2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "disas/disas.h"
23 #include "qemu/atomic.h"
24 #include "sysemu/qtest.h"
26 void cpu_loop_exit(CPUState
*cpu
)
28 cpu
->current_tb
= NULL
;
29 siglongjmp(cpu
->jmp_env
, 1);
32 /* exit the current TB from a signal handler. The host registers are
33 restored in a state compatible with the CPU emulator
35 #if defined(CONFIG_SOFTMMU)
36 void cpu_resume_from_signal(CPUArchState
*env
, void *puc
)
38 CPUState
*cpu
= ENV_GET_CPU(env
);
40 /* XXX: restore cpu registers saved in host registers */
42 cpu
->exception_index
= -1;
43 siglongjmp(cpu
->jmp_env
, 1);
47 /* Execute a TB, and fix up the CPU state afterwards if necessary */
48 static inline tcg_target_ulong
cpu_tb_exec(CPUState
*cpu
, uint8_t *tb_ptr
)
50 CPUArchState
*env
= cpu
->env_ptr
;
53 #if defined(DEBUG_DISAS)
54 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
55 #if defined(TARGET_I386)
56 log_cpu_state(cpu
, CPU_DUMP_CCOP
);
57 #elif defined(TARGET_M68K)
58 /* ??? Should not modify env state for dumping. */
59 cpu_m68k_flush_flags(env
, env
->cc_op
);
60 env
->cc_op
= CC_OP_FLAGS
;
61 env
->sr
= (env
->sr
& 0xffe0) | env
->cc_dest
| (env
->cc_x
<< 4);
62 log_cpu_state(cpu
, 0);
64 log_cpu_state(cpu
, 0);
67 #endif /* DEBUG_DISAS */
69 next_tb
= tcg_qemu_tb_exec(env
, tb_ptr
);
70 if ((next_tb
& TB_EXIT_MASK
) > TB_EXIT_IDX1
) {
71 /* We didn't start executing this TB (eg because the instruction
72 * counter hit zero); we must restore the guest PC to the address
73 * of the start of the TB.
75 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
76 TranslationBlock
*tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
77 if (cc
->synchronize_from_tb
) {
78 cc
->synchronize_from_tb(cpu
, tb
);
81 cc
->set_pc(cpu
, tb
->pc
);
84 if ((next_tb
& TB_EXIT_MASK
) == TB_EXIT_REQUESTED
) {
85 /* We were asked to stop executing TBs (probably a pending
86 * interrupt. We've now stopped, so clear the flag.
88 cpu
->tcg_exit_req
= 0;
93 /* Execute the code without caching the generated code. An interpreter
94 could be used if available. */
95 static void cpu_exec_nocache(CPUArchState
*env
, int max_cycles
,
96 TranslationBlock
*orig_tb
)
98 CPUState
*cpu
= ENV_GET_CPU(env
);
101 /* Should never happen.
102 We only end up here when an existing TB is too long. */
103 if (max_cycles
> CF_COUNT_MASK
)
104 max_cycles
= CF_COUNT_MASK
;
106 tb
= tb_gen_code(cpu
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
108 cpu
->current_tb
= tb
;
109 /* execute the generated code */
110 cpu_tb_exec(cpu
, tb
->tc_ptr
);
111 cpu
->current_tb
= NULL
;
112 tb_phys_invalidate(tb
, -1);
116 static TranslationBlock
*tb_find_slow(CPUArchState
*env
,
118 target_ulong cs_base
,
121 CPUState
*cpu
= ENV_GET_CPU(env
);
122 TranslationBlock
*tb
, **ptb1
;
124 tb_page_addr_t phys_pc
, phys_page1
;
125 target_ulong virt_page2
;
127 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
129 /* find translated block using physical mappings */
130 phys_pc
= get_page_addr_code(env
, pc
);
131 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
132 h
= tb_phys_hash_func(phys_pc
);
133 ptb1
= &tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
139 tb
->page_addr
[0] == phys_page1
&&
140 tb
->cs_base
== cs_base
&&
141 tb
->flags
== flags
) {
142 /* check next page if needed */
143 if (tb
->page_addr
[1] != -1) {
144 tb_page_addr_t phys_page2
;
146 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
148 phys_page2
= get_page_addr_code(env
, virt_page2
);
149 if (tb
->page_addr
[1] == phys_page2
)
155 ptb1
= &tb
->phys_hash_next
;
158 /* if no translated code available, then translate it now */
159 tb
= tb_gen_code(cpu
, pc
, cs_base
, flags
, 0);
162 /* Move the last found TB to the head of the list */
164 *ptb1
= tb
->phys_hash_next
;
165 tb
->phys_hash_next
= tcg_ctx
.tb_ctx
.tb_phys_hash
[h
];
166 tcg_ctx
.tb_ctx
.tb_phys_hash
[h
] = tb
;
168 /* we add the TB in the virtual pc hash table */
169 cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
173 static inline TranslationBlock
*tb_find_fast(CPUArchState
*env
)
175 CPUState
*cpu
= ENV_GET_CPU(env
);
176 TranslationBlock
*tb
;
177 target_ulong cs_base
, pc
;
180 /* we record a subset of the CPU state. It will
181 always be the same before a given translated block
183 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
184 tb
= cpu
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
185 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
186 tb
->flags
!= flags
)) {
187 tb
= tb_find_slow(env
, pc
, cs_base
, flags
);
192 static CPUDebugExcpHandler
*debug_excp_handler
;
194 void cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
196 debug_excp_handler
= handler
;
199 static void cpu_handle_debug_exception(CPUArchState
*env
)
201 CPUState
*cpu
= ENV_GET_CPU(env
);
204 if (!cpu
->watchpoint_hit
) {
205 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
209 if (debug_excp_handler
) {
210 debug_excp_handler(env
);
214 /* main execution loop */
216 volatile sig_atomic_t exit_request
;
218 int cpu_exec(CPUArchState
*env
)
220 CPUState
*cpu
= ENV_GET_CPU(env
);
221 #if !(defined(CONFIG_USER_ONLY) && \
222 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
223 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
226 X86CPU
*x86_cpu
= X86_CPU(cpu
);
228 int ret
, interrupt_request
;
229 TranslationBlock
*tb
;
234 if (!cpu_has_work(cpu
)) {
243 /* As long as current_cpu is null, up to the assignment just above,
244 * requests by other threads to exit the execution loop are expected to
245 * be issued using the exit_request global. We must make sure that our
246 * evaluation of the global value is performed past the current_cpu
247 * value transition point, which requires a memory barrier as well as
248 * an instruction scheduling constraint on modern architectures. */
251 if (unlikely(exit_request
)) {
252 cpu
->exit_request
= 1;
255 #if defined(TARGET_I386)
256 /* put eflags in CPU temporary format */
257 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
258 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
259 CC_OP
= CC_OP_EFLAGS
;
260 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
261 #elif defined(TARGET_SPARC)
262 #elif defined(TARGET_M68K)
263 env
->cc_op
= CC_OP_FLAGS
;
264 env
->cc_dest
= env
->sr
& 0xf;
265 env
->cc_x
= (env
->sr
>> 4) & 1;
266 #elif defined(TARGET_ALPHA)
267 #elif defined(TARGET_ARM)
268 #elif defined(TARGET_UNICORE32)
269 #elif defined(TARGET_PPC)
270 env
->reserve_addr
= -1;
271 #elif defined(TARGET_LM32)
272 #elif defined(TARGET_MICROBLAZE)
273 #elif defined(TARGET_MIPS)
274 #elif defined(TARGET_MOXIE)
275 #elif defined(TARGET_OPENRISC)
276 #elif defined(TARGET_SH4)
277 #elif defined(TARGET_CRIS)
278 #elif defined(TARGET_S390X)
279 #elif defined(TARGET_XTENSA)
282 #error unsupported target CPU
284 cpu
->exception_index
= -1;
286 /* prepare setjmp context for exception handling */
288 if (sigsetjmp(cpu
->jmp_env
, 0) == 0) {
289 /* if an exception is pending, we execute it here */
290 if (cpu
->exception_index
>= 0) {
291 if (cpu
->exception_index
>= EXCP_INTERRUPT
) {
292 /* exit request from the cpu execution loop */
293 ret
= cpu
->exception_index
;
294 if (ret
== EXCP_DEBUG
) {
295 cpu_handle_debug_exception(env
);
299 #if defined(CONFIG_USER_ONLY)
300 /* if user mode only, we simulate a fake exception
301 which will be handled outside the cpu execution
303 #if defined(TARGET_I386)
304 cc
->do_interrupt(cpu
);
306 ret
= cpu
->exception_index
;
309 cc
->do_interrupt(cpu
);
310 cpu
->exception_index
= -1;
315 next_tb
= 0; /* force lookup of first TB */
317 interrupt_request
= cpu
->interrupt_request
;
318 if (unlikely(interrupt_request
)) {
319 if (unlikely(cpu
->singlestep_enabled
& SSTEP_NOIRQ
)) {
320 /* Mask out external interrupts for this step. */
321 interrupt_request
&= ~CPU_INTERRUPT_SSTEP_MASK
;
323 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
324 cpu
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
325 cpu
->exception_index
= EXCP_DEBUG
;
328 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
329 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
330 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
331 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
332 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
334 cpu
->exception_index
= EXCP_HLT
;
338 #if defined(TARGET_I386)
339 #if !defined(CONFIG_USER_ONLY)
340 if (interrupt_request
& CPU_INTERRUPT_POLL
) {
341 cpu
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
342 apic_poll_irq(x86_cpu
->apic_state
);
345 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
346 cpu_svm_check_intercept_param(env
, SVM_EXIT_INIT
,
348 do_cpu_init(x86_cpu
);
349 cpu
->exception_index
= EXCP_HALTED
;
351 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
352 do_cpu_sipi(x86_cpu
);
353 } else if (env
->hflags2
& HF2_GIF_MASK
) {
354 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
355 !(env
->hflags
& HF_SMM_MASK
)) {
356 cpu_svm_check_intercept_param(env
, SVM_EXIT_SMI
,
358 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
359 do_smm_enter(x86_cpu
);
361 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
362 !(env
->hflags2
& HF2_NMI_MASK
)) {
363 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
364 env
->hflags2
|= HF2_NMI_MASK
;
365 do_interrupt_x86_hardirq(env
, EXCP02_NMI
, 1);
367 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
368 cpu
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
369 do_interrupt_x86_hardirq(env
, EXCP12_MCHK
, 0);
371 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
372 (((env
->hflags2
& HF2_VINTR_MASK
) &&
373 (env
->hflags2
& HF2_HIF_MASK
)) ||
374 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
375 (env
->eflags
& IF_MASK
&&
376 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
378 cpu_svm_check_intercept_param(env
, SVM_EXIT_INTR
,
380 cpu
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
382 intno
= cpu_get_pic_interrupt(env
);
383 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
384 do_interrupt_x86_hardirq(env
, intno
, 1);
385 /* ensure that no TB jump will be modified as
386 the program flow was changed */
388 #if !defined(CONFIG_USER_ONLY)
389 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
390 (env
->eflags
& IF_MASK
) &&
391 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
393 /* FIXME: this should respect TPR */
394 cpu_svm_check_intercept_param(env
, SVM_EXIT_VINTR
,
396 intno
= ldl_phys(cpu
->as
,
398 + offsetof(struct vmcb
,
399 control
.int_vector
));
400 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
401 do_interrupt_x86_hardirq(env
, intno
, 1);
402 cpu
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
407 #elif defined(TARGET_PPC)
408 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
411 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
412 ppc_hw_interrupt(env
);
413 if (env
->pending_interrupts
== 0) {
414 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
418 #elif defined(TARGET_LM32)
419 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
420 && (env
->ie
& IE_IE
)) {
421 cpu
->exception_index
= EXCP_IRQ
;
422 cc
->do_interrupt(cpu
);
425 #elif defined(TARGET_MICROBLAZE)
426 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
427 && (env
->sregs
[SR_MSR
] & MSR_IE
)
428 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
429 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
430 cpu
->exception_index
= EXCP_IRQ
;
431 cc
->do_interrupt(cpu
);
434 #elif defined(TARGET_MIPS)
435 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
436 cpu_mips_hw_interrupts_pending(env
)) {
438 cpu
->exception_index
= EXCP_EXT_INTERRUPT
;
440 cc
->do_interrupt(cpu
);
443 #elif defined(TARGET_OPENRISC)
446 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
447 && (env
->sr
& SR_IEE
)) {
450 if ((interrupt_request
& CPU_INTERRUPT_TIMER
)
451 && (env
->sr
& SR_TEE
)) {
455 cpu
->exception_index
= idx
;
456 cc
->do_interrupt(cpu
);
460 #elif defined(TARGET_SPARC)
461 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
462 if (cpu_interrupts_enabled(env
) &&
463 env
->interrupt_index
> 0) {
464 int pil
= env
->interrupt_index
& 0xf;
465 int type
= env
->interrupt_index
& 0xf0;
467 if (((type
== TT_EXTINT
) &&
468 cpu_pil_allowed(env
, pil
)) ||
470 cpu
->exception_index
= env
->interrupt_index
;
471 cc
->do_interrupt(cpu
);
476 #elif defined(TARGET_ARM)
477 if (interrupt_request
& CPU_INTERRUPT_FIQ
478 && !(env
->daif
& PSTATE_F
)) {
479 cpu
->exception_index
= EXCP_FIQ
;
480 cc
->do_interrupt(cpu
);
483 /* ARMv7-M interrupt return works by loading a magic value
484 into the PC. On real hardware the load causes the
485 return to occur. The qemu implementation performs the
486 jump normally, then does the exception return when the
487 CPU tries to execute code at the magic address.
488 This will cause the magic PC value to be pushed to
489 the stack if an interrupt occurred at the wrong time.
490 We avoid this by disabling interrupts when
491 pc contains a magic address. */
492 if (interrupt_request
& CPU_INTERRUPT_HARD
493 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
494 || !(env
->daif
& PSTATE_I
))) {
495 cpu
->exception_index
= EXCP_IRQ
;
496 cc
->do_interrupt(cpu
);
499 #elif defined(TARGET_UNICORE32)
500 if (interrupt_request
& CPU_INTERRUPT_HARD
501 && !(env
->uncached_asr
& ASR_I
)) {
502 cpu
->exception_index
= UC32_EXCP_INTR
;
503 cc
->do_interrupt(cpu
);
506 #elif defined(TARGET_SH4)
507 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
508 cc
->do_interrupt(cpu
);
511 #elif defined(TARGET_ALPHA)
514 /* ??? This hard-codes the OSF/1 interrupt levels. */
515 switch (env
->pal_mode
? 7 : env
->ps
& PS_INT_MASK
) {
517 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
518 idx
= EXCP_DEV_INTERRUPT
;
522 if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
523 idx
= EXCP_CLK_INTERRUPT
;
527 if (interrupt_request
& CPU_INTERRUPT_SMP
) {
528 idx
= EXCP_SMP_INTERRUPT
;
532 if (interrupt_request
& CPU_INTERRUPT_MCHK
) {
537 cpu
->exception_index
= idx
;
539 cc
->do_interrupt(cpu
);
543 #elif defined(TARGET_CRIS)
544 if (interrupt_request
& CPU_INTERRUPT_HARD
545 && (env
->pregs
[PR_CCS
] & I_FLAG
)
546 && !env
->locked_irq
) {
547 cpu
->exception_index
= EXCP_IRQ
;
548 cc
->do_interrupt(cpu
);
551 if (interrupt_request
& CPU_INTERRUPT_NMI
) {
552 unsigned int m_flag_archval
;
553 if (env
->pregs
[PR_VR
] < 32) {
554 m_flag_archval
= M_FLAG_V10
;
556 m_flag_archval
= M_FLAG_V32
;
558 if ((env
->pregs
[PR_CCS
] & m_flag_archval
)) {
559 cpu
->exception_index
= EXCP_NMI
;
560 cc
->do_interrupt(cpu
);
564 #elif defined(TARGET_M68K)
565 if (interrupt_request
& CPU_INTERRUPT_HARD
566 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
567 < env
->pending_level
) {
568 /* Real hardware gets the interrupt vector via an
569 IACK cycle at this point. Current emulated
570 hardware doesn't rely on this, so we
571 provide/save the vector when the interrupt is
573 cpu
->exception_index
= env
->pending_vector
;
574 do_interrupt_m68k_hardirq(env
);
577 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
578 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
579 (env
->psw
.mask
& PSW_MASK_EXT
)) {
580 cc
->do_interrupt(cpu
);
583 #elif defined(TARGET_XTENSA)
584 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
585 cpu
->exception_index
= EXC_IRQ
;
586 cc
->do_interrupt(cpu
);
590 /* Don't use the cached interrupt_request value,
591 do_interrupt may have updated the EXITTB flag. */
592 if (cpu
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
593 cpu
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
594 /* ensure that no TB jump will be modified as
595 the program flow was changed */
599 if (unlikely(cpu
->exit_request
)) {
600 cpu
->exit_request
= 0;
601 cpu
->exception_index
= EXCP_INTERRUPT
;
604 spin_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
605 tb
= tb_find_fast(env
);
606 /* Note: we do it here to avoid a gcc bug on Mac OS X when
607 doing it in tb_find_slow */
608 if (tcg_ctx
.tb_ctx
.tb_invalidated_flag
) {
609 /* as some TB could have been invalidated because
610 of memory exceptions while generating the code, we
611 must recompute the hash index here */
613 tcg_ctx
.tb_ctx
.tb_invalidated_flag
= 0;
615 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
616 qemu_log("Trace %p [" TARGET_FMT_lx
"] %s\n",
617 tb
->tc_ptr
, tb
->pc
, lookup_symbol(tb
->pc
));
619 /* see if we can patch the calling TB. When the TB
620 spans two pages, we cannot safely do a direct
622 if (next_tb
!= 0 && tb
->page_addr
[1] == -1) {
623 tb_add_jump((TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
),
624 next_tb
& TB_EXIT_MASK
, tb
);
626 spin_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
628 /* cpu_interrupt might be called while translating the
629 TB, but before it is linked into a potentially
630 infinite loop and becomes env->current_tb. Avoid
631 starting execution if there is a pending interrupt. */
632 cpu
->current_tb
= tb
;
634 if (likely(!cpu
->exit_request
)) {
636 /* execute the generated code */
637 next_tb
= cpu_tb_exec(cpu
, tc_ptr
);
638 switch (next_tb
& TB_EXIT_MASK
) {
639 case TB_EXIT_REQUESTED
:
640 /* Something asked us to stop executing
641 * chained TBs; just continue round the main
642 * loop. Whatever requested the exit will also
643 * have set something else (eg exit_request or
644 * interrupt_request) which we will handle
645 * next time around the loop.
647 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
650 case TB_EXIT_ICOUNT_EXPIRED
:
652 /* Instruction counter expired. */
654 tb
= (TranslationBlock
*)(next_tb
& ~TB_EXIT_MASK
);
655 insns_left
= cpu
->icount_decr
.u32
;
656 if (cpu
->icount_extra
&& insns_left
>= 0) {
657 /* Refill decrementer and continue execution. */
658 cpu
->icount_extra
+= insns_left
;
659 if (cpu
->icount_extra
> 0xffff) {
662 insns_left
= cpu
->icount_extra
;
664 cpu
->icount_extra
-= insns_left
;
665 cpu
->icount_decr
.u16
.low
= insns_left
;
667 if (insns_left
> 0) {
668 /* Execute remaining instructions. */
669 cpu_exec_nocache(env
, insns_left
, tb
);
671 cpu
->exception_index
= EXCP_INTERRUPT
;
681 cpu
->current_tb
= NULL
;
682 /* reset soft MMU for next block (it can currently
683 only be set by a memory fault) */
686 /* Reload env after longjmp - the compiler may have smashed all
687 * local variables as longjmp is marked 'noreturn'. */
690 #if !(defined(CONFIG_USER_ONLY) && \
691 (defined(TARGET_M68K) || defined(TARGET_PPC) || defined(TARGET_S390X)))
692 cc
= CPU_GET_CLASS(cpu
);
695 x86_cpu
= X86_CPU(cpu
);
701 #if defined(TARGET_I386)
702 /* restore flags in standard format */
703 env
->eflags
= env
->eflags
| cpu_cc_compute_all(env
, CC_OP
)
704 | (env
->df
& DF_MASK
);
705 #elif defined(TARGET_ARM)
706 /* XXX: Save/restore host fpu exception state?. */
707 #elif defined(TARGET_UNICORE32)
708 #elif defined(TARGET_SPARC)
709 #elif defined(TARGET_PPC)
710 #elif defined(TARGET_LM32)
711 #elif defined(TARGET_M68K)
712 cpu_m68k_flush_flags(env
, env
->cc_op
);
713 env
->cc_op
= CC_OP_FLAGS
;
714 env
->sr
= (env
->sr
& 0xffe0)
715 | env
->cc_dest
| (env
->cc_x
<< 4);
716 #elif defined(TARGET_MICROBLAZE)
717 #elif defined(TARGET_MIPS)
718 #elif defined(TARGET_MOXIE)
719 #elif defined(TARGET_OPENRISC)
720 #elif defined(TARGET_SH4)
721 #elif defined(TARGET_ALPHA)
722 #elif defined(TARGET_CRIS)
723 #elif defined(TARGET_S390X)
724 #elif defined(TARGET_XTENSA)
727 #error unsupported target CPU
730 /* fail safe : never use current_cpu outside cpu_exec() */