]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
ef33aaa3e07e675abdeb28008e0593128bbc59aa
[qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef TARGET_I386
22 #include "exec-i386.h"
23 #endif
24 #ifdef TARGET_ARM
25 #include "exec-arm.h"
26 #endif
27
28 #include "disas.h"
29
30 //#define DEBUG_EXEC
31 //#define DEBUG_SIGNAL
32
33 #if defined(TARGET_ARM)
34 /* XXX: unify with i386 target */
35 void cpu_loop_exit(void)
36 {
37 longjmp(env->jmp_env, 1);
38 }
39 #endif
40
41 /* main execution loop */
42
43 int cpu_exec(CPUState *env1)
44 {
45 int saved_T0, saved_T1, saved_T2;
46 CPUState *saved_env;
47 #ifdef reg_EAX
48 int saved_EAX;
49 #endif
50 #ifdef reg_ECX
51 int saved_ECX;
52 #endif
53 #ifdef reg_EDX
54 int saved_EDX;
55 #endif
56 #ifdef reg_EBX
57 int saved_EBX;
58 #endif
59 #ifdef reg_ESP
60 int saved_ESP;
61 #endif
62 #ifdef reg_EBP
63 int saved_EBP;
64 #endif
65 #ifdef reg_ESI
66 int saved_ESI;
67 #endif
68 #ifdef reg_EDI
69 int saved_EDI;
70 #endif
71 #ifdef __sparc__
72 int saved_i7, tmp_T0;
73 #endif
74 int code_gen_size, ret, interrupt_request;
75 void (*gen_func)(void);
76 TranslationBlock *tb, **ptb;
77 uint8_t *tc_ptr, *cs_base, *pc;
78 unsigned int flags;
79
80 /* first we save global registers */
81 saved_T0 = T0;
82 saved_T1 = T1;
83 saved_T2 = T2;
84 saved_env = env;
85 env = env1;
86 #ifdef __sparc__
87 /* we also save i7 because longjmp may not restore it */
88 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
89 #endif
90
91 #if defined(TARGET_I386)
92 #ifdef reg_EAX
93 saved_EAX = EAX;
94 EAX = env->regs[R_EAX];
95 #endif
96 #ifdef reg_ECX
97 saved_ECX = ECX;
98 ECX = env->regs[R_ECX];
99 #endif
100 #ifdef reg_EDX
101 saved_EDX = EDX;
102 EDX = env->regs[R_EDX];
103 #endif
104 #ifdef reg_EBX
105 saved_EBX = EBX;
106 EBX = env->regs[R_EBX];
107 #endif
108 #ifdef reg_ESP
109 saved_ESP = ESP;
110 ESP = env->regs[R_ESP];
111 #endif
112 #ifdef reg_EBP
113 saved_EBP = EBP;
114 EBP = env->regs[R_EBP];
115 #endif
116 #ifdef reg_ESI
117 saved_ESI = ESI;
118 ESI = env->regs[R_ESI];
119 #endif
120 #ifdef reg_EDI
121 saved_EDI = EDI;
122 EDI = env->regs[R_EDI];
123 #endif
124
125 /* put eflags in CPU temporary format */
126 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
127 DF = 1 - (2 * ((env->eflags >> 10) & 1));
128 CC_OP = CC_OP_EFLAGS;
129 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
130 #elif defined(TARGET_ARM)
131 {
132 unsigned int psr;
133 psr = env->cpsr;
134 env->CF = (psr >> 29) & 1;
135 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
136 env->VF = (psr << 3) & 0x80000000;
137 env->cpsr = psr & ~0xf0000000;
138 }
139 #else
140 #error unsupported target CPU
141 #endif
142 env->exception_index = -1;
143
144 /* prepare setjmp context for exception handling */
145 for(;;) {
146 if (setjmp(env->jmp_env) == 0) {
147 /* if an exception is pending, we execute it here */
148 if (env->exception_index >= 0) {
149 if (env->exception_index >= EXCP_INTERRUPT) {
150 /* exit request from the cpu execution loop */
151 ret = env->exception_index;
152 break;
153 } else if (env->user_mode_only) {
154 /* if user mode only, we simulate a fake exception
155 which will be hanlded outside the cpu execution
156 loop */
157 #if defined(TARGET_I386)
158 do_interrupt_user(env->exception_index,
159 env->exception_is_int,
160 env->error_code,
161 env->exception_next_eip);
162 #endif
163 ret = env->exception_index;
164 break;
165 } else {
166 #if defined(TARGET_I386)
167 /* simulate a real cpu exception. On i386, it can
168 trigger new exceptions, but we do not handle
169 double or triple faults yet. */
170 do_interrupt(env->exception_index,
171 env->exception_is_int,
172 env->error_code,
173 env->exception_next_eip);
174 #endif
175 }
176 env->exception_index = -1;
177 }
178 T0 = 0; /* force lookup of first TB */
179 for(;;) {
180 #ifdef __sparc__
181 /* g1 can be modified by some libc? functions */
182 tmp_T0 = T0;
183 #endif
184 interrupt_request = env->interrupt_request;
185 if (interrupt_request) {
186 #if defined(TARGET_I386)
187 /* if hardware interrupt pending, we execute it */
188 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189 (env->eflags & IF_MASK)) {
190 int intno;
191 intno = cpu_x86_get_pic_interrupt(env);
192 if (loglevel) {
193 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
194 }
195 do_interrupt(intno, 0, 0, 0);
196 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
197 /* ensure that no TB jump will be modified as
198 the program flow was changed */
199 #ifdef __sparc__
200 tmp_T0 = 0;
201 #else
202 T0 = 0;
203 #endif
204 }
205 #endif
206 if (interrupt_request & CPU_INTERRUPT_EXIT) {
207 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
208 env->exception_index = EXCP_INTERRUPT;
209 cpu_loop_exit();
210 }
211 }
212 #ifdef DEBUG_EXEC
213 if (loglevel) {
214 #if defined(TARGET_I386)
215 /* restore flags in standard format */
216 env->regs[R_EAX] = EAX;
217 env->regs[R_EBX] = EBX;
218 env->regs[R_ECX] = ECX;
219 env->regs[R_EDX] = EDX;
220 env->regs[R_ESI] = ESI;
221 env->regs[R_EDI] = EDI;
222 env->regs[R_EBP] = EBP;
223 env->regs[R_ESP] = ESP;
224 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
225 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
226 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
227 #elif defined(TARGET_ARM)
228 env->cpsr = compute_cpsr();
229 cpu_arm_dump_state(env, logfile, 0);
230 env->cpsr &= ~0xf0000000;
231 #else
232 #error unsupported target CPU
233 #endif
234 }
235 #endif
236 /* we compute the CPU state. We assume it will not
237 change during the whole generated block. */
238 #if defined(TARGET_I386)
239 flags = (env->segs[R_CS].flags & DESC_B_MASK)
240 >> (DESC_B_SHIFT - GEN_FLAG_CODE32_SHIFT);
241 flags |= (env->segs[R_SS].flags & DESC_B_MASK)
242 >> (DESC_B_SHIFT - GEN_FLAG_SS32_SHIFT);
243 flags |= (((unsigned long)env->segs[R_DS].base |
244 (unsigned long)env->segs[R_ES].base |
245 (unsigned long)env->segs[R_SS].base) != 0) <<
246 GEN_FLAG_ADDSEG_SHIFT;
247 if (!(env->eflags & VM_MASK)) {
248 flags |= (env->segs[R_CS].selector & 3) << GEN_FLAG_CPL_SHIFT;
249 } else {
250 /* NOTE: a dummy CPL is kept */
251 flags |= (1 << GEN_FLAG_VM_SHIFT);
252 flags |= (3 << GEN_FLAG_CPL_SHIFT);
253 }
254 flags |= (env->eflags & (IOPL_MASK | TF_MASK));
255 cs_base = env->segs[R_CS].base;
256 pc = cs_base + env->eip;
257 #elif defined(TARGET_ARM)
258 flags = 0;
259 cs_base = 0;
260 pc = (uint8_t *)env->regs[15];
261 #else
262 #error unsupported CPU
263 #endif
264 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
265 flags);
266 if (!tb) {
267 spin_lock(&tb_lock);
268 /* if no translated code available, then translate it now */
269 tb = tb_alloc((unsigned long)pc);
270 if (!tb) {
271 /* flush must be done */
272 tb_flush();
273 /* cannot fail at this point */
274 tb = tb_alloc((unsigned long)pc);
275 /* don't forget to invalidate previous TB info */
276 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
277 T0 = 0;
278 }
279 tc_ptr = code_gen_ptr;
280 tb->tc_ptr = tc_ptr;
281 tb->cs_base = (unsigned long)cs_base;
282 tb->flags = flags;
283 ret = cpu_gen_code(tb, CODE_GEN_MAX_SIZE, &code_gen_size);
284 #if defined(TARGET_I386)
285 /* XXX: suppress that, this is incorrect */
286 /* if invalid instruction, signal it */
287 if (ret != 0) {
288 /* NOTE: the tb is allocated but not linked, so we
289 can leave it */
290 spin_unlock(&tb_lock);
291 raise_exception(EXCP06_ILLOP);
292 }
293 #endif
294 *ptb = tb;
295 tb->hash_next = NULL;
296 tb_link(tb);
297 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
298 spin_unlock(&tb_lock);
299 }
300 #ifdef DEBUG_EXEC
301 if (loglevel) {
302 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
303 (long)tb->tc_ptr, (long)tb->pc,
304 lookup_symbol((void *)tb->pc));
305 }
306 #endif
307 #ifdef __sparc__
308 T0 = tmp_T0;
309 #endif
310 /* see if we can patch the calling TB. XXX: remove TF test */
311 if (T0 != 0
312 #if defined(TARGET_I386)
313 && !(env->eflags & TF_MASK)
314 #endif
315 ) {
316 spin_lock(&tb_lock);
317 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
318 spin_unlock(&tb_lock);
319 }
320 tc_ptr = tb->tc_ptr;
321 env->current_tb = tb;
322 /* execute the generated code */
323 gen_func = (void *)tc_ptr;
324 #if defined(__sparc__)
325 __asm__ __volatile__("call %0\n\t"
326 "mov %%o7,%%i0"
327 : /* no outputs */
328 : "r" (gen_func)
329 : "i0", "i1", "i2", "i3", "i4", "i5");
330 #elif defined(__arm__)
331 asm volatile ("mov pc, %0\n\t"
332 ".global exec_loop\n\t"
333 "exec_loop:\n\t"
334 : /* no outputs */
335 : "r" (gen_func)
336 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
337 #else
338 gen_func();
339 #endif
340 env->current_tb = NULL;
341 }
342 } else {
343 }
344 } /* for(;;) */
345
346
347 #if defined(TARGET_I386)
348 /* restore flags in standard format */
349 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
350
351 /* restore global registers */
352 #ifdef reg_EAX
353 EAX = saved_EAX;
354 #endif
355 #ifdef reg_ECX
356 ECX = saved_ECX;
357 #endif
358 #ifdef reg_EDX
359 EDX = saved_EDX;
360 #endif
361 #ifdef reg_EBX
362 EBX = saved_EBX;
363 #endif
364 #ifdef reg_ESP
365 ESP = saved_ESP;
366 #endif
367 #ifdef reg_EBP
368 EBP = saved_EBP;
369 #endif
370 #ifdef reg_ESI
371 ESI = saved_ESI;
372 #endif
373 #ifdef reg_EDI
374 EDI = saved_EDI;
375 #endif
376 #elif defined(TARGET_ARM)
377 env->cpsr = compute_cpsr();
378 #else
379 #error unsupported target CPU
380 #endif
381 #ifdef __sparc__
382 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
383 #endif
384 T0 = saved_T0;
385 T1 = saved_T1;
386 T2 = saved_T2;
387 env = saved_env;
388 return ret;
389 }
390
391 #if defined(TARGET_I386)
392
393 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
394 {
395 CPUX86State *saved_env;
396
397 saved_env = env;
398 env = s;
399 if (env->eflags & VM_MASK) {
400 SegmentCache *sc;
401 selector &= 0xffff;
402 sc = &env->segs[seg_reg];
403 /* NOTE: in VM86 mode, limit and flags are never reloaded,
404 so we must load them here */
405 sc->base = (void *)(selector << 4);
406 sc->limit = 0xffff;
407 sc->flags = 0;
408 sc->selector = selector;
409 } else {
410 load_seg(seg_reg, selector, 0);
411 }
412 env = saved_env;
413 }
414
415 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
416 {
417 CPUX86State *saved_env;
418
419 saved_env = env;
420 env = s;
421
422 helper_fsave(ptr, data32);
423
424 env = saved_env;
425 }
426
427 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
428 {
429 CPUX86State *saved_env;
430
431 saved_env = env;
432 env = s;
433
434 helper_frstor(ptr, data32);
435
436 env = saved_env;
437 }
438
439 #endif /* TARGET_I386 */
440
441 #undef EAX
442 #undef ECX
443 #undef EDX
444 #undef EBX
445 #undef ESP
446 #undef EBP
447 #undef ESI
448 #undef EDI
449 #undef EIP
450 #include <signal.h>
451 #include <sys/ucontext.h>
452
453 #if defined(TARGET_I386)
454
455 /* 'pc' is the host PC at which the exception was raised. 'address' is
456 the effective address of the memory exception. 'is_write' is 1 if a
457 write caused the exception and otherwise 0'. 'old_set' is the
458 signal set which should be restored */
459 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
460 int is_write, sigset_t *old_set)
461 {
462 TranslationBlock *tb;
463 int ret;
464
465 if (cpu_single_env)
466 env = cpu_single_env; /* XXX: find a correct solution for multithread */
467 #if defined(DEBUG_SIGNAL)
468 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
469 pc, address, is_write, *(unsigned long *)old_set);
470 #endif
471 /* XXX: locking issue */
472 if (is_write && page_unprotect(address)) {
473 return 1;
474 }
475 /* see if it is an MMU fault */
476 ret = cpu_x86_handle_mmu_fault(env, address, is_write);
477 if (ret < 0)
478 return 0; /* not an MMU fault */
479 if (ret == 0)
480 return 1; /* the MMU fault was handled without causing real CPU fault */
481 /* now we have a real cpu fault */
482 tb = tb_find_pc(pc);
483 if (tb) {
484 /* the PC is inside the translated code. It means that we have
485 a virtual CPU fault */
486 cpu_restore_state(tb, env, pc);
487 }
488 #if 0
489 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
490 env->eip, env->cr[2], env->error_code);
491 #endif
492 /* we restore the process signal mask as the sigreturn should
493 do it (XXX: use sigsetjmp) */
494 sigprocmask(SIG_SETMASK, old_set, NULL);
495 raise_exception_err(EXCP0E_PAGE, env->error_code);
496 /* never comes here */
497 return 1;
498 }
499
500 #elif defined(TARGET_ARM)
501 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
502 int is_write, sigset_t *old_set)
503 {
504 /* XXX: do more */
505 return 0;
506 }
507 #else
508 #error unsupported target CPU
509 #endif
510
511 #if defined(__i386__)
512
513 int cpu_signal_handler(int host_signum, struct siginfo *info,
514 void *puc)
515 {
516 struct ucontext *uc = puc;
517 unsigned long pc;
518
519 #ifndef REG_EIP
520 /* for glibc 2.1 */
521 #define REG_EIP EIP
522 #define REG_ERR ERR
523 #define REG_TRAPNO TRAPNO
524 #endif
525 pc = uc->uc_mcontext.gregs[REG_EIP];
526 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
527 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
528 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
529 &uc->uc_sigmask);
530 }
531
532 #elif defined(__powerpc)
533
534 int cpu_signal_handler(int host_signum, struct siginfo *info,
535 void *puc)
536 {
537 struct ucontext *uc = puc;
538 struct pt_regs *regs = uc->uc_mcontext.regs;
539 unsigned long pc;
540 int is_write;
541
542 pc = regs->nip;
543 is_write = 0;
544 #if 0
545 /* ppc 4xx case */
546 if (regs->dsisr & 0x00800000)
547 is_write = 1;
548 #else
549 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
550 is_write = 1;
551 #endif
552 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
553 is_write, &uc->uc_sigmask);
554 }
555
556 #elif defined(__alpha__)
557
558 int cpu_signal_handler(int host_signum, struct siginfo *info,
559 void *puc)
560 {
561 struct ucontext *uc = puc;
562 uint32_t *pc = uc->uc_mcontext.sc_pc;
563 uint32_t insn = *pc;
564 int is_write = 0;
565
566 /* XXX: need kernel patch to get write flag faster */
567 switch (insn >> 26) {
568 case 0x0d: // stw
569 case 0x0e: // stb
570 case 0x0f: // stq_u
571 case 0x24: // stf
572 case 0x25: // stg
573 case 0x26: // sts
574 case 0x27: // stt
575 case 0x2c: // stl
576 case 0x2d: // stq
577 case 0x2e: // stl_c
578 case 0x2f: // stq_c
579 is_write = 1;
580 }
581
582 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
583 is_write, &uc->uc_sigmask);
584 }
585 #elif defined(__sparc__)
586
587 int cpu_signal_handler(int host_signum, struct siginfo *info,
588 void *puc)
589 {
590 uint32_t *regs = (uint32_t *)(info + 1);
591 void *sigmask = (regs + 20);
592 unsigned long pc;
593 int is_write;
594 uint32_t insn;
595
596 /* XXX: is there a standard glibc define ? */
597 pc = regs[1];
598 /* XXX: need kernel patch to get write flag faster */
599 is_write = 0;
600 insn = *(uint32_t *)pc;
601 if ((insn >> 30) == 3) {
602 switch((insn >> 19) & 0x3f) {
603 case 0x05: // stb
604 case 0x06: // sth
605 case 0x04: // st
606 case 0x07: // std
607 case 0x24: // stf
608 case 0x27: // stdf
609 case 0x25: // stfsr
610 is_write = 1;
611 break;
612 }
613 }
614 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
615 is_write, sigmask);
616 }
617
618 #elif defined(__arm__)
619
620 int cpu_signal_handler(int host_signum, struct siginfo *info,
621 void *puc)
622 {
623 struct ucontext *uc = puc;
624 unsigned long pc;
625 int is_write;
626
627 pc = uc->uc_mcontext.gregs[R15];
628 /* XXX: compute is_write */
629 is_write = 0;
630 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
631 is_write,
632 &uc->uc_sigmask);
633 }
634
635 #else
636
637 #error host CPU specific signal handler needed
638
639 #endif