
513 }
514 #elif defined(TARGET_M68K)
515 if (interrupt_request & CPU_INTERRUPT_HARD
516 && ((env->sr & SR_I) >> SR_I_SHIFT)
517 < env->pending_level) {
518 /* Real hardware gets the interrupt vector via an
519 IACK cycle at this point. Current emulated
520 hardware doesn't rely on this, so we
521 provide/save the vector when the interrupt is
522 first signalled. */
523 env->exception_index = env->pending_vector;
524 do_interrupt(1);
525 next_tb = 0;
526 }
527 #endif
528 /* Don't use the cached interupt_request value,
529 do_interrupt may have updated the EXITTB flag. */
530 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
531 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
532 /* ensure that no TB jump will be modified as
533 the program flow was changed */
534 next_tb = 0;
535 }
536 }
537 if (unlikely(env->exit_request)) {
538 env->exit_request = 0;
539 env->exception_index = EXCP_INTERRUPT;
540 cpu_loop_exit();
541 }
542 #ifdef CONFIG_DEBUG_EXEC
543 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
544 /* restore flags in standard format */
545 #if defined(TARGET_I386)
546 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
547 log_cpu_state(env, X86_DUMP_CCOP);
548 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
549 #elif defined(TARGET_ARM)
550 log_cpu_state(env, 0);
551 #elif defined(TARGET_SPARC)
552 log_cpu_state(env, 0);
553 #elif defined(TARGET_PPC)
554 log_cpu_state(env, 0);
555 #elif defined(TARGET_M68K)
556 cpu_m68k_flush_flags(env, env->cc_op);
557 env->cc_op = CC_OP_FLAGS;
558 env->sr = (env->sr & 0xffe0)
559 | env->cc_dest | (env->cc_x << 4);
560 log_cpu_state(env, 0);
561 #elif defined(TARGET_MICROBLAZE)
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_MIPS)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_SH4)
566 log_cpu_state(env, 0);
567 #elif defined(TARGET_ALPHA)
568 log_cpu_state(env, 0);
569 #elif defined(TARGET_CRIS)
570 log_cpu_state(env, 0);
571 #else
572 #error unsupported target CPU
573 #endif
574 }
575 #endif
576 spin_lock(&tb_lock);
577 tb = tb_find_fast();
578 /* Note: we do it here to avoid a gcc bug on Mac OS X when
579 doing it in tb_find_slow */
580 if (tb_invalidated_flag) {
581 /* as some TB could have been invalidated because
582 of memory exceptions while generating the code, we
583 must recompute the hash index here */
584 next_tb = 0;
585 tb_invalidated_flag = 0;
586 }
587 #ifdef CONFIG_DEBUG_EXEC
588 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
589 (long)tb->tc_ptr, tb->pc,
590 lookup_symbol(tb->pc));
591 #endif
592 /* see if we can patch the calling TB. When the TB
593 spans two pages, we cannot safely do a direct
594 jump. */
595 if (next_tb != 0 && tb->page_addr[1] == -1) {
596 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
597 }
598 spin_unlock(&tb_lock);
599 env->current_tb = tb;
600 assert (env->current_tb);
601
602 /* cpu_interrupt might be called while translating the
603 TB, but before it is linked into a potentially
604 infinite loop and becomes env->current_tb. Avoid
605 starting execution if there is a pending interrupt. */
606 if (unlikely (env->exit_request))
607 env->current_tb = NULL;
608
609 while (env->current_tb) {
610 tc_ptr = tb->tc_ptr;
611 /* execute the generated code */
612 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
613 #undef env
614 env = cpu_single_env;
615 #define env cpu_single_env
616 #endif
617 next_tb = tcg_qemu_tb_exec(tc_ptr);
618 env->current_tb = NULL;
619 if ((next_tb & 3) == 2) {
620 /* Instruction counter expired. */
621 int insns_left;
622 tb = (TranslationBlock *)(long)(next_tb & ~3);
623 /* Restore PC. */
624 cpu_pc_from_tb(env, tb);
625 insns_left = env->icount_decr.u32;
626 if (env->icount_extra && insns_left >= 0) {
627 /* Refill decrementer and continue execution. */
628 env->icount_extra += insns_left;
629 if (env->icount_extra > 0xffff) {
630 insns_left = 0xffff;
631 } else {
632 insns_left = env->icount_extra;
633 }
634 env->icount_extra -= insns_left;
635 env->icount_decr.u16.low = insns_left;
636 } else {
637 if (insns_left > 0) {
638 /* Execute remaining instructions. */
639 cpu_exec_nocache(insns_left, tb);
640 }
641 env->exception_index = EXCP_INTERRUPT;
642 next_tb = 0;
643 cpu_loop_exit();
644 }
645 }
646 assert (env->current_tb == NULL);
647 }
648 /* reset soft MMU for next block (it can currently
649 only be set by a memory fault) */
650 } /* for(;;) */
651 }
652 } /* for(;;) */
653
654
655 #if defined(TARGET_I386)
656 /* restore flags in standard format */
657 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
658 #elif defined(TARGET_ARM)
659 /* XXX: Save/restore host fpu exception state?. */
660 #elif defined(TARGET_SPARC)
661 #elif defined(TARGET_PPC)
662 #elif defined(TARGET_M68K)
663 cpu_m68k_flush_flags(env, env->cc_op);
664 env->cc_op = CC_OP_FLAGS;
665 env->sr = (env->sr & 0xffe0)
666 | env->cc_dest | (env->cc_x << 4);
667 #elif defined(TARGET_MICROBLAZE)
668 #elif defined(TARGET_MIPS)
669 #elif defined(TARGET_SH4)
670 #elif defined(TARGET_ALPHA)
671 #elif defined(TARGET_CRIS)
672 #elif defined(TARGET_S390X)
673 /* XXXXX */
674 #else
675 #error unsupported target CPU
676 #endif
677
678 /* restore global registers */
679 #include "hostregs_helper.h"
680
681 /* fail safe : never use cpu_single_env outside cpu_exec() */
682 cpu_single_env = NULL;
683 return ret;
684 }
685
686 /* must only be called from the generated code as an exception can be
687 generated */
688 void tb_invalidate_page_range(target_ulong start, target_ulong end)
689 {
690 /* XXX: cannot enable it yet because it yields to MMU exception
691 where NIP != read address on PowerPC */
692 #if 0
693 target_ulong phys_addr;
694 phys_addr = get_phys_addr_code(env, start);
695 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
696 #endif
697 }
698
699 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
700
701 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
702 {
703 CPUX86State *saved_env;
704
705 saved_env = env;
706 env = s;
707 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
708 selector &= 0xffff;
709 cpu_x86_load_seg_cache(env, seg_reg, selector,
710 (selector << 4), 0xffff, 0);
711 } else {
712 helper_load_seg(seg_reg, selector);
713 }
714 env = saved_env;
715 }
716
717 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
718 {
719 CPUX86State *saved_env;
720
721 saved_env = env;
722 env = s;
723
724 helper_fsave(ptr, data32);
725
726 env = saved_env;
727 }
728
729 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
730 {
731 CPUX86State *saved_env;
732
733 saved_env = env;
734 env = s;
735
736 helper_frstor(ptr, data32);
737
738 env = saved_env;
739 }
740
741 #endif /* TARGET_I386 */
742
743 #if !defined(CONFIG_SOFTMMU)
744
745 #if defined(TARGET_I386)
746 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
747 #else
748 #define EXCEPTION_ACTION cpu_loop_exit()
749 #endif
750
751 /* 'pc' is the host PC at which the exception was raised. 'address' is
752 the effective address of the memory exception. 'is_write' is 1 if a
753 write caused the exception and otherwise 0'. 'old_set' is the
754 signal set which should be restored */
755 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
756 int is_write, sigset_t *old_set,
757 void *puc)
758 {
759 TranslationBlock *tb;
760 int ret;
761
762 if (cpu_single_env)
763 env = cpu_single_env; /* XXX: find a correct solution for multithread */
764 #if defined(DEBUG_SIGNAL)
765 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
766 pc, address, is_write, *(unsigned long *)old_set);
767 #endif
768 /* XXX: locking issue */
769 if (is_write && page_unprotect(h2g(address), pc, puc)) {
770 return 1;
771 }
772
773 /* see if it is an MMU fault */
774 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
775 if (ret < 0)
776 return 0; /* not an MMU fault */
777 if (ret == 0)
778 return 1; /* the MMU fault was handled without causing real CPU fault */
779 /* now we have a real cpu fault */
780 tb = tb_find_pc(pc);
781 if (tb) {
782 /* the PC is inside the translated code. It means that we have
783 a virtual CPU fault */
784 cpu_restore_state(tb, env, pc, puc);
785 }
786
787 /* we restore the process signal mask as the sigreturn should
788 do it (XXX: use sigsetjmp) */
789 sigprocmask(SIG_SETMASK, old_set, NULL);
790 EXCEPTION_ACTION;
791
792 /* never comes here */
793 return 1;
794 }
795
796 #if defined(__i386__)
797
798 #if defined(__APPLE__)
799 # include <sys/ucontext.h>
800
801 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
802 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
803 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
804 # define MASK_sig(context) ((context)->uc_sigmask)
805 #elif defined (__NetBSD__)
806 # include <ucontext.h>
807
808 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
809 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
810 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
811 # define MASK_sig(context) ((context)->uc_sigmask)
812 #elif defined (__FreeBSD__) || defined(__DragonFly__)
813 # include <ucontext.h>
814
815 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
816 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
817 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
818 # define MASK_sig(context) ((context)->uc_sigmask)
819 #elif defined(__OpenBSD__)
820 # define EIP_sig(context) ((context)->sc_eip)
821 # define TRAP_sig(context) ((context)->sc_trapno)
822 # define ERROR_sig(context) ((context)->sc_err)
823 # define MASK_sig(context) ((context)->sc_mask)
824 #else
825 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
826 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
827 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
828 # define MASK_sig(context) ((context)->uc_sigmask)
829 #endif
830
831 int cpu_signal_handler(int host_signum, void *pinfo,
832 void *puc)
833 {
834 siginfo_t *info = pinfo;
835 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
836 ucontext_t *uc = puc;
837 #elif defined(__OpenBSD__)
838 struct sigcontext *uc = puc;
839 #else
840 struct ucontext *uc = puc;
841 #endif
842 unsigned long pc;
843 int trapno;
844
845 #ifndef REG_EIP
846 /* for glibc 2.1 */
847 #define REG_EIP EIP
848 #define REG_ERR ERR
849 #define REG_TRAPNO TRAPNO
850 #endif
851 pc = EIP_sig(uc);
852 trapno = TRAP_sig(uc);
853 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
854 trapno == 0xe ?
855 (ERROR_sig(uc) >> 1) & 1 : 0,
856 &MASK_sig(uc), puc);
857 }
858
859 #elif defined(__x86_64__)
860
861 #ifdef __NetBSD__
862 #define PC_sig(context) _UC_MACHINE_PC(context)
863 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
864 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
865 #define MASK_sig(context) ((context)->uc_sigmask)
866 #elif defined(__OpenBSD__)
867 #define PC_sig(context) ((context)->sc_rip)
868 #define TRAP_sig(context) ((context)->sc_trapno)
869 #define ERROR_sig(context) ((context)->sc_err)
870 #define MASK_sig(context) ((context)->sc_mask)
871 #elif defined (__FreeBSD__) || defined(__DragonFly__)
872 #include <ucontext.h>
873
874 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
875 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
876 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
877 #define MASK_sig(context) ((context)->uc_sigmask)
878 #else
879 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
880 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
881 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
882 #define MASK_sig(context) ((context)->uc_sigmask)
883 #endif
884
885 int cpu_signal_handler(int host_signum, void *pinfo,
886 void *puc)
887 {
888 siginfo_t *info = pinfo;
889 unsigned long pc;
890 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
891 ucontext_t *uc = puc;
892 #elif defined(__OpenBSD__)
893 struct sigcontext *uc = puc;
894 #else
895 struct ucontext *uc = puc;
896 #endif
897
898 pc = PC_sig(uc);
899 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
900 TRAP_sig(uc) == 0xe ?
901 (ERROR_sig(uc) >> 1) & 1 : 0,
902 &MASK_sig(uc), puc);
903 }
904
905 #elif defined(_ARCH_PPC)
906
907 /***********************************************************************
908 * signal context platform-specific definitions
909 * From Wine
910 */
911 #ifdef linux
912 /* All Registers access - only for local access */
913 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
914 /* Gpr Registers access */
915 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
916 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
917 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
918 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
919 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
920 # define LR_sig(context) REG_sig(link, context) /* Link register */
921 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
922 /* Float Registers access */
923 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
924 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
925 /* Exception Registers access */
926 # define DAR_sig(context) REG_sig(dar, context)
927 # define DSISR_sig(context) REG_sig(dsisr, context)
928 # define TRAP_sig(context) REG_sig(trap, context)
929 #endif /* linux */
930
931 #ifdef __APPLE__
932 # include <sys/ucontext.h>
933 typedef struct ucontext SIGCONTEXT;
934 /* All Registers access - only for local access */
935 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
936 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
937 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
938 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
939 /* Gpr Registers access */
940 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
941 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
942 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
943 # define CTR_sig(context) REG_sig(ctr, context)
944 # define XER_sig(context) REG_sig(xer, context) /* Link register */
945 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
946 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
947 /* Float Registers access */
948 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
949 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
950 /* Exception Registers access */
951 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
952 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
953 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
954 #endif /* __APPLE__ */
955
956 int cpu_signal_handler(int host_signum, void *pinfo,
957 void *puc)
958 {
959 siginfo_t *info = pinfo;
960 struct ucontext *uc = puc;
961 unsigned long pc;
962 int is_write;
963
964 pc = IAR_sig(uc);
965 is_write = 0;
966 #if 0
967 /* ppc 4xx case */
968 if (DSISR_sig(uc) & 0x00800000)
969 is_write = 1;
970 #else
971 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
972 is_write = 1;
973 #endif
974 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
975 is_write, &uc->uc_sigmask, puc);
976 }
977
978 #elif defined(__alpha__)
979
980 int cpu_signal_handler(int host_signum, void *pinfo,
981 void *puc)
982 {
983 siginfo_t *info = pinfo;
984 struct ucontext *uc = puc;
985 uint32_t *pc = uc->uc_mcontext.sc_pc;
986 uint32_t insn = *pc;
987 int is_write = 0;
988
989 /* XXX: need kernel patch to get write flag faster */
990 switch (insn >> 26) {
991 case 0x0d: // stw
992 case 0x0e: // stb
993 case 0x0f: // stq_u
994 case 0x24: // stf
995 case 0x25: // stg
996 case 0x26: // sts
997 case 0x27: // stt
998 case 0x2c: // stl
999 case 0x2d: // stq
1000 case 0x2e: // stl_c
1001 case 0x2f: // stq_c
1002 is_write = 1;
1003 }
1004
1005 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1006 is_write, &uc->uc_sigmask, puc);
1007 }
1008 #elif defined(__sparc__)
1009
1010 int cpu_signal_handler(int host_signum, void *pinfo,
1011 void *puc)
1012 {
1013 siginfo_t *info = pinfo;
1014 int is_write;
1015 uint32_t insn;
1016 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1017 uint32_t *regs = (uint32_t *)(info + 1);
1018 void *sigmask = (regs + 20);
1019 /* XXX: is there a standard glibc define ? */
1020 unsigned long pc = regs[1];
1021 #else
1022 #ifdef __linux__
1023 struct sigcontext *sc = puc;
1024 unsigned long pc = sc->sigc_regs.tpc;
1025 void *sigmask = (void *)sc->sigc_mask;
1026 #elif defined(__OpenBSD__)
1027 struct sigcontext *uc = puc;
1028 unsigned long pc = uc->sc_pc;
1029 void *sigmask = (void *)(long)uc->sc_mask;
1030 #endif
1031 #endif
1032
1033 /* XXX: need kernel patch to get write flag faster */
1034 is_write = 0;
1035 insn = *(uint32_t *)pc;
1036 if ((insn >> 30) == 3) {
1037 switch((insn >> 19) & 0x3f) {
1038 case 0x05: // stb
1039 case 0x15: // stba
1040 case 0x06: // sth
1041 case 0x16: // stha
1042 case 0x04: // st
1043 case 0x14: // sta
1044 case 0x07: // std
1045 case 0x17: // stda
1046 case 0x0e: // stx
1047 case 0x1e: // stxa
1048 case 0x24: // stf
1049 case 0x34: // stfa
1050 case 0x27: // stdf
1051 case 0x37: // stdfa
1052 case 0x26: // stqf
1053 case 0x36: // stqfa
1054 case 0x25: // stfsr
1055 case 0x3c: // casa
1056 case 0x3e: // casxa
1057 is_write = 1;
1058 break;
1059 }
1060 }
1061 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1062 is_write, sigmask, NULL);
1063 }
1064
1065 #elif defined(__arm__)
1066
1067 int cpu_signal_handler(int host_signum, void *pinfo,
1068 void *puc)
1069 {
1070 siginfo_t *info = pinfo;
1071 struct ucontext *uc = puc;
1072 unsigned long pc;
1073 int is_write;
1074
1075 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1076 pc = uc->uc_mcontext.gregs[R15];
1077 #else
1078 pc = uc->uc_mcontext.arm_pc;
1079 #endif
1080 /* XXX: compute is_write */
1081 is_write = 0;
1082 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1083 is_write,
1084 &uc->uc_sigmask, puc);
1085 }
1086
1087 #elif defined(__mc68000)
1088
1089 int cpu_signal_handler(int host_signum, void *pinfo,
1090 void *puc)
1091 {
1092 siginfo_t *info = pinfo;
1093 struct ucontext *uc = puc;
1094 unsigned long pc;
1095 int is_write;
1096
1097 pc = uc->uc_mcontext.gregs[16];
1098 /* XXX: compute is_write */
1099 is_write = 0;
1100 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1101 is_write,
1102 &uc->uc_sigmask, puc);
1103 }
1104
1105 #elif defined(__ia64)
1106
1107 #ifndef __ISR_VALID
1108 /* This ought to be in <bits/siginfo.h>... */
1109 # define __ISR_VALID 1
1110 #endif
1111
1112 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1113 {
1114 siginfo_t *info = pinfo;
1115 struct ucontext *uc = puc;
1116 unsigned long ip;
1117 int is_write = 0;
1118
1119 ip = uc->uc_mcontext.sc_ip;
1120 switch (host_signum) {
1121 case SIGILL:
1122 case SIGFPE:
1123 case SIGSEGV:
1124 case SIGBUS:
1125 case SIGTRAP:
1126 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1127 /* ISR.W (write-access) is bit 33: */
1128 is_write = (info->si_isr >> 33) & 1;
1129 break;
1130
1131 default:
1132 break;
1133 }
1134 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1135 is_write,
1136 &uc->uc_sigmask, puc);
1137 }
1138
1139 #elif defined(__s390__)
1140
1141 int cpu_signal_handler(int host_signum, void *pinfo,
1142 void *puc)
1143 {
1144 siginfo_t *info = pinfo;
1145 struct ucontext *uc = puc;
1146 unsigned long pc;
1147 int is_write;
1148
1149 pc = uc->uc_mcontext.psw.addr;
1150 /* XXX: compute is_write */
1151 is_write = 0;
1152 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1153 is_write, &uc->uc_sigmask, puc);
1154 }
1155
1156 #elif defined(__mips__)
1157
1158 int cpu_signal_handler(int host_signum, void *pinfo,
1159 void *puc)
1160 {
1161 siginfo_t *info = pinfo;
1162 struct ucontext *uc = puc;
1163 greg_t pc = uc->uc_mcontext.pc;
1164 int is_write;
1165
1166 /* XXX: compute is_write */
1167 is_write = 0;
1168 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1169 is_write, &uc->uc_sigmask, puc);
1170 }
1171
1172 #elif defined(__hppa__)
1173
1174 int cpu_signal_handler(int host_signum, void *pinfo,
1175 void *puc)
1176 {
1177 struct siginfo *info = pinfo;
1178 struct ucontext *uc = puc;
1179 unsigned long pc;
1180 int is_write;
1181
1182 pc = uc->uc_mcontext.sc_iaoq[0];
1183 /* FIXME: compute is_write */
1184 is_write = 0;
1185 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1186 is_write,
1187 &uc->uc_sigmask, puc);
1188 }
1189
1190 #else
1191
1192 #error host CPU specific signal handler needed
1193
1194 #endif
1195
1196 #endif /* !defined(CONFIG_SOFTMMU) */