]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
MIPS 64-bit FPU support, plus some collateral bugfixes in the
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44 defined(TARGET_ALPHA)
45 /* XXX: unify with i386 target */
46 void cpu_loop_exit(void)
47 {
48 longjmp(env->jmp_env, 1);
49 }
50 #endif
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52 #define reg_T2
53 #endif
54
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
57 */
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
59 {
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62 #endif
63
64 env = env1;
65
66 /* XXX: restore cpu registers saved in host registers */
67
68 #if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 }
73 #endif
74 longjmp(env->jmp_env, 1);
75 }
76
77
78 static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 unsigned int flags)
81 {
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
87
88 spin_lock(&tb_lock);
89
90 tb_invalidated_flag = 0;
91
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
117 }
118 }
119 ptb1 = &tb->phys_hash_next;
120 }
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
131 }
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
144 }
145 tb_link_phys(tb, phys_pc, phys_page2);
146
147 found:
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
152 }
153
154 static inline TranslationBlock *tb_find_fast(void)
155 {
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 unsigned int flags;
159
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163 #if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168 #elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 flags |= (1 << 6);
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174 flags |= (1 << 7);
175 cs_base = 0;
176 pc = env->regs[15];
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182 #else
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185 | env->psrs;
186 #endif
187 cs_base = env->npc;
188 pc = env->pc;
189 #elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
192 cs_base = 0;
193 pc = env->nip;
194 #elif defined(TARGET_MIPS)
195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196 cs_base = 0;
197 pc = env->PC;
198 #elif defined(TARGET_M68K)
199 flags = env->fpcr & M68K_FPCR_PREC;
200 cs_base = 0;
201 pc = env->pc;
202 #elif defined(TARGET_SH4)
203 flags = env->sr & (SR_MD | SR_RB);
204 cs_base = 0; /* XXXXX */
205 pc = env->pc;
206 #elif defined(TARGET_ALPHA)
207 flags = env->ps;
208 cs_base = 0;
209 pc = env->pc;
210 #else
211 #error unsupported CPU
212 #endif
213 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215 tb->flags != flags, 0)) {
216 tb = tb_find_slow(pc, cs_base, flags);
217 /* Note: we do it here to avoid a gcc bug on Mac OS X when
218 doing it in tb_find_slow */
219 if (tb_invalidated_flag) {
220 /* as some TB could have been invalidated because
221 of memory exceptions while generating the code, we
222 must recompute the hash index here */
223 T0 = 0;
224 }
225 }
226 return tb;
227 }
228
229
230 /* main execution loop */
231
232 int cpu_exec(CPUState *env1)
233 {
234 #define DECLARE_HOST_REGS 1
235 #include "hostregs_helper.h"
236 #if defined(TARGET_SPARC)
237 #if defined(reg_REGWPTR)
238 uint32_t *saved_regwptr;
239 #endif
240 #endif
241 #if defined(__sparc__) && !defined(HOST_SOLARIS)
242 int saved_i7;
243 target_ulong tmp_T0;
244 #endif
245 int ret, interrupt_request;
246 void (*gen_func)(void);
247 TranslationBlock *tb;
248 uint8_t *tc_ptr;
249
250 #if defined(TARGET_I386)
251 /* handle exit of HALTED state */
252 if (env1->hflags & HF_HALTED_MASK) {
253 /* disable halt condition */
254 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255 (env1->eflags & IF_MASK)) {
256 env1->hflags &= ~HF_HALTED_MASK;
257 } else {
258 return EXCP_HALTED;
259 }
260 }
261 #elif defined(TARGET_PPC)
262 if (env1->halted) {
263 if (env1->msr[MSR_EE] &&
264 (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
265 env1->halted = 0;
266 } else {
267 return EXCP_HALTED;
268 }
269 }
270 #elif defined(TARGET_SPARC)
271 if (env1->halted) {
272 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273 (env1->psret != 0)) {
274 env1->halted = 0;
275 } else {
276 return EXCP_HALTED;
277 }
278 }
279 #elif defined(TARGET_ARM)
280 if (env1->halted) {
281 /* An interrupt wakes the CPU even if the I and F CPSR bits are
282 set. We use EXITTB to silently wake CPU without causing an
283 actual interrupt. */
284 if (env1->interrupt_request &
285 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB)) {
286 env1->halted = 0;
287 } else {
288 return EXCP_HALTED;
289 }
290 }
291 #elif defined(TARGET_MIPS)
292 if (env1->halted) {
293 if (env1->interrupt_request &
294 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
295 env1->halted = 0;
296 } else {
297 return EXCP_HALTED;
298 }
299 }
300 #elif defined(TARGET_ALPHA)
301 if (env1->halted) {
302 if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
303 env1->halted = 0;
304 } else {
305 return EXCP_HALTED;
306 }
307 }
308 #endif
309
310 cpu_single_env = env1;
311
312 /* first we save global registers */
313 #define SAVE_HOST_REGS 1
314 #include "hostregs_helper.h"
315 env = env1;
316 #if defined(__sparc__) && !defined(HOST_SOLARIS)
317 /* we also save i7 because longjmp may not restore it */
318 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
319 #endif
320
321 #if defined(TARGET_I386)
322 env_to_regs();
323 /* put eflags in CPU temporary format */
324 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
325 DF = 1 - (2 * ((env->eflags >> 10) & 1));
326 CC_OP = CC_OP_EFLAGS;
327 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
328 #elif defined(TARGET_ARM)
329 #elif defined(TARGET_SPARC)
330 #if defined(reg_REGWPTR)
331 saved_regwptr = REGWPTR;
332 #endif
333 #elif defined(TARGET_PPC)
334 #elif defined(TARGET_M68K)
335 env->cc_op = CC_OP_FLAGS;
336 env->cc_dest = env->sr & 0xf;
337 env->cc_x = (env->sr >> 4) & 1;
338 #elif defined(TARGET_MIPS)
339 #elif defined(TARGET_SH4)
340 /* XXXXX */
341 #elif defined(TARGET_ALPHA)
342 env_to_regs();
343 #else
344 #error unsupported target CPU
345 #endif
346 env->exception_index = -1;
347
348 /* prepare setjmp context for exception handling */
349 for(;;) {
350 if (setjmp(env->jmp_env) == 0) {
351 env->current_tb = NULL;
352 /* if an exception is pending, we execute it here */
353 if (env->exception_index >= 0) {
354 if (env->exception_index >= EXCP_INTERRUPT) {
355 /* exit request from the cpu execution loop */
356 ret = env->exception_index;
357 break;
358 } else if (env->user_mode_only) {
359 /* if user mode only, we simulate a fake exception
360 which will be handled outside the cpu execution
361 loop */
362 #if defined(TARGET_I386)
363 do_interrupt_user(env->exception_index,
364 env->exception_is_int,
365 env->error_code,
366 env->exception_next_eip);
367 #endif
368 ret = env->exception_index;
369 break;
370 } else {
371 #if defined(TARGET_I386)
372 /* simulate a real cpu exception. On i386, it can
373 trigger new exceptions, but we do not handle
374 double or triple faults yet. */
375 do_interrupt(env->exception_index,
376 env->exception_is_int,
377 env->error_code,
378 env->exception_next_eip, 0);
379 /* successfully delivered */
380 env->old_exception = -1;
381 #elif defined(TARGET_PPC)
382 do_interrupt(env);
383 #elif defined(TARGET_MIPS)
384 do_interrupt(env);
385 #elif defined(TARGET_SPARC)
386 do_interrupt(env->exception_index);
387 #elif defined(TARGET_ARM)
388 do_interrupt(env);
389 #elif defined(TARGET_SH4)
390 do_interrupt(env);
391 #elif defined(TARGET_ALPHA)
392 do_interrupt(env);
393 #endif
394 }
395 env->exception_index = -1;
396 }
397 #ifdef USE_KQEMU
398 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
399 int ret;
400 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
401 ret = kqemu_cpu_exec(env);
402 /* put eflags in CPU temporary format */
403 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
404 DF = 1 - (2 * ((env->eflags >> 10) & 1));
405 CC_OP = CC_OP_EFLAGS;
406 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
407 if (ret == 1) {
408 /* exception */
409 longjmp(env->jmp_env, 1);
410 } else if (ret == 2) {
411 /* softmmu execution needed */
412 } else {
413 if (env->interrupt_request != 0) {
414 /* hardware interrupt will be executed just after */
415 } else {
416 /* otherwise, we restart */
417 longjmp(env->jmp_env, 1);
418 }
419 }
420 }
421 #endif
422
423 T0 = 0; /* force lookup of first TB */
424 for(;;) {
425 #if defined(__sparc__) && !defined(HOST_SOLARIS)
426 /* g1 can be modified by some libc? functions */
427 tmp_T0 = T0;
428 #endif
429 interrupt_request = env->interrupt_request;
430 if (__builtin_expect(interrupt_request, 0)) {
431 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
432 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
433 env->exception_index = EXCP_DEBUG;
434 cpu_loop_exit();
435 }
436 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
437 defined(TARGET_PPC) || defined(TARGET_ALPHA)
438 if (interrupt_request & CPU_INTERRUPT_HALT) {
439 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
440 env->halted = 1;
441 env->exception_index = EXCP_HLT;
442 cpu_loop_exit();
443 }
444 #endif
445 #if defined(TARGET_I386)
446 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
447 !(env->hflags & HF_SMM_MASK)) {
448 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
449 do_smm_enter();
450 #if defined(__sparc__) && !defined(HOST_SOLARIS)
451 tmp_T0 = 0;
452 #else
453 T0 = 0;
454 #endif
455 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
456 (env->eflags & IF_MASK) &&
457 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
458 int intno;
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460 intno = cpu_get_pic_interrupt(env);
461 if (loglevel & CPU_LOG_TB_IN_ASM) {
462 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
463 }
464 do_interrupt(intno, 0, 0, 0, 1);
465 /* ensure that no TB jump will be modified as
466 the program flow was changed */
467 #if defined(__sparc__) && !defined(HOST_SOLARIS)
468 tmp_T0 = 0;
469 #else
470 T0 = 0;
471 #endif
472 }
473 #elif defined(TARGET_PPC)
474 #if 0
475 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
476 cpu_ppc_reset(env);
477 }
478 #endif
479 if (interrupt_request & CPU_INTERRUPT_HARD) {
480 ppc_hw_interrupt(env);
481 if (env->pending_interrupts == 0)
482 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
483 #if defined(__sparc__) && !defined(HOST_SOLARIS)
484 tmp_T0 = 0;
485 #else
486 T0 = 0;
487 #endif
488 }
489 #elif defined(TARGET_MIPS)
490 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
491 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
492 (env->CP0_Status & (1 << CP0St_IE)) &&
493 !(env->CP0_Status & (1 << CP0St_EXL)) &&
494 !(env->CP0_Status & (1 << CP0St_ERL)) &&
495 !(env->hflags & MIPS_HFLAG_DM)) {
496 /* Raise it */
497 env->exception_index = EXCP_EXT_INTERRUPT;
498 env->error_code = 0;
499 do_interrupt(env);
500 #if defined(__sparc__) && !defined(HOST_SOLARIS)
501 tmp_T0 = 0;
502 #else
503 T0 = 0;
504 #endif
505 }
506 #elif defined(TARGET_SPARC)
507 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
508 (env->psret != 0)) {
509 int pil = env->interrupt_index & 15;
510 int type = env->interrupt_index & 0xf0;
511
512 if (((type == TT_EXTINT) &&
513 (pil == 15 || pil > env->psrpil)) ||
514 type != TT_EXTINT) {
515 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
516 do_interrupt(env->interrupt_index);
517 env->interrupt_index = 0;
518 #if defined(__sparc__) && !defined(HOST_SOLARIS)
519 tmp_T0 = 0;
520 #else
521 T0 = 0;
522 #endif
523 }
524 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
525 //do_interrupt(0, 0, 0, 0, 0);
526 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
527 }
528 #elif defined(TARGET_ARM)
529 if (interrupt_request & CPU_INTERRUPT_FIQ
530 && !(env->uncached_cpsr & CPSR_F)) {
531 env->exception_index = EXCP_FIQ;
532 do_interrupt(env);
533 }
534 if (interrupt_request & CPU_INTERRUPT_HARD
535 && !(env->uncached_cpsr & CPSR_I)) {
536 env->exception_index = EXCP_IRQ;
537 do_interrupt(env);
538 }
539 #elif defined(TARGET_SH4)
540 /* XXXXX */
541 #elif defined(TARGET_ALPHA)
542 if (interrupt_request & CPU_INTERRUPT_HARD) {
543 do_interrupt(env);
544 }
545 #endif
546 /* Don't use the cached interupt_request value,
547 do_interrupt may have updated the EXITTB flag. */
548 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
549 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
550 /* ensure that no TB jump will be modified as
551 the program flow was changed */
552 #if defined(__sparc__) && !defined(HOST_SOLARIS)
553 tmp_T0 = 0;
554 #else
555 T0 = 0;
556 #endif
557 }
558 if (interrupt_request & CPU_INTERRUPT_EXIT) {
559 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
560 env->exception_index = EXCP_INTERRUPT;
561 cpu_loop_exit();
562 }
563 }
564 #ifdef DEBUG_EXEC
565 if ((loglevel & CPU_LOG_TB_CPU)) {
566 #if defined(TARGET_I386)
567 /* restore flags in standard format */
568 #ifdef reg_EAX
569 env->regs[R_EAX] = EAX;
570 #endif
571 #ifdef reg_EBX
572 env->regs[R_EBX] = EBX;
573 #endif
574 #ifdef reg_ECX
575 env->regs[R_ECX] = ECX;
576 #endif
577 #ifdef reg_EDX
578 env->regs[R_EDX] = EDX;
579 #endif
580 #ifdef reg_ESI
581 env->regs[R_ESI] = ESI;
582 #endif
583 #ifdef reg_EDI
584 env->regs[R_EDI] = EDI;
585 #endif
586 #ifdef reg_EBP
587 env->regs[R_EBP] = EBP;
588 #endif
589 #ifdef reg_ESP
590 env->regs[R_ESP] = ESP;
591 #endif
592 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
593 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
594 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
595 #elif defined(TARGET_ARM)
596 cpu_dump_state(env, logfile, fprintf, 0);
597 #elif defined(TARGET_SPARC)
598 REGWPTR = env->regbase + (env->cwp * 16);
599 env->regwptr = REGWPTR;
600 cpu_dump_state(env, logfile, fprintf, 0);
601 #elif defined(TARGET_PPC)
602 cpu_dump_state(env, logfile, fprintf, 0);
603 #elif defined(TARGET_M68K)
604 cpu_m68k_flush_flags(env, env->cc_op);
605 env->cc_op = CC_OP_FLAGS;
606 env->sr = (env->sr & 0xffe0)
607 | env->cc_dest | (env->cc_x << 4);
608 cpu_dump_state(env, logfile, fprintf, 0);
609 #elif defined(TARGET_MIPS)
610 cpu_dump_state(env, logfile, fprintf, 0);
611 #elif defined(TARGET_SH4)
612 cpu_dump_state(env, logfile, fprintf, 0);
613 #elif defined(TARGET_ALPHA)
614 cpu_dump_state(env, logfile, fprintf, 0);
615 #else
616 #error unsupported target CPU
617 #endif
618 }
619 #endif
620 tb = tb_find_fast();
621 #ifdef DEBUG_EXEC
622 if ((loglevel & CPU_LOG_EXEC)) {
623 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
624 (long)tb->tc_ptr, tb->pc,
625 lookup_symbol(tb->pc));
626 }
627 #endif
628 #if defined(__sparc__) && !defined(HOST_SOLARIS)
629 T0 = tmp_T0;
630 #endif
631 /* see if we can patch the calling TB. When the TB
632 spans two pages, we cannot safely do a direct
633 jump. */
634 {
635 if (T0 != 0 &&
636 #if USE_KQEMU
637 (env->kqemu_enabled != 2) &&
638 #endif
639 tb->page_addr[1] == -1
640 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
641 && (tb->cflags & CF_CODE_COPY) ==
642 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
643 #endif
644 ) {
645 spin_lock(&tb_lock);
646 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
647 #if defined(USE_CODE_COPY)
648 /* propagates the FP use info */
649 ((TranslationBlock *)(T0 & ~3))->cflags |=
650 (tb->cflags & CF_FP_USED);
651 #endif
652 spin_unlock(&tb_lock);
653 }
654 }
655 tc_ptr = tb->tc_ptr;
656 env->current_tb = tb;
657 /* execute the generated code */
658 gen_func = (void *)tc_ptr;
659 #if defined(__sparc__)
660 __asm__ __volatile__("call %0\n\t"
661 "mov %%o7,%%i0"
662 : /* no outputs */
663 : "r" (gen_func)
664 : "i0", "i1", "i2", "i3", "i4", "i5",
665 "o0", "o1", "o2", "o3", "o4", "o5",
666 "l0", "l1", "l2", "l3", "l4", "l5",
667 "l6", "l7");
668 #elif defined(__arm__)
669 asm volatile ("mov pc, %0\n\t"
670 ".global exec_loop\n\t"
671 "exec_loop:\n\t"
672 : /* no outputs */
673 : "r" (gen_func)
674 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
675 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
676 {
677 if (!(tb->cflags & CF_CODE_COPY)) {
678 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
679 save_native_fp_state(env);
680 }
681 gen_func();
682 } else {
683 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
684 restore_native_fp_state(env);
685 }
686 /* we work with native eflags */
687 CC_SRC = cc_table[CC_OP].compute_all();
688 CC_OP = CC_OP_EFLAGS;
689 asm(".globl exec_loop\n"
690 "\n"
691 "debug1:\n"
692 " pushl %%ebp\n"
693 " fs movl %10, %9\n"
694 " fs movl %11, %%eax\n"
695 " andl $0x400, %%eax\n"
696 " fs orl %8, %%eax\n"
697 " pushl %%eax\n"
698 " popf\n"
699 " fs movl %%esp, %12\n"
700 " fs movl %0, %%eax\n"
701 " fs movl %1, %%ecx\n"
702 " fs movl %2, %%edx\n"
703 " fs movl %3, %%ebx\n"
704 " fs movl %4, %%esp\n"
705 " fs movl %5, %%ebp\n"
706 " fs movl %6, %%esi\n"
707 " fs movl %7, %%edi\n"
708 " fs jmp *%9\n"
709 "exec_loop:\n"
710 " fs movl %%esp, %4\n"
711 " fs movl %12, %%esp\n"
712 " fs movl %%eax, %0\n"
713 " fs movl %%ecx, %1\n"
714 " fs movl %%edx, %2\n"
715 " fs movl %%ebx, %3\n"
716 " fs movl %%ebp, %5\n"
717 " fs movl %%esi, %6\n"
718 " fs movl %%edi, %7\n"
719 " pushf\n"
720 " popl %%eax\n"
721 " movl %%eax, %%ecx\n"
722 " andl $0x400, %%ecx\n"
723 " shrl $9, %%ecx\n"
724 " andl $0x8d5, %%eax\n"
725 " fs movl %%eax, %8\n"
726 " movl $1, %%eax\n"
727 " subl %%ecx, %%eax\n"
728 " fs movl %%eax, %11\n"
729 " fs movl %9, %%ebx\n" /* get T0 value */
730 " popl %%ebp\n"
731 :
732 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
733 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
734 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
735 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
736 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
737 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
738 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
739 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
740 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
741 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
742 "a" (gen_func),
743 "m" (*(uint8_t *)offsetof(CPUState, df)),
744 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
745 : "%ecx", "%edx"
746 );
747 }
748 }
749 #elif defined(__ia64)
750 struct fptr {
751 void *ip;
752 void *gp;
753 } fp;
754
755 fp.ip = tc_ptr;
756 fp.gp = code_gen_buffer + 2 * (1 << 20);
757 (*(void (*)(void)) &fp)();
758 #else
759 gen_func();
760 #endif
761 env->current_tb = NULL;
762 /* reset soft MMU for next block (it can currently
763 only be set by a memory fault) */
764 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
765 if (env->hflags & HF_SOFTMMU_MASK) {
766 env->hflags &= ~HF_SOFTMMU_MASK;
767 /* do not allow linking to another block */
768 T0 = 0;
769 }
770 #endif
771 #if defined(USE_KQEMU)
772 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
773 if (kqemu_is_ok(env) &&
774 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
775 cpu_loop_exit();
776 }
777 #endif
778 }
779 } else {
780 env_to_regs();
781 }
782 } /* for(;;) */
783
784
785 #if defined(TARGET_I386)
786 #if defined(USE_CODE_COPY)
787 if (env->native_fp_regs) {
788 save_native_fp_state(env);
789 }
790 #endif
791 /* restore flags in standard format */
792 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
793 #elif defined(TARGET_ARM)
794 /* XXX: Save/restore host fpu exception state?. */
795 #elif defined(TARGET_SPARC)
796 #if defined(reg_REGWPTR)
797 REGWPTR = saved_regwptr;
798 #endif
799 #elif defined(TARGET_PPC)
800 #elif defined(TARGET_M68K)
801 cpu_m68k_flush_flags(env, env->cc_op);
802 env->cc_op = CC_OP_FLAGS;
803 env->sr = (env->sr & 0xffe0)
804 | env->cc_dest | (env->cc_x << 4);
805 #elif defined(TARGET_MIPS)
806 #elif defined(TARGET_SH4)
807 #elif defined(TARGET_ALPHA)
808 /* XXXXX */
809 #else
810 #error unsupported target CPU
811 #endif
812
813 /* restore global registers */
814 #if defined(__sparc__) && !defined(HOST_SOLARIS)
815 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
816 #endif
817 #include "hostregs_helper.h"
818
819 /* fail safe : never use cpu_single_env outside cpu_exec() */
820 cpu_single_env = NULL;
821 return ret;
822 }
823
824 /* must only be called from the generated code as an exception can be
825 generated */
826 void tb_invalidate_page_range(target_ulong start, target_ulong end)
827 {
828 /* XXX: cannot enable it yet because it yields to MMU exception
829 where NIP != read address on PowerPC */
830 #if 0
831 target_ulong phys_addr;
832 phys_addr = get_phys_addr_code(env, start);
833 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
834 #endif
835 }
836
837 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
838
839 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
840 {
841 CPUX86State *saved_env;
842
843 saved_env = env;
844 env = s;
845 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
846 selector &= 0xffff;
847 cpu_x86_load_seg_cache(env, seg_reg, selector,
848 (selector << 4), 0xffff, 0);
849 } else {
850 load_seg(seg_reg, selector);
851 }
852 env = saved_env;
853 }
854
855 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
856 {
857 CPUX86State *saved_env;
858
859 saved_env = env;
860 env = s;
861
862 helper_fsave((target_ulong)ptr, data32);
863
864 env = saved_env;
865 }
866
867 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
868 {
869 CPUX86State *saved_env;
870
871 saved_env = env;
872 env = s;
873
874 helper_frstor((target_ulong)ptr, data32);
875
876 env = saved_env;
877 }
878
879 #endif /* TARGET_I386 */
880
881 #if !defined(CONFIG_SOFTMMU)
882
883 #if defined(TARGET_I386)
884
885 /* 'pc' is the host PC at which the exception was raised. 'address' is
886 the effective address of the memory exception. 'is_write' is 1 if a
887 write caused the exception and otherwise 0'. 'old_set' is the
888 signal set which should be restored */
889 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
890 int is_write, sigset_t *old_set,
891 void *puc)
892 {
893 TranslationBlock *tb;
894 int ret;
895
896 if (cpu_single_env)
897 env = cpu_single_env; /* XXX: find a correct solution for multithread */
898 #if defined(DEBUG_SIGNAL)
899 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
900 pc, address, is_write, *(unsigned long *)old_set);
901 #endif
902 /* XXX: locking issue */
903 if (is_write && page_unprotect(h2g(address), pc, puc)) {
904 return 1;
905 }
906
907 /* see if it is an MMU fault */
908 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
909 ((env->hflags & HF_CPL_MASK) == 3), 0);
910 if (ret < 0)
911 return 0; /* not an MMU fault */
912 if (ret == 0)
913 return 1; /* the MMU fault was handled without causing real CPU fault */
914 /* now we have a real cpu fault */
915 tb = tb_find_pc(pc);
916 if (tb) {
917 /* the PC is inside the translated code. It means that we have
918 a virtual CPU fault */
919 cpu_restore_state(tb, env, pc, puc);
920 }
921 if (ret == 1) {
922 #if 0
923 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
924 env->eip, env->cr[2], env->error_code);
925 #endif
926 /* we restore the process signal mask as the sigreturn should
927 do it (XXX: use sigsetjmp) */
928 sigprocmask(SIG_SETMASK, old_set, NULL);
929 raise_exception_err(env->exception_index, env->error_code);
930 } else {
931 /* activate soft MMU for this block */
932 env->hflags |= HF_SOFTMMU_MASK;
933 cpu_resume_from_signal(env, puc);
934 }
935 /* never comes here */
936 return 1;
937 }
938
939 #elif defined(TARGET_ARM)
940 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
941 int is_write, sigset_t *old_set,
942 void *puc)
943 {
944 TranslationBlock *tb;
945 int ret;
946
947 if (cpu_single_env)
948 env = cpu_single_env; /* XXX: find a correct solution for multithread */
949 #if defined(DEBUG_SIGNAL)
950 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
951 pc, address, is_write, *(unsigned long *)old_set);
952 #endif
953 /* XXX: locking issue */
954 if (is_write && page_unprotect(h2g(address), pc, puc)) {
955 return 1;
956 }
957 /* see if it is an MMU fault */
958 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
959 if (ret < 0)
960 return 0; /* not an MMU fault */
961 if (ret == 0)
962 return 1; /* the MMU fault was handled without causing real CPU fault */
963 /* now we have a real cpu fault */
964 tb = tb_find_pc(pc);
965 if (tb) {
966 /* the PC is inside the translated code. It means that we have
967 a virtual CPU fault */
968 cpu_restore_state(tb, env, pc, puc);
969 }
970 /* we restore the process signal mask as the sigreturn should
971 do it (XXX: use sigsetjmp) */
972 sigprocmask(SIG_SETMASK, old_set, NULL);
973 cpu_loop_exit();
974 }
975 #elif defined(TARGET_SPARC)
976 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
977 int is_write, sigset_t *old_set,
978 void *puc)
979 {
980 TranslationBlock *tb;
981 int ret;
982
983 if (cpu_single_env)
984 env = cpu_single_env; /* XXX: find a correct solution for multithread */
985 #if defined(DEBUG_SIGNAL)
986 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
987 pc, address, is_write, *(unsigned long *)old_set);
988 #endif
989 /* XXX: locking issue */
990 if (is_write && page_unprotect(h2g(address), pc, puc)) {
991 return 1;
992 }
993 /* see if it is an MMU fault */
994 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
995 if (ret < 0)
996 return 0; /* not an MMU fault */
997 if (ret == 0)
998 return 1; /* the MMU fault was handled without causing real CPU fault */
999 /* now we have a real cpu fault */
1000 tb = tb_find_pc(pc);
1001 if (tb) {
1002 /* the PC is inside the translated code. It means that we have
1003 a virtual CPU fault */
1004 cpu_restore_state(tb, env, pc, puc);
1005 }
1006 /* we restore the process signal mask as the sigreturn should
1007 do it (XXX: use sigsetjmp) */
1008 sigprocmask(SIG_SETMASK, old_set, NULL);
1009 cpu_loop_exit();
1010 }
1011 #elif defined (TARGET_PPC)
1012 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1013 int is_write, sigset_t *old_set,
1014 void *puc)
1015 {
1016 TranslationBlock *tb;
1017 int ret;
1018
1019 if (cpu_single_env)
1020 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1021 #if defined(DEBUG_SIGNAL)
1022 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1023 pc, address, is_write, *(unsigned long *)old_set);
1024 #endif
1025 /* XXX: locking issue */
1026 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1027 return 1;
1028 }
1029
1030 /* see if it is an MMU fault */
1031 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1032 if (ret < 0)
1033 return 0; /* not an MMU fault */
1034 if (ret == 0)
1035 return 1; /* the MMU fault was handled without causing real CPU fault */
1036
1037 /* now we have a real cpu fault */
1038 tb = tb_find_pc(pc);
1039 if (tb) {
1040 /* the PC is inside the translated code. It means that we have
1041 a virtual CPU fault */
1042 cpu_restore_state(tb, env, pc, puc);
1043 }
1044 if (ret == 1) {
1045 #if 0
1046 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1047 env->nip, env->error_code, tb);
1048 #endif
1049 /* we restore the process signal mask as the sigreturn should
1050 do it (XXX: use sigsetjmp) */
1051 sigprocmask(SIG_SETMASK, old_set, NULL);
1052 do_raise_exception_err(env->exception_index, env->error_code);
1053 } else {
1054 /* activate soft MMU for this block */
1055 cpu_resume_from_signal(env, puc);
1056 }
1057 /* never comes here */
1058 return 1;
1059 }
1060
1061 #elif defined(TARGET_M68K)
1062 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1063 int is_write, sigset_t *old_set,
1064 void *puc)
1065 {
1066 TranslationBlock *tb;
1067 int ret;
1068
1069 if (cpu_single_env)
1070 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1071 #if defined(DEBUG_SIGNAL)
1072 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1073 pc, address, is_write, *(unsigned long *)old_set);
1074 #endif
1075 /* XXX: locking issue */
1076 if (is_write && page_unprotect(address, pc, puc)) {
1077 return 1;
1078 }
1079 /* see if it is an MMU fault */
1080 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1081 if (ret < 0)
1082 return 0; /* not an MMU fault */
1083 if (ret == 0)
1084 return 1; /* the MMU fault was handled without causing real CPU fault */
1085 /* now we have a real cpu fault */
1086 tb = tb_find_pc(pc);
1087 if (tb) {
1088 /* the PC is inside the translated code. It means that we have
1089 a virtual CPU fault */
1090 cpu_restore_state(tb, env, pc, puc);
1091 }
1092 /* we restore the process signal mask as the sigreturn should
1093 do it (XXX: use sigsetjmp) */
1094 sigprocmask(SIG_SETMASK, old_set, NULL);
1095 cpu_loop_exit();
1096 /* never comes here */
1097 return 1;
1098 }
1099
1100 #elif defined (TARGET_MIPS)
1101 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1102 int is_write, sigset_t *old_set,
1103 void *puc)
1104 {
1105 TranslationBlock *tb;
1106 int ret;
1107
1108 if (cpu_single_env)
1109 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1110 #if defined(DEBUG_SIGNAL)
1111 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1112 pc, address, is_write, *(unsigned long *)old_set);
1113 #endif
1114 /* XXX: locking issue */
1115 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1116 return 1;
1117 }
1118
1119 /* see if it is an MMU fault */
1120 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1121 if (ret < 0)
1122 return 0; /* not an MMU fault */
1123 if (ret == 0)
1124 return 1; /* the MMU fault was handled without causing real CPU fault */
1125
1126 /* now we have a real cpu fault */
1127 tb = tb_find_pc(pc);
1128 if (tb) {
1129 /* the PC is inside the translated code. It means that we have
1130 a virtual CPU fault */
1131 cpu_restore_state(tb, env, pc, puc);
1132 }
1133 if (ret == 1) {
1134 #if 0
1135 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1136 env->nip, env->error_code, tb);
1137 #endif
1138 /* we restore the process signal mask as the sigreturn should
1139 do it (XXX: use sigsetjmp) */
1140 sigprocmask(SIG_SETMASK, old_set, NULL);
1141 do_raise_exception_err(env->exception_index, env->error_code);
1142 } else {
1143 /* activate soft MMU for this block */
1144 cpu_resume_from_signal(env, puc);
1145 }
1146 /* never comes here */
1147 return 1;
1148 }
1149
1150 #elif defined (TARGET_SH4)
1151 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1152 int is_write, sigset_t *old_set,
1153 void *puc)
1154 {
1155 TranslationBlock *tb;
1156 int ret;
1157
1158 if (cpu_single_env)
1159 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1160 #if defined(DEBUG_SIGNAL)
1161 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1162 pc, address, is_write, *(unsigned long *)old_set);
1163 #endif
1164 /* XXX: locking issue */
1165 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1166 return 1;
1167 }
1168
1169 /* see if it is an MMU fault */
1170 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1171 if (ret < 0)
1172 return 0; /* not an MMU fault */
1173 if (ret == 0)
1174 return 1; /* the MMU fault was handled without causing real CPU fault */
1175
1176 /* now we have a real cpu fault */
1177 tb = tb_find_pc(pc);
1178 if (tb) {
1179 /* the PC is inside the translated code. It means that we have
1180 a virtual CPU fault */
1181 cpu_restore_state(tb, env, pc, puc);
1182 }
1183 #if 0
1184 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1185 env->nip, env->error_code, tb);
1186 #endif
1187 /* we restore the process signal mask as the sigreturn should
1188 do it (XXX: use sigsetjmp) */
1189 sigprocmask(SIG_SETMASK, old_set, NULL);
1190 cpu_loop_exit();
1191 /* never comes here */
1192 return 1;
1193 }
1194
1195 #elif defined (TARGET_ALPHA)
1196 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1197 int is_write, sigset_t *old_set,
1198 void *puc)
1199 {
1200 TranslationBlock *tb;
1201 int ret;
1202
1203 if (cpu_single_env)
1204 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1205 #if defined(DEBUG_SIGNAL)
1206 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1207 pc, address, is_write, *(unsigned long *)old_set);
1208 #endif
1209 /* XXX: locking issue */
1210 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1211 return 1;
1212 }
1213
1214 /* see if it is an MMU fault */
1215 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1216 if (ret < 0)
1217 return 0; /* not an MMU fault */
1218 if (ret == 0)
1219 return 1; /* the MMU fault was handled without causing real CPU fault */
1220
1221 /* now we have a real cpu fault */
1222 tb = tb_find_pc(pc);
1223 if (tb) {
1224 /* the PC is inside the translated code. It means that we have
1225 a virtual CPU fault */
1226 cpu_restore_state(tb, env, pc, puc);
1227 }
1228 #if 0
1229 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1230 env->nip, env->error_code, tb);
1231 #endif
1232 /* we restore the process signal mask as the sigreturn should
1233 do it (XXX: use sigsetjmp) */
1234 sigprocmask(SIG_SETMASK, old_set, NULL);
1235 cpu_loop_exit();
1236 /* never comes here */
1237 return 1;
1238 }
1239 #else
1240 #error unsupported target CPU
1241 #endif
1242
1243 #if defined(__i386__)
1244
1245 #if defined(__APPLE__)
1246 # include <sys/ucontext.h>
1247
1248 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1249 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1250 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1251 #else
1252 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1253 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1254 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1255 #endif
1256
1257 #if defined(USE_CODE_COPY)
1258 static void cpu_send_trap(unsigned long pc, int trap,
1259 struct ucontext *uc)
1260 {
1261 TranslationBlock *tb;
1262
1263 if (cpu_single_env)
1264 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1265 /* now we have a real cpu fault */
1266 tb = tb_find_pc(pc);
1267 if (tb) {
1268 /* the PC is inside the translated code. It means that we have
1269 a virtual CPU fault */
1270 cpu_restore_state(tb, env, pc, uc);
1271 }
1272 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1273 raise_exception_err(trap, env->error_code);
1274 }
1275 #endif
1276
1277 int cpu_signal_handler(int host_signum, void *pinfo,
1278 void *puc)
1279 {
1280 siginfo_t *info = pinfo;
1281 struct ucontext *uc = puc;
1282 unsigned long pc;
1283 int trapno;
1284
1285 #ifndef REG_EIP
1286 /* for glibc 2.1 */
1287 #define REG_EIP EIP
1288 #define REG_ERR ERR
1289 #define REG_TRAPNO TRAPNO
1290 #endif
1291 pc = EIP_sig(uc);
1292 trapno = TRAP_sig(uc);
1293 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1294 if (trapno == 0x00 || trapno == 0x05) {
1295 /* send division by zero or bound exception */
1296 cpu_send_trap(pc, trapno, uc);
1297 return 1;
1298 } else
1299 #endif
1300 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1301 trapno == 0xe ?
1302 (ERROR_sig(uc) >> 1) & 1 : 0,
1303 &uc->uc_sigmask, puc);
1304 }
1305
1306 #elif defined(__x86_64__)
1307
1308 int cpu_signal_handler(int host_signum, void *pinfo,
1309 void *puc)
1310 {
1311 siginfo_t *info = pinfo;
1312 struct ucontext *uc = puc;
1313 unsigned long pc;
1314
1315 pc = uc->uc_mcontext.gregs[REG_RIP];
1316 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1317 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1318 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1319 &uc->uc_sigmask, puc);
1320 }
1321
1322 #elif defined(__powerpc__)
1323
1324 /***********************************************************************
1325 * signal context platform-specific definitions
1326 * From Wine
1327 */
1328 #ifdef linux
1329 /* All Registers access - only for local access */
1330 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1331 /* Gpr Registers access */
1332 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1333 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1334 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1335 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1336 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1337 # define LR_sig(context) REG_sig(link, context) /* Link register */
1338 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1339 /* Float Registers access */
1340 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1341 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1342 /* Exception Registers access */
1343 # define DAR_sig(context) REG_sig(dar, context)
1344 # define DSISR_sig(context) REG_sig(dsisr, context)
1345 # define TRAP_sig(context) REG_sig(trap, context)
1346 #endif /* linux */
1347
1348 #ifdef __APPLE__
1349 # include <sys/ucontext.h>
1350 typedef struct ucontext SIGCONTEXT;
1351 /* All Registers access - only for local access */
1352 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1353 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1354 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1355 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1356 /* Gpr Registers access */
1357 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1358 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1359 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1360 # define CTR_sig(context) REG_sig(ctr, context)
1361 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1362 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1363 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1364 /* Float Registers access */
1365 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1366 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1367 /* Exception Registers access */
1368 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1369 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1370 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1371 #endif /* __APPLE__ */
1372
1373 int cpu_signal_handler(int host_signum, void *pinfo,
1374 void *puc)
1375 {
1376 siginfo_t *info = pinfo;
1377 struct ucontext *uc = puc;
1378 unsigned long pc;
1379 int is_write;
1380
1381 pc = IAR_sig(uc);
1382 is_write = 0;
1383 #if 0
1384 /* ppc 4xx case */
1385 if (DSISR_sig(uc) & 0x00800000)
1386 is_write = 1;
1387 #else
1388 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1389 is_write = 1;
1390 #endif
1391 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1392 is_write, &uc->uc_sigmask, puc);
1393 }
1394
1395 #elif defined(__alpha__)
1396
1397 int cpu_signal_handler(int host_signum, void *pinfo,
1398 void *puc)
1399 {
1400 siginfo_t *info = pinfo;
1401 struct ucontext *uc = puc;
1402 uint32_t *pc = uc->uc_mcontext.sc_pc;
1403 uint32_t insn = *pc;
1404 int is_write = 0;
1405
1406 /* XXX: need kernel patch to get write flag faster */
1407 switch (insn >> 26) {
1408 case 0x0d: // stw
1409 case 0x0e: // stb
1410 case 0x0f: // stq_u
1411 case 0x24: // stf
1412 case 0x25: // stg
1413 case 0x26: // sts
1414 case 0x27: // stt
1415 case 0x2c: // stl
1416 case 0x2d: // stq
1417 case 0x2e: // stl_c
1418 case 0x2f: // stq_c
1419 is_write = 1;
1420 }
1421
1422 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1423 is_write, &uc->uc_sigmask, puc);
1424 }
1425 #elif defined(__sparc__)
1426
1427 int cpu_signal_handler(int host_signum, void *pinfo,
1428 void *puc)
1429 {
1430 siginfo_t *info = pinfo;
1431 uint32_t *regs = (uint32_t *)(info + 1);
1432 void *sigmask = (regs + 20);
1433 unsigned long pc;
1434 int is_write;
1435 uint32_t insn;
1436
1437 /* XXX: is there a standard glibc define ? */
1438 pc = regs[1];
1439 /* XXX: need kernel patch to get write flag faster */
1440 is_write = 0;
1441 insn = *(uint32_t *)pc;
1442 if ((insn >> 30) == 3) {
1443 switch((insn >> 19) & 0x3f) {
1444 case 0x05: // stb
1445 case 0x06: // sth
1446 case 0x04: // st
1447 case 0x07: // std
1448 case 0x24: // stf
1449 case 0x27: // stdf
1450 case 0x25: // stfsr
1451 is_write = 1;
1452 break;
1453 }
1454 }
1455 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1456 is_write, sigmask, NULL);
1457 }
1458
1459 #elif defined(__arm__)
1460
1461 int cpu_signal_handler(int host_signum, void *pinfo,
1462 void *puc)
1463 {
1464 siginfo_t *info = pinfo;
1465 struct ucontext *uc = puc;
1466 unsigned long pc;
1467 int is_write;
1468
1469 pc = uc->uc_mcontext.gregs[R15];
1470 /* XXX: compute is_write */
1471 is_write = 0;
1472 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1473 is_write,
1474 &uc->uc_sigmask, puc);
1475 }
1476
1477 #elif defined(__mc68000)
1478
1479 int cpu_signal_handler(int host_signum, void *pinfo,
1480 void *puc)
1481 {
1482 siginfo_t *info = pinfo;
1483 struct ucontext *uc = puc;
1484 unsigned long pc;
1485 int is_write;
1486
1487 pc = uc->uc_mcontext.gregs[16];
1488 /* XXX: compute is_write */
1489 is_write = 0;
1490 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1491 is_write,
1492 &uc->uc_sigmask, puc);
1493 }
1494
1495 #elif defined(__ia64)
1496
1497 #ifndef __ISR_VALID
1498 /* This ought to be in <bits/siginfo.h>... */
1499 # define __ISR_VALID 1
1500 #endif
1501
1502 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1503 {
1504 siginfo_t *info = pinfo;
1505 struct ucontext *uc = puc;
1506 unsigned long ip;
1507 int is_write = 0;
1508
1509 ip = uc->uc_mcontext.sc_ip;
1510 switch (host_signum) {
1511 case SIGILL:
1512 case SIGFPE:
1513 case SIGSEGV:
1514 case SIGBUS:
1515 case SIGTRAP:
1516 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1517 /* ISR.W (write-access) is bit 33: */
1518 is_write = (info->si_isr >> 33) & 1;
1519 break;
1520
1521 default:
1522 break;
1523 }
1524 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1525 is_write,
1526 &uc->uc_sigmask, puc);
1527 }
1528
1529 #elif defined(__s390__)
1530
1531 int cpu_signal_handler(int host_signum, void *pinfo,
1532 void *puc)
1533 {
1534 siginfo_t *info = pinfo;
1535 struct ucontext *uc = puc;
1536 unsigned long pc;
1537 int is_write;
1538
1539 pc = uc->uc_mcontext.psw.addr;
1540 /* XXX: compute is_write */
1541 is_write = 0;
1542 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1543 is_write, &uc->uc_sigmask, puc);
1544 }
1545
1546 #elif defined(__mips__)
1547
1548 int cpu_signal_handler(int host_signum, struct siginfo *info,
1549 void *puc)
1550 {
1551 struct ucontext *uc = puc;
1552 greg_t pc = uc->uc_mcontext.pc;
1553 int is_write;
1554
1555 /* XXX: compute is_write */
1556 is_write = 0;
1557 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1558 is_write, &uc->uc_sigmask, puc);
1559 }
1560
1561 #else
1562
1563 #error host CPU specific signal handler needed
1564
1565 #endif
1566
1567 #endif /* !defined(CONFIG_SOFTMMU) */