]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
target-i386: emulate LOCK'ed INC using atomic helper
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31 #include "exec/log.h"
32 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
33 #include "hw/i386/apic.h"
34 #endif
35 #include "sysemu/replay.h"
36
37 /* -icount align implementation. */
38
39 typedef struct SyncClocks {
40 int64_t diff_clk;
41 int64_t last_cpu_icount;
42 int64_t realtime_clock;
43 } SyncClocks;
44
45 #if !defined(CONFIG_USER_ONLY)
46 /* Allow the guest to have a max 3ms advance.
47 * The difference between the 2 clocks could therefore
48 * oscillate around 0.
49 */
50 #define VM_CLOCK_ADVANCE 3000000
51 #define THRESHOLD_REDUCE 1.5
52 #define MAX_DELAY_PRINT_RATE 2000000000LL
53 #define MAX_NB_PRINTS 100
54
55 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
56 {
57 int64_t cpu_icount;
58
59 if (!icount_align_option) {
60 return;
61 }
62
63 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
64 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
65 sc->last_cpu_icount = cpu_icount;
66
67 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
68 #ifndef _WIN32
69 struct timespec sleep_delay, rem_delay;
70 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
71 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
72 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
73 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
74 } else {
75 sc->diff_clk = 0;
76 }
77 #else
78 Sleep(sc->diff_clk / SCALE_MS);
79 sc->diff_clk = 0;
80 #endif
81 }
82 }
83
84 static void print_delay(const SyncClocks *sc)
85 {
86 static float threshold_delay;
87 static int64_t last_realtime_clock;
88 static int nb_prints;
89
90 if (icount_align_option &&
91 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
92 nb_prints < MAX_NB_PRINTS) {
93 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
94 (-sc->diff_clk / (float)1000000000LL <
95 (threshold_delay - THRESHOLD_REDUCE))) {
96 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
97 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
98 threshold_delay - 1,
99 threshold_delay);
100 nb_prints++;
101 last_realtime_clock = sc->realtime_clock;
102 }
103 }
104 }
105
106 static void init_delay_params(SyncClocks *sc,
107 const CPUState *cpu)
108 {
109 if (!icount_align_option) {
110 return;
111 }
112 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
113 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
114 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
115 if (sc->diff_clk < max_delay) {
116 max_delay = sc->diff_clk;
117 }
118 if (sc->diff_clk > max_advance) {
119 max_advance = sc->diff_clk;
120 }
121
122 /* Print every 2s max if the guest is late. We limit the number
123 of printed messages to NB_PRINT_MAX(currently 100) */
124 print_delay(sc);
125 }
126 #else
127 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
128 {
129 }
130
131 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
132 {
133 }
134 #endif /* CONFIG USER ONLY */
135
136 /* Execute a TB, and fix up the CPU state afterwards if necessary */
137 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
138 {
139 CPUArchState *env = cpu->env_ptr;
140 uintptr_t ret;
141 TranslationBlock *last_tb;
142 int tb_exit;
143 uint8_t *tb_ptr = itb->tc_ptr;
144
145 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
146 "Trace %p [" TARGET_FMT_lx "] %s\n",
147 itb->tc_ptr, itb->pc, lookup_symbol(itb->pc));
148
149 #if defined(DEBUG_DISAS)
150 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
151 && qemu_log_in_addr_range(itb->pc)) {
152 #if defined(TARGET_I386)
153 log_cpu_state(cpu, CPU_DUMP_CCOP);
154 #elif defined(TARGET_M68K)
155 /* ??? Should not modify env state for dumping. */
156 cpu_m68k_flush_flags(env, env->cc_op);
157 env->cc_op = CC_OP_FLAGS;
158 env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);
159 log_cpu_state(cpu, 0);
160 #else
161 log_cpu_state(cpu, 0);
162 #endif
163 }
164 #endif /* DEBUG_DISAS */
165
166 cpu->can_do_io = !use_icount;
167 ret = tcg_qemu_tb_exec(env, tb_ptr);
168 cpu->can_do_io = 1;
169 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
170 tb_exit = ret & TB_EXIT_MASK;
171 trace_exec_tb_exit(last_tb, tb_exit);
172
173 if (tb_exit > TB_EXIT_IDX1) {
174 /* We didn't start executing this TB (eg because the instruction
175 * counter hit zero); we must restore the guest PC to the address
176 * of the start of the TB.
177 */
178 CPUClass *cc = CPU_GET_CLASS(cpu);
179 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
180 "Stopped execution of TB chain before %p ["
181 TARGET_FMT_lx "] %s\n",
182 last_tb->tc_ptr, last_tb->pc,
183 lookup_symbol(last_tb->pc));
184 if (cc->synchronize_from_tb) {
185 cc->synchronize_from_tb(cpu, last_tb);
186 } else {
187 assert(cc->set_pc);
188 cc->set_pc(cpu, last_tb->pc);
189 }
190 }
191 if (tb_exit == TB_EXIT_REQUESTED) {
192 /* We were asked to stop executing TBs (probably a pending
193 * interrupt. We've now stopped, so clear the flag.
194 */
195 atomic_set(&cpu->tcg_exit_req, 0);
196 }
197 return ret;
198 }
199
200 #ifndef CONFIG_USER_ONLY
201 /* Execute the code without caching the generated code. An interpreter
202 could be used if available. */
203 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
204 TranslationBlock *orig_tb, bool ignore_icount)
205 {
206 TranslationBlock *tb;
207
208 /* Should never happen.
209 We only end up here when an existing TB is too long. */
210 if (max_cycles > CF_COUNT_MASK)
211 max_cycles = CF_COUNT_MASK;
212
213 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
214 max_cycles | CF_NOCACHE
215 | (ignore_icount ? CF_IGNORE_ICOUNT : 0));
216 tb->orig_tb = orig_tb;
217 /* execute the generated code */
218 trace_exec_tb_nocache(tb, tb->pc);
219 cpu_tb_exec(cpu, tb);
220 tb_phys_invalidate(tb, -1);
221 tb_free(tb);
222 }
223 #endif
224
225 static void cpu_exec_step(CPUState *cpu)
226 {
227 CPUArchState *env = (CPUArchState *)cpu->env_ptr;
228 TranslationBlock *tb;
229 target_ulong cs_base, pc;
230 uint32_t flags;
231
232 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
233 tb = tb_gen_code(cpu, pc, cs_base, flags,
234 1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
235 tb->orig_tb = NULL;
236 /* execute the generated code */
237 trace_exec_tb_nocache(tb, pc);
238 cpu_tb_exec(cpu, tb);
239 tb_phys_invalidate(tb, -1);
240 tb_free(tb);
241 }
242
243 void cpu_exec_step_atomic(CPUState *cpu)
244 {
245 start_exclusive();
246
247 /* Since we got here, we know that parallel_cpus must be true. */
248 parallel_cpus = false;
249 cpu_exec_step(cpu);
250 parallel_cpus = true;
251
252 end_exclusive();
253 }
254
255 struct tb_desc {
256 target_ulong pc;
257 target_ulong cs_base;
258 CPUArchState *env;
259 tb_page_addr_t phys_page1;
260 uint32_t flags;
261 };
262
263 static bool tb_cmp(const void *p, const void *d)
264 {
265 const TranslationBlock *tb = p;
266 const struct tb_desc *desc = d;
267
268 if (tb->pc == desc->pc &&
269 tb->page_addr[0] == desc->phys_page1 &&
270 tb->cs_base == desc->cs_base &&
271 tb->flags == desc->flags &&
272 !atomic_read(&tb->invalid)) {
273 /* check next page if needed */
274 if (tb->page_addr[1] == -1) {
275 return true;
276 } else {
277 tb_page_addr_t phys_page2;
278 target_ulong virt_page2;
279
280 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
281 phys_page2 = get_page_addr_code(desc->env, virt_page2);
282 if (tb->page_addr[1] == phys_page2) {
283 return true;
284 }
285 }
286 }
287 return false;
288 }
289
290 static TranslationBlock *tb_htable_lookup(CPUState *cpu,
291 target_ulong pc,
292 target_ulong cs_base,
293 uint32_t flags)
294 {
295 tb_page_addr_t phys_pc;
296 struct tb_desc desc;
297 uint32_t h;
298
299 desc.env = (CPUArchState *)cpu->env_ptr;
300 desc.cs_base = cs_base;
301 desc.flags = flags;
302 desc.pc = pc;
303 phys_pc = get_page_addr_code(desc.env, pc);
304 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
305 h = tb_hash_func(phys_pc, pc, flags);
306 return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h);
307 }
308
309 static inline TranslationBlock *tb_find(CPUState *cpu,
310 TranslationBlock *last_tb,
311 int tb_exit)
312 {
313 CPUArchState *env = (CPUArchState *)cpu->env_ptr;
314 TranslationBlock *tb;
315 target_ulong cs_base, pc;
316 uint32_t flags;
317 bool have_tb_lock = false;
318
319 /* we record a subset of the CPU state. It will
320 always be the same before a given translated block
321 is executed. */
322 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
323 tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]);
324 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
325 tb->flags != flags)) {
326 tb = tb_htable_lookup(cpu, pc, cs_base, flags);
327 if (!tb) {
328
329 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
330 * taken outside tb_lock. As system emulation is currently
331 * single threaded the locks are NOPs.
332 */
333 mmap_lock();
334 tb_lock();
335 have_tb_lock = true;
336
337 /* There's a chance that our desired tb has been translated while
338 * taking the locks so we check again inside the lock.
339 */
340 tb = tb_htable_lookup(cpu, pc, cs_base, flags);
341 if (!tb) {
342 /* if no translated code available, then translate it now */
343 tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
344 }
345
346 mmap_unlock();
347 }
348
349 /* We add the TB in the virtual pc hash table for the fast lookup */
350 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
351 }
352 #ifndef CONFIG_USER_ONLY
353 /* We don't take care of direct jumps when address mapping changes in
354 * system emulation. So it's not safe to make a direct jump to a TB
355 * spanning two pages because the mapping for the second page can change.
356 */
357 if (tb->page_addr[1] != -1) {
358 last_tb = NULL;
359 }
360 #endif
361 /* See if we can patch the calling TB. */
362 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
363 if (!have_tb_lock) {
364 tb_lock();
365 have_tb_lock = true;
366 }
367 if (!tb->invalid) {
368 tb_add_jump(last_tb, tb_exit, tb);
369 }
370 }
371 if (have_tb_lock) {
372 tb_unlock();
373 }
374 return tb;
375 }
376
377 static inline bool cpu_handle_halt(CPUState *cpu)
378 {
379 if (cpu->halted) {
380 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
381 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
382 && replay_interrupt()) {
383 X86CPU *x86_cpu = X86_CPU(cpu);
384 apic_poll_irq(x86_cpu->apic_state);
385 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
386 }
387 #endif
388 if (!cpu_has_work(cpu)) {
389 current_cpu = NULL;
390 return true;
391 }
392
393 cpu->halted = 0;
394 }
395
396 return false;
397 }
398
399 static inline void cpu_handle_debug_exception(CPUState *cpu)
400 {
401 CPUClass *cc = CPU_GET_CLASS(cpu);
402 CPUWatchpoint *wp;
403
404 if (!cpu->watchpoint_hit) {
405 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
406 wp->flags &= ~BP_WATCHPOINT_HIT;
407 }
408 }
409
410 cc->debug_excp_handler(cpu);
411 }
412
413 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
414 {
415 if (cpu->exception_index >= 0) {
416 if (cpu->exception_index >= EXCP_INTERRUPT) {
417 /* exit request from the cpu execution loop */
418 *ret = cpu->exception_index;
419 if (*ret == EXCP_DEBUG) {
420 cpu_handle_debug_exception(cpu);
421 }
422 cpu->exception_index = -1;
423 return true;
424 } else {
425 #if defined(CONFIG_USER_ONLY)
426 /* if user mode only, we simulate a fake exception
427 which will be handled outside the cpu execution
428 loop */
429 #if defined(TARGET_I386)
430 CPUClass *cc = CPU_GET_CLASS(cpu);
431 cc->do_interrupt(cpu);
432 #endif
433 *ret = cpu->exception_index;
434 cpu->exception_index = -1;
435 return true;
436 #else
437 if (replay_exception()) {
438 CPUClass *cc = CPU_GET_CLASS(cpu);
439 cc->do_interrupt(cpu);
440 cpu->exception_index = -1;
441 } else if (!replay_has_interrupt()) {
442 /* give a chance to iothread in replay mode */
443 *ret = EXCP_INTERRUPT;
444 return true;
445 }
446 #endif
447 }
448 #ifndef CONFIG_USER_ONLY
449 } else if (replay_has_exception()
450 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
451 /* try to cause an exception pending in the log */
452 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true);
453 *ret = -1;
454 return true;
455 #endif
456 }
457
458 return false;
459 }
460
461 static inline void cpu_handle_interrupt(CPUState *cpu,
462 TranslationBlock **last_tb)
463 {
464 CPUClass *cc = CPU_GET_CLASS(cpu);
465 int interrupt_request = cpu->interrupt_request;
466
467 if (unlikely(interrupt_request)) {
468 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
469 /* Mask out external interrupts for this step. */
470 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
471 }
472 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
473 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
474 cpu->exception_index = EXCP_DEBUG;
475 cpu_loop_exit(cpu);
476 }
477 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
478 /* Do nothing */
479 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
480 replay_interrupt();
481 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
482 cpu->halted = 1;
483 cpu->exception_index = EXCP_HLT;
484 cpu_loop_exit(cpu);
485 }
486 #if defined(TARGET_I386)
487 else if (interrupt_request & CPU_INTERRUPT_INIT) {
488 X86CPU *x86_cpu = X86_CPU(cpu);
489 CPUArchState *env = &x86_cpu->env;
490 replay_interrupt();
491 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0);
492 do_cpu_init(x86_cpu);
493 cpu->exception_index = EXCP_HALTED;
494 cpu_loop_exit(cpu);
495 }
496 #else
497 else if (interrupt_request & CPU_INTERRUPT_RESET) {
498 replay_interrupt();
499 cpu_reset(cpu);
500 cpu_loop_exit(cpu);
501 }
502 #endif
503 /* The target hook has 3 exit conditions:
504 False when the interrupt isn't processed,
505 True when it is, and we should restart on a new TB,
506 and via longjmp via cpu_loop_exit. */
507 else {
508 replay_interrupt();
509 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
510 *last_tb = NULL;
511 }
512 /* The target hook may have updated the 'cpu->interrupt_request';
513 * reload the 'interrupt_request' value */
514 interrupt_request = cpu->interrupt_request;
515 }
516 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
517 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
518 /* ensure that no TB jump will be modified as
519 the program flow was changed */
520 *last_tb = NULL;
521 }
522 }
523 if (unlikely(atomic_read(&cpu->exit_request) || replay_has_interrupt())) {
524 atomic_set(&cpu->exit_request, 0);
525 cpu->exception_index = EXCP_INTERRUPT;
526 cpu_loop_exit(cpu);
527 }
528 }
529
530 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
531 TranslationBlock **last_tb, int *tb_exit,
532 SyncClocks *sc)
533 {
534 uintptr_t ret;
535
536 if (unlikely(atomic_read(&cpu->exit_request))) {
537 return;
538 }
539
540 trace_exec_tb(tb, tb->pc);
541 ret = cpu_tb_exec(cpu, tb);
542 *last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
543 *tb_exit = ret & TB_EXIT_MASK;
544 switch (*tb_exit) {
545 case TB_EXIT_REQUESTED:
546 /* Something asked us to stop executing
547 * chained TBs; just continue round the main
548 * loop. Whatever requested the exit will also
549 * have set something else (eg exit_request or
550 * interrupt_request) which we will handle
551 * next time around the loop. But we need to
552 * ensure the tcg_exit_req read in generated code
553 * comes before the next read of cpu->exit_request
554 * or cpu->interrupt_request.
555 */
556 smp_rmb();
557 *last_tb = NULL;
558 break;
559 case TB_EXIT_ICOUNT_EXPIRED:
560 {
561 /* Instruction counter expired. */
562 #ifdef CONFIG_USER_ONLY
563 abort();
564 #else
565 int insns_left = cpu->icount_decr.u32;
566 if (cpu->icount_extra && insns_left >= 0) {
567 /* Refill decrementer and continue execution. */
568 cpu->icount_extra += insns_left;
569 insns_left = MIN(0xffff, cpu->icount_extra);
570 cpu->icount_extra -= insns_left;
571 cpu->icount_decr.u16.low = insns_left;
572 } else {
573 if (insns_left > 0) {
574 /* Execute remaining instructions. */
575 cpu_exec_nocache(cpu, insns_left, *last_tb, false);
576 align_clocks(sc, cpu);
577 }
578 cpu->exception_index = EXCP_INTERRUPT;
579 *last_tb = NULL;
580 cpu_loop_exit(cpu);
581 }
582 break;
583 #endif
584 }
585 default:
586 break;
587 }
588 }
589
590 /* main execution loop */
591
592 int cpu_exec(CPUState *cpu)
593 {
594 CPUClass *cc = CPU_GET_CLASS(cpu);
595 int ret;
596 SyncClocks sc;
597
598 /* replay_interrupt may need current_cpu */
599 current_cpu = cpu;
600
601 if (cpu_handle_halt(cpu)) {
602 return EXCP_HALTED;
603 }
604
605 atomic_mb_set(&tcg_current_cpu, cpu);
606 rcu_read_lock();
607
608 if (unlikely(atomic_mb_read(&exit_request))) {
609 cpu->exit_request = 1;
610 }
611
612 cc->cpu_exec_enter(cpu);
613
614 /* Calculate difference between guest clock and host clock.
615 * This delay includes the delay of the last cycle, so
616 * what we have to do is sleep until it is 0. As for the
617 * advance/delay we gain here, we try to fix it next time.
618 */
619 init_delay_params(&sc, cpu);
620
621 for(;;) {
622 /* prepare setjmp context for exception handling */
623 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
624 TranslationBlock *tb, *last_tb = NULL;
625 int tb_exit = 0;
626
627 /* if an exception is pending, we execute it here */
628 if (cpu_handle_exception(cpu, &ret)) {
629 break;
630 }
631
632 for(;;) {
633 cpu_handle_interrupt(cpu, &last_tb);
634 tb = tb_find(cpu, last_tb, tb_exit);
635 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit, &sc);
636 /* Try to align the host and virtual clocks
637 if the guest is in advance */
638 align_clocks(&sc, cpu);
639 } /* for(;;) */
640 } else {
641 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
642 /* Some compilers wrongly smash all local variables after
643 * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
644 * Reload essential local variables here for those compilers.
645 * Newer versions of gcc would complain about this code (-Wclobbered). */
646 cpu = current_cpu;
647 cc = CPU_GET_CLASS(cpu);
648 #else /* buggy compiler */
649 /* Assert that the compiler does not smash local variables. */
650 g_assert(cpu == current_cpu);
651 g_assert(cc == CPU_GET_CLASS(cpu));
652 #endif /* buggy compiler */
653 cpu->can_do_io = 1;
654 tb_lock_reset();
655 }
656 } /* for(;;) */
657
658 cc->cpu_exec_exit(cpu);
659 rcu_read_unlock();
660
661 /* fail safe : never use current_cpu outside cpu_exec() */
662 current_cpu = NULL;
663
664 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
665 atomic_set(&tcg_current_cpu, NULL);
666 return ret;
667 }