]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
930bd7bd8e5f8cd162e848b8baa81f35c9e9b689
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
46 {
47 longjmp(env->jmp_env, 1);
48 }
49 #endif
50
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
53 */
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
55 {
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
58 #endif
59
60 env = env1;
61
62 /* XXX: restore cpu registers saved in host registers */
63
64 #if !defined(CONFIG_SOFTMMU)
65 if (puc) {
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68 }
69 #endif
70 longjmp(env->jmp_env, 1);
71 }
72
73 /* main execution loop */
74
75 int cpu_exec(CPUState *env1)
76 {
77 int saved_T0, saved_T1, saved_T2;
78 CPUState *saved_env;
79 #ifdef reg_EAX
80 int saved_EAX;
81 #endif
82 #ifdef reg_ECX
83 int saved_ECX;
84 #endif
85 #ifdef reg_EDX
86 int saved_EDX;
87 #endif
88 #ifdef reg_EBX
89 int saved_EBX;
90 #endif
91 #ifdef reg_ESP
92 int saved_ESP;
93 #endif
94 #ifdef reg_EBP
95 int saved_EBP;
96 #endif
97 #ifdef reg_ESI
98 int saved_ESI;
99 #endif
100 #ifdef reg_EDI
101 int saved_EDI;
102 #endif
103 #ifdef __sparc__
104 int saved_i7, tmp_T0;
105 #endif
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 uint8_t *tc_ptr, *cs_base, *pc;
110 unsigned int flags;
111
112 /* first we save global registers */
113 saved_T0 = T0;
114 saved_T1 = T1;
115 saved_T2 = T2;
116 saved_env = env;
117 env = env1;
118 #ifdef __sparc__
119 /* we also save i7 because longjmp may not restore it */
120 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
121 #endif
122
123 #if defined(TARGET_I386)
124 #ifdef reg_EAX
125 saved_EAX = EAX;
126 EAX = env->regs[R_EAX];
127 #endif
128 #ifdef reg_ECX
129 saved_ECX = ECX;
130 ECX = env->regs[R_ECX];
131 #endif
132 #ifdef reg_EDX
133 saved_EDX = EDX;
134 EDX = env->regs[R_EDX];
135 #endif
136 #ifdef reg_EBX
137 saved_EBX = EBX;
138 EBX = env->regs[R_EBX];
139 #endif
140 #ifdef reg_ESP
141 saved_ESP = ESP;
142 ESP = env->regs[R_ESP];
143 #endif
144 #ifdef reg_EBP
145 saved_EBP = EBP;
146 EBP = env->regs[R_EBP];
147 #endif
148 #ifdef reg_ESI
149 saved_ESI = ESI;
150 ESI = env->regs[R_ESI];
151 #endif
152 #ifdef reg_EDI
153 saved_EDI = EDI;
154 EDI = env->regs[R_EDI];
155 #endif
156
157 /* put eflags in CPU temporary format */
158 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
159 DF = 1 - (2 * ((env->eflags >> 10) & 1));
160 CC_OP = CC_OP_EFLAGS;
161 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
162 #elif defined(TARGET_ARM)
163 {
164 unsigned int psr;
165 psr = env->cpsr;
166 env->CF = (psr >> 29) & 1;
167 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
168 env->VF = (psr << 3) & 0x80000000;
169 env->cpsr = psr & ~0xf0000000;
170 }
171 #elif defined(TARGET_SPARC)
172 #elif defined(TARGET_PPC)
173 #else
174 #error unsupported target CPU
175 #endif
176 env->exception_index = -1;
177
178 /* prepare setjmp context for exception handling */
179 for(;;) {
180 if (setjmp(env->jmp_env) == 0) {
181 env->current_tb = NULL;
182 /* if an exception is pending, we execute it here */
183 if (env->exception_index >= 0) {
184 if (env->exception_index >= EXCP_INTERRUPT) {
185 /* exit request from the cpu execution loop */
186 ret = env->exception_index;
187 break;
188 } else if (env->user_mode_only) {
189 /* if user mode only, we simulate a fake exception
190 which will be hanlded outside the cpu execution
191 loop */
192 #if defined(TARGET_I386)
193 do_interrupt_user(env->exception_index,
194 env->exception_is_int,
195 env->error_code,
196 env->exception_next_eip);
197 #endif
198 ret = env->exception_index;
199 break;
200 } else {
201 #if defined(TARGET_I386)
202 /* simulate a real cpu exception. On i386, it can
203 trigger new exceptions, but we do not handle
204 double or triple faults yet. */
205 do_interrupt(env->exception_index,
206 env->exception_is_int,
207 env->error_code,
208 env->exception_next_eip, 0);
209 #elif defined(TARGET_PPC)
210 do_interrupt(env);
211 #elif defined(TARGET_SPARC)
212 do_interrupt(env->exception_index,
213 0,
214 env->error_code,
215 env->exception_next_pc, 0);
216 #endif
217 }
218 env->exception_index = -1;
219 }
220 T0 = 0; /* force lookup of first TB */
221 for(;;) {
222 #ifdef __sparc__
223 /* g1 can be modified by some libc? functions */
224 tmp_T0 = T0;
225 #endif
226 interrupt_request = env->interrupt_request;
227 if (__builtin_expect(interrupt_request, 0)) {
228 #if defined(TARGET_I386)
229 /* if hardware interrupt pending, we execute it */
230 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
231 (env->eflags & IF_MASK) &&
232 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
233 int intno;
234 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
235 intno = cpu_get_pic_interrupt(env);
236 if (loglevel & CPU_LOG_TB_IN_ASM) {
237 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
238 }
239 do_interrupt(intno, 0, 0, 0, 1);
240 /* ensure that no TB jump will be modified as
241 the program flow was changed */
242 #ifdef __sparc__
243 tmp_T0 = 0;
244 #else
245 T0 = 0;
246 #endif
247 }
248 #elif defined(TARGET_PPC)
249 #if 0
250 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
251 cpu_ppc_reset(env);
252 }
253 #endif
254 if (msr_ee != 0) {
255 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
256 /* Raise it */
257 env->exception_index = EXCP_EXTERNAL;
258 env->error_code = 0;
259 do_interrupt(env);
260 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
261 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
262 /* Raise it */
263 env->exception_index = EXCP_DECR;
264 env->error_code = 0;
265 do_interrupt(env);
266 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
267 }
268 }
269 #elif defined(TARGET_SPARC)
270 if (interrupt_request & CPU_INTERRUPT_HARD) {
271 do_interrupt(0, 0, 0, 0, 0);
272 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
273 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
274 //do_interrupt(0, 0, 0, 0, 0);
275 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
276 }
277 #endif
278 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
279 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
280 /* ensure that no TB jump will be modified as
281 the program flow was changed */
282 #ifdef __sparc__
283 tmp_T0 = 0;
284 #else
285 T0 = 0;
286 #endif
287 }
288 if (interrupt_request & CPU_INTERRUPT_EXIT) {
289 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
290 env->exception_index = EXCP_INTERRUPT;
291 cpu_loop_exit();
292 }
293 }
294 #ifdef DEBUG_EXEC
295 if (loglevel & CPU_LOG_EXEC) {
296 #if defined(TARGET_I386)
297 /* restore flags in standard format */
298 env->regs[R_EAX] = EAX;
299 env->regs[R_EBX] = EBX;
300 env->regs[R_ECX] = ECX;
301 env->regs[R_EDX] = EDX;
302 env->regs[R_ESI] = ESI;
303 env->regs[R_EDI] = EDI;
304 env->regs[R_EBP] = EBP;
305 env->regs[R_ESP] = ESP;
306 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
307 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
308 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
309 #elif defined(TARGET_ARM)
310 env->cpsr = compute_cpsr();
311 cpu_arm_dump_state(env, logfile, 0);
312 env->cpsr &= ~0xf0000000;
313 #elif defined(TARGET_SPARC)
314 cpu_sparc_dump_state (env, logfile, 0);
315 #elif defined(TARGET_PPC)
316 cpu_ppc_dump_state(env, logfile, 0);
317 #else
318 #error unsupported target CPU
319 #endif
320 }
321 #endif
322 /* we record a subset of the CPU state. It will
323 always be the same before a given translated block
324 is executed. */
325 #if defined(TARGET_I386)
326 flags = env->hflags;
327 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
328 cs_base = env->segs[R_CS].base;
329 pc = cs_base + env->eip;
330 #elif defined(TARGET_ARM)
331 flags = 0;
332 cs_base = 0;
333 pc = (uint8_t *)env->regs[15];
334 #elif defined(TARGET_SPARC)
335 flags = 0;
336 cs_base = (uint8_t *)env->npc;
337 pc = (uint8_t *) env->pc;
338 #elif defined(TARGET_PPC)
339 flags = 0;
340 cs_base = 0;
341 pc = (uint8_t *)env->nip;
342 #else
343 #error unsupported CPU
344 #endif
345 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
346 flags);
347 if (!tb) {
348 TranslationBlock **ptb1;
349 unsigned int h;
350 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
351
352
353 spin_lock(&tb_lock);
354
355 tb_invalidated_flag = 0;
356
357 /* find translated block using physical mappings */
358 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
359 phys_page1 = phys_pc & TARGET_PAGE_MASK;
360 phys_page2 = -1;
361 h = tb_phys_hash_func(phys_pc);
362 ptb1 = &tb_phys_hash[h];
363 for(;;) {
364 tb = *ptb1;
365 if (!tb)
366 goto not_found;
367 if (tb->pc == (unsigned long)pc &&
368 tb->page_addr[0] == phys_page1 &&
369 tb->cs_base == (unsigned long)cs_base &&
370 tb->flags == flags) {
371 /* check next page if needed */
372 if (tb->page_addr[1] != -1) {
373 virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) +
374 TARGET_PAGE_SIZE;
375 phys_page2 = get_phys_addr_code(env, virt_page2);
376 if (tb->page_addr[1] == phys_page2)
377 goto found;
378 } else {
379 goto found;
380 }
381 }
382 ptb1 = &tb->phys_hash_next;
383 }
384 not_found:
385 /* if no translated code available, then translate it now */
386 tb = tb_alloc((unsigned long)pc);
387 if (!tb) {
388 /* flush must be done */
389 tb_flush(env);
390 /* cannot fail at this point */
391 tb = tb_alloc((unsigned long)pc);
392 /* don't forget to invalidate previous TB info */
393 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
394 T0 = 0;
395 }
396 tc_ptr = code_gen_ptr;
397 tb->tc_ptr = tc_ptr;
398 tb->cs_base = (unsigned long)cs_base;
399 tb->flags = flags;
400 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
401 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
402
403 /* check next page if needed */
404 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
405 phys_page2 = -1;
406 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
407 phys_page2 = get_phys_addr_code(env, virt_page2);
408 }
409 tb_link_phys(tb, phys_pc, phys_page2);
410
411 found:
412 if (tb_invalidated_flag) {
413 /* as some TB could have been invalidated because
414 of memory exceptions while generating the code, we
415 must recompute the hash index here */
416 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
417 while (*ptb != NULL)
418 ptb = &(*ptb)->hash_next;
419 T0 = 0;
420 }
421 /* we add the TB in the virtual pc hash table */
422 *ptb = tb;
423 tb->hash_next = NULL;
424 tb_link(tb);
425 spin_unlock(&tb_lock);
426 }
427 #ifdef DEBUG_EXEC
428 if (loglevel & CPU_LOG_EXEC) {
429 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
430 (long)tb->tc_ptr, (long)tb->pc,
431 lookup_symbol((void *)tb->pc));
432 }
433 #endif
434 #ifdef __sparc__
435 T0 = tmp_T0;
436 #endif
437 /* see if we can patch the calling TB. */
438 if (T0 != 0
439 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
440 && (tb->cflags & CF_CODE_COPY) ==
441 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
442 #endif
443 ) {
444 spin_lock(&tb_lock);
445 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
446 #if defined(USE_CODE_COPY)
447 /* propagates the FP use info */
448 ((TranslationBlock *)(T0 & ~3))->cflags |=
449 (tb->cflags & CF_FP_USED);
450 #endif
451 spin_unlock(&tb_lock);
452 }
453 tc_ptr = tb->tc_ptr;
454 env->current_tb = tb;
455 /* execute the generated code */
456 gen_func = (void *)tc_ptr;
457 #if defined(__sparc__)
458 __asm__ __volatile__("call %0\n\t"
459 "mov %%o7,%%i0"
460 : /* no outputs */
461 : "r" (gen_func)
462 : "i0", "i1", "i2", "i3", "i4", "i5");
463 #elif defined(__arm__)
464 asm volatile ("mov pc, %0\n\t"
465 ".global exec_loop\n\t"
466 "exec_loop:\n\t"
467 : /* no outputs */
468 : "r" (gen_func)
469 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
470 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
471 {
472 if (!(tb->cflags & CF_CODE_COPY)) {
473 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
474 save_native_fp_state(env);
475 }
476 gen_func();
477 } else {
478 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
479 restore_native_fp_state(env);
480 }
481 /* we work with native eflags */
482 CC_SRC = cc_table[CC_OP].compute_all();
483 CC_OP = CC_OP_EFLAGS;
484 asm(".globl exec_loop\n"
485 "\n"
486 "debug1:\n"
487 " pushl %%ebp\n"
488 " fs movl %10, %9\n"
489 " fs movl %11, %%eax\n"
490 " andl $0x400, %%eax\n"
491 " fs orl %8, %%eax\n"
492 " pushl %%eax\n"
493 " popf\n"
494 " fs movl %%esp, %12\n"
495 " fs movl %0, %%eax\n"
496 " fs movl %1, %%ecx\n"
497 " fs movl %2, %%edx\n"
498 " fs movl %3, %%ebx\n"
499 " fs movl %4, %%esp\n"
500 " fs movl %5, %%ebp\n"
501 " fs movl %6, %%esi\n"
502 " fs movl %7, %%edi\n"
503 " fs jmp *%9\n"
504 "exec_loop:\n"
505 " fs movl %%esp, %4\n"
506 " fs movl %12, %%esp\n"
507 " fs movl %%eax, %0\n"
508 " fs movl %%ecx, %1\n"
509 " fs movl %%edx, %2\n"
510 " fs movl %%ebx, %3\n"
511 " fs movl %%ebp, %5\n"
512 " fs movl %%esi, %6\n"
513 " fs movl %%edi, %7\n"
514 " pushf\n"
515 " popl %%eax\n"
516 " movl %%eax, %%ecx\n"
517 " andl $0x400, %%ecx\n"
518 " shrl $9, %%ecx\n"
519 " andl $0x8d5, %%eax\n"
520 " fs movl %%eax, %8\n"
521 " movl $1, %%eax\n"
522 " subl %%ecx, %%eax\n"
523 " fs movl %%eax, %11\n"
524 " fs movl %9, %%ebx\n" /* get T0 value */
525 " popl %%ebp\n"
526 :
527 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
528 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
529 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
530 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
531 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
532 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
533 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
534 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
535 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
536 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
537 "a" (gen_func),
538 "m" (*(uint8_t *)offsetof(CPUState, df)),
539 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
540 : "%ecx", "%edx"
541 );
542 }
543 }
544 #else
545 gen_func();
546 #endif
547 env->current_tb = NULL;
548 /* reset soft MMU for next block (it can currently
549 only be set by a memory fault) */
550 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
551 if (env->hflags & HF_SOFTMMU_MASK) {
552 env->hflags &= ~HF_SOFTMMU_MASK;
553 /* do not allow linking to another block */
554 T0 = 0;
555 }
556 #endif
557 }
558 } else {
559 }
560 } /* for(;;) */
561
562
563 #if defined(TARGET_I386)
564 #if defined(USE_CODE_COPY)
565 if (env->native_fp_regs) {
566 save_native_fp_state(env);
567 }
568 #endif
569 /* restore flags in standard format */
570 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
571
572 /* restore global registers */
573 #ifdef reg_EAX
574 EAX = saved_EAX;
575 #endif
576 #ifdef reg_ECX
577 ECX = saved_ECX;
578 #endif
579 #ifdef reg_EDX
580 EDX = saved_EDX;
581 #endif
582 #ifdef reg_EBX
583 EBX = saved_EBX;
584 #endif
585 #ifdef reg_ESP
586 ESP = saved_ESP;
587 #endif
588 #ifdef reg_EBP
589 EBP = saved_EBP;
590 #endif
591 #ifdef reg_ESI
592 ESI = saved_ESI;
593 #endif
594 #ifdef reg_EDI
595 EDI = saved_EDI;
596 #endif
597 #elif defined(TARGET_ARM)
598 env->cpsr = compute_cpsr();
599 #elif defined(TARGET_SPARC)
600 #elif defined(TARGET_PPC)
601 #else
602 #error unsupported target CPU
603 #endif
604 #ifdef __sparc__
605 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
606 #endif
607 T0 = saved_T0;
608 T1 = saved_T1;
609 T2 = saved_T2;
610 env = saved_env;
611 return ret;
612 }
613
614 /* must only be called from the generated code as an exception can be
615 generated */
616 void tb_invalidate_page_range(target_ulong start, target_ulong end)
617 {
618 /* XXX: cannot enable it yet because it yields to MMU exception
619 where NIP != read address on PowerPC */
620 #if 0
621 target_ulong phys_addr;
622 phys_addr = get_phys_addr_code(env, start);
623 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
624 #endif
625 }
626
627 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
628
629 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
630 {
631 CPUX86State *saved_env;
632
633 saved_env = env;
634 env = s;
635 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
636 selector &= 0xffff;
637 cpu_x86_load_seg_cache(env, seg_reg, selector,
638 (uint8_t *)(selector << 4), 0xffff, 0);
639 } else {
640 load_seg(seg_reg, selector);
641 }
642 env = saved_env;
643 }
644
645 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
646 {
647 CPUX86State *saved_env;
648
649 saved_env = env;
650 env = s;
651
652 helper_fsave(ptr, data32);
653
654 env = saved_env;
655 }
656
657 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
658 {
659 CPUX86State *saved_env;
660
661 saved_env = env;
662 env = s;
663
664 helper_frstor(ptr, data32);
665
666 env = saved_env;
667 }
668
669 #endif /* TARGET_I386 */
670
671 #if !defined(CONFIG_SOFTMMU)
672
673 #if defined(TARGET_I386)
674
675 /* 'pc' is the host PC at which the exception was raised. 'address' is
676 the effective address of the memory exception. 'is_write' is 1 if a
677 write caused the exception and otherwise 0'. 'old_set' is the
678 signal set which should be restored */
679 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
680 int is_write, sigset_t *old_set,
681 void *puc)
682 {
683 TranslationBlock *tb;
684 int ret;
685
686 if (cpu_single_env)
687 env = cpu_single_env; /* XXX: find a correct solution for multithread */
688 #if defined(DEBUG_SIGNAL)
689 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
690 pc, address, is_write, *(unsigned long *)old_set);
691 #endif
692 /* XXX: locking issue */
693 if (is_write && page_unprotect(address, pc, puc)) {
694 return 1;
695 }
696
697 /* see if it is an MMU fault */
698 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
699 ((env->hflags & HF_CPL_MASK) == 3), 0);
700 if (ret < 0)
701 return 0; /* not an MMU fault */
702 if (ret == 0)
703 return 1; /* the MMU fault was handled without causing real CPU fault */
704 /* now we have a real cpu fault */
705 tb = tb_find_pc(pc);
706 if (tb) {
707 /* the PC is inside the translated code. It means that we have
708 a virtual CPU fault */
709 cpu_restore_state(tb, env, pc, puc);
710 }
711 if (ret == 1) {
712 #if 0
713 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
714 env->eip, env->cr[2], env->error_code);
715 #endif
716 /* we restore the process signal mask as the sigreturn should
717 do it (XXX: use sigsetjmp) */
718 sigprocmask(SIG_SETMASK, old_set, NULL);
719 raise_exception_err(EXCP0E_PAGE, env->error_code);
720 } else {
721 /* activate soft MMU for this block */
722 env->hflags |= HF_SOFTMMU_MASK;
723 cpu_resume_from_signal(env, puc);
724 }
725 /* never comes here */
726 return 1;
727 }
728
729 #elif defined(TARGET_ARM)
730 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
731 int is_write, sigset_t *old_set,
732 void *puc)
733 {
734 /* XXX: do more */
735 return 0;
736 }
737 #elif defined(TARGET_SPARC)
738 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
739 int is_write, sigset_t *old_set,
740 void *puc)
741 {
742 /* XXX: locking issue */
743 if (is_write && page_unprotect(address, pc, puc)) {
744 return 1;
745 }
746 return 0;
747 }
748 #elif defined (TARGET_PPC)
749 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
750 int is_write, sigset_t *old_set,
751 void *puc)
752 {
753 TranslationBlock *tb;
754 int ret;
755
756 #if 1
757 if (cpu_single_env)
758 env = cpu_single_env; /* XXX: find a correct solution for multithread */
759 #endif
760 #if defined(DEBUG_SIGNAL)
761 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
762 pc, address, is_write, *(unsigned long *)old_set);
763 #endif
764 /* XXX: locking issue */
765 if (is_write && page_unprotect(address, pc, puc)) {
766 return 1;
767 }
768
769 /* see if it is an MMU fault */
770 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
771 if (ret < 0)
772 return 0; /* not an MMU fault */
773 if (ret == 0)
774 return 1; /* the MMU fault was handled without causing real CPU fault */
775
776 /* now we have a real cpu fault */
777 tb = tb_find_pc(pc);
778 if (tb) {
779 /* the PC is inside the translated code. It means that we have
780 a virtual CPU fault */
781 cpu_restore_state(tb, env, pc, puc);
782 }
783 if (ret == 1) {
784 #if 0
785 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
786 env->nip, env->error_code, tb);
787 #endif
788 /* we restore the process signal mask as the sigreturn should
789 do it (XXX: use sigsetjmp) */
790 sigprocmask(SIG_SETMASK, old_set, NULL);
791 do_raise_exception_err(env->exception_index, env->error_code);
792 } else {
793 /* activate soft MMU for this block */
794 cpu_resume_from_signal(env, puc);
795 }
796 /* never comes here */
797 return 1;
798 }
799 #else
800 #error unsupported target CPU
801 #endif
802
803 #if defined(__i386__)
804
805 #if defined(USE_CODE_COPY)
806 static void cpu_send_trap(unsigned long pc, int trap,
807 struct ucontext *uc)
808 {
809 TranslationBlock *tb;
810
811 if (cpu_single_env)
812 env = cpu_single_env; /* XXX: find a correct solution for multithread */
813 /* now we have a real cpu fault */
814 tb = tb_find_pc(pc);
815 if (tb) {
816 /* the PC is inside the translated code. It means that we have
817 a virtual CPU fault */
818 cpu_restore_state(tb, env, pc, uc);
819 }
820 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
821 raise_exception_err(trap, env->error_code);
822 }
823 #endif
824
825 int cpu_signal_handler(int host_signum, struct siginfo *info,
826 void *puc)
827 {
828 struct ucontext *uc = puc;
829 unsigned long pc;
830 int trapno;
831
832 #ifndef REG_EIP
833 /* for glibc 2.1 */
834 #define REG_EIP EIP
835 #define REG_ERR ERR
836 #define REG_TRAPNO TRAPNO
837 #endif
838 pc = uc->uc_mcontext.gregs[REG_EIP];
839 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
840 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
841 if (trapno == 0x00 || trapno == 0x05) {
842 /* send division by zero or bound exception */
843 cpu_send_trap(pc, trapno, uc);
844 return 1;
845 } else
846 #endif
847 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
848 trapno == 0xe ?
849 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
850 &uc->uc_sigmask, puc);
851 }
852
853 #elif defined(__x86_64__)
854
855 int cpu_signal_handler(int host_signum, struct siginfo *info,
856 void *puc)
857 {
858 struct ucontext *uc = puc;
859 unsigned long pc;
860
861 pc = uc->uc_mcontext.gregs[REG_RIP];
862 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
863 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
864 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
865 &uc->uc_sigmask, puc);
866 }
867
868 #elif defined(__powerpc__)
869
870 /***********************************************************************
871 * signal context platform-specific definitions
872 * From Wine
873 */
874 #ifdef linux
875 /* All Registers access - only for local access */
876 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
877 /* Gpr Registers access */
878 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
879 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
880 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
881 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
882 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
883 # define LR_sig(context) REG_sig(link, context) /* Link register */
884 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
885 /* Float Registers access */
886 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
887 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
888 /* Exception Registers access */
889 # define DAR_sig(context) REG_sig(dar, context)
890 # define DSISR_sig(context) REG_sig(dsisr, context)
891 # define TRAP_sig(context) REG_sig(trap, context)
892 #endif /* linux */
893
894 #ifdef __APPLE__
895 # include <sys/ucontext.h>
896 typedef struct ucontext SIGCONTEXT;
897 /* All Registers access - only for local access */
898 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
899 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
900 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
901 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
902 /* Gpr Registers access */
903 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
904 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
905 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
906 # define CTR_sig(context) REG_sig(ctr, context)
907 # define XER_sig(context) REG_sig(xer, context) /* Link register */
908 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
909 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
910 /* Float Registers access */
911 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
912 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
913 /* Exception Registers access */
914 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
915 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
916 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
917 #endif /* __APPLE__ */
918
919 int cpu_signal_handler(int host_signum, struct siginfo *info,
920 void *puc)
921 {
922 struct ucontext *uc = puc;
923 unsigned long pc;
924 int is_write;
925
926 pc = IAR_sig(uc);
927 is_write = 0;
928 #if 0
929 /* ppc 4xx case */
930 if (DSISR_sig(uc) & 0x00800000)
931 is_write = 1;
932 #else
933 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
934 is_write = 1;
935 #endif
936 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
937 is_write, &uc->uc_sigmask, puc);
938 }
939
940 #elif defined(__alpha__)
941
942 int cpu_signal_handler(int host_signum, struct siginfo *info,
943 void *puc)
944 {
945 struct ucontext *uc = puc;
946 uint32_t *pc = uc->uc_mcontext.sc_pc;
947 uint32_t insn = *pc;
948 int is_write = 0;
949
950 /* XXX: need kernel patch to get write flag faster */
951 switch (insn >> 26) {
952 case 0x0d: // stw
953 case 0x0e: // stb
954 case 0x0f: // stq_u
955 case 0x24: // stf
956 case 0x25: // stg
957 case 0x26: // sts
958 case 0x27: // stt
959 case 0x2c: // stl
960 case 0x2d: // stq
961 case 0x2e: // stl_c
962 case 0x2f: // stq_c
963 is_write = 1;
964 }
965
966 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
967 is_write, &uc->uc_sigmask, puc);
968 }
969 #elif defined(__sparc__)
970
971 int cpu_signal_handler(int host_signum, struct siginfo *info,
972 void *puc)
973 {
974 uint32_t *regs = (uint32_t *)(info + 1);
975 void *sigmask = (regs + 20);
976 unsigned long pc;
977 int is_write;
978 uint32_t insn;
979
980 /* XXX: is there a standard glibc define ? */
981 pc = regs[1];
982 /* XXX: need kernel patch to get write flag faster */
983 is_write = 0;
984 insn = *(uint32_t *)pc;
985 if ((insn >> 30) == 3) {
986 switch((insn >> 19) & 0x3f) {
987 case 0x05: // stb
988 case 0x06: // sth
989 case 0x04: // st
990 case 0x07: // std
991 case 0x24: // stf
992 case 0x27: // stdf
993 case 0x25: // stfsr
994 is_write = 1;
995 break;
996 }
997 }
998 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
999 is_write, sigmask, NULL);
1000 }
1001
1002 #elif defined(__arm__)
1003
1004 int cpu_signal_handler(int host_signum, struct siginfo *info,
1005 void *puc)
1006 {
1007 struct ucontext *uc = puc;
1008 unsigned long pc;
1009 int is_write;
1010
1011 pc = uc->uc_mcontext.gregs[R15];
1012 /* XXX: compute is_write */
1013 is_write = 0;
1014 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1015 is_write,
1016 &uc->uc_sigmask);
1017 }
1018
1019 #elif defined(__mc68000)
1020
1021 int cpu_signal_handler(int host_signum, struct siginfo *info,
1022 void *puc)
1023 {
1024 struct ucontext *uc = puc;
1025 unsigned long pc;
1026 int is_write;
1027
1028 pc = uc->uc_mcontext.gregs[16];
1029 /* XXX: compute is_write */
1030 is_write = 0;
1031 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1032 is_write,
1033 &uc->uc_sigmask, puc);
1034 }
1035
1036 #else
1037
1038 #error host CPU specific signal handler needed
1039
1040 #endif
1041
1042 #endif /* !defined(CONFIG_SOFTMMU) */