]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
target-s390x: Use cpu_exec_interrupt qom hook
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "tcg.h"
24 #include "qemu/atomic.h"
25 #include "sysemu/qtest.h"
26 #include "qemu/timer.h"
27
28 /* -icount align implementation. */
29
30 typedef struct SyncClocks {
31 int64_t diff_clk;
32 int64_t last_cpu_icount;
33 int64_t realtime_clock;
34 } SyncClocks;
35
36 #if !defined(CONFIG_USER_ONLY)
37 /* Allow the guest to have a max 3ms advance.
38 * The difference between the 2 clocks could therefore
39 * oscillate around 0.
40 */
41 #define VM_CLOCK_ADVANCE 3000000
42 #define THRESHOLD_REDUCE 1.5
43 #define MAX_DELAY_PRINT_RATE 2000000000LL
44 #define MAX_NB_PRINTS 100
45
46 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
47 {
48 int64_t cpu_icount;
49
50 if (!icount_align_option) {
51 return;
52 }
53
54 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
55 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
56 sc->last_cpu_icount = cpu_icount;
57
58 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
59 #ifndef _WIN32
60 struct timespec sleep_delay, rem_delay;
61 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
62 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
63 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
64 sc->diff_clk -= (sleep_delay.tv_sec - rem_delay.tv_sec) * 1000000000LL;
65 sc->diff_clk -= sleep_delay.tv_nsec - rem_delay.tv_nsec;
66 } else {
67 sc->diff_clk = 0;
68 }
69 #else
70 Sleep(sc->diff_clk / SCALE_MS);
71 sc->diff_clk = 0;
72 #endif
73 }
74 }
75
76 static void print_delay(const SyncClocks *sc)
77 {
78 static float threshold_delay;
79 static int64_t last_realtime_clock;
80 static int nb_prints;
81
82 if (icount_align_option &&
83 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
84 nb_prints < MAX_NB_PRINTS) {
85 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
86 (-sc->diff_clk / (float)1000000000LL <
87 (threshold_delay - THRESHOLD_REDUCE))) {
88 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
89 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
90 threshold_delay - 1,
91 threshold_delay);
92 nb_prints++;
93 last_realtime_clock = sc->realtime_clock;
94 }
95 }
96 }
97
98 static void init_delay_params(SyncClocks *sc,
99 const CPUState *cpu)
100 {
101 if (!icount_align_option) {
102 return;
103 }
104 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
105 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
106 sc->realtime_clock +
107 cpu_get_clock_offset();
108 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
109 if (sc->diff_clk < max_delay) {
110 max_delay = sc->diff_clk;
111 }
112 if (sc->diff_clk > max_advance) {
113 max_advance = sc->diff_clk;
114 }
115
116 /* Print every 2s max if the guest is late. We limit the number
117 of printed messages to NB_PRINT_MAX(currently 100) */
118 print_delay(sc);
119 }
120 #else
121 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
122 {
123 }
124
125 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
126 {
127 }
128 #endif /* CONFIG USER ONLY */
129
130 void cpu_loop_exit(CPUState *cpu)
131 {
132 cpu->current_tb = NULL;
133 siglongjmp(cpu->jmp_env, 1);
134 }
135
136 /* exit the current TB from a signal handler. The host registers are
137 restored in a state compatible with the CPU emulator
138 */
139 #if defined(CONFIG_SOFTMMU)
140 void cpu_resume_from_signal(CPUState *cpu, void *puc)
141 {
142 /* XXX: restore cpu registers saved in host registers */
143
144 cpu->exception_index = -1;
145 siglongjmp(cpu->jmp_env, 1);
146 }
147 #endif
148
149 /* Execute a TB, and fix up the CPU state afterwards if necessary */
150 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
151 {
152 CPUArchState *env = cpu->env_ptr;
153 uintptr_t next_tb;
154
155 #if defined(DEBUG_DISAS)
156 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
157 #if defined(TARGET_I386)
158 log_cpu_state(cpu, CPU_DUMP_CCOP);
159 #elif defined(TARGET_M68K)
160 /* ??? Should not modify env state for dumping. */
161 cpu_m68k_flush_flags(env, env->cc_op);
162 env->cc_op = CC_OP_FLAGS;
163 env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4);
164 log_cpu_state(cpu, 0);
165 #else
166 log_cpu_state(cpu, 0);
167 #endif
168 }
169 #endif /* DEBUG_DISAS */
170
171 next_tb = tcg_qemu_tb_exec(env, tb_ptr);
172 trace_exec_tb_exit((void *) (next_tb & ~TB_EXIT_MASK),
173 next_tb & TB_EXIT_MASK);
174
175 if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) {
176 /* We didn't start executing this TB (eg because the instruction
177 * counter hit zero); we must restore the guest PC to the address
178 * of the start of the TB.
179 */
180 CPUClass *cc = CPU_GET_CLASS(cpu);
181 TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
182 if (cc->synchronize_from_tb) {
183 cc->synchronize_from_tb(cpu, tb);
184 } else {
185 assert(cc->set_pc);
186 cc->set_pc(cpu, tb->pc);
187 }
188 }
189 if ((next_tb & TB_EXIT_MASK) == TB_EXIT_REQUESTED) {
190 /* We were asked to stop executing TBs (probably a pending
191 * interrupt. We've now stopped, so clear the flag.
192 */
193 cpu->tcg_exit_req = 0;
194 }
195 return next_tb;
196 }
197
198 /* Execute the code without caching the generated code. An interpreter
199 could be used if available. */
200 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
201 TranslationBlock *orig_tb)
202 {
203 CPUState *cpu = ENV_GET_CPU(env);
204 TranslationBlock *tb;
205
206 /* Should never happen.
207 We only end up here when an existing TB is too long. */
208 if (max_cycles > CF_COUNT_MASK)
209 max_cycles = CF_COUNT_MASK;
210
211 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
212 max_cycles);
213 cpu->current_tb = tb;
214 /* execute the generated code */
215 trace_exec_tb_nocache(tb, tb->pc);
216 cpu_tb_exec(cpu, tb->tc_ptr);
217 cpu->current_tb = NULL;
218 tb_phys_invalidate(tb, -1);
219 tb_free(tb);
220 }
221
222 static TranslationBlock *tb_find_slow(CPUArchState *env,
223 target_ulong pc,
224 target_ulong cs_base,
225 uint64_t flags)
226 {
227 CPUState *cpu = ENV_GET_CPU(env);
228 TranslationBlock *tb, **ptb1;
229 unsigned int h;
230 tb_page_addr_t phys_pc, phys_page1;
231 target_ulong virt_page2;
232
233 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
234
235 /* find translated block using physical mappings */
236 phys_pc = get_page_addr_code(env, pc);
237 phys_page1 = phys_pc & TARGET_PAGE_MASK;
238 h = tb_phys_hash_func(phys_pc);
239 ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h];
240 for(;;) {
241 tb = *ptb1;
242 if (!tb)
243 goto not_found;
244 if (tb->pc == pc &&
245 tb->page_addr[0] == phys_page1 &&
246 tb->cs_base == cs_base &&
247 tb->flags == flags) {
248 /* check next page if needed */
249 if (tb->page_addr[1] != -1) {
250 tb_page_addr_t phys_page2;
251
252 virt_page2 = (pc & TARGET_PAGE_MASK) +
253 TARGET_PAGE_SIZE;
254 phys_page2 = get_page_addr_code(env, virt_page2);
255 if (tb->page_addr[1] == phys_page2)
256 goto found;
257 } else {
258 goto found;
259 }
260 }
261 ptb1 = &tb->phys_hash_next;
262 }
263 not_found:
264 /* if no translated code available, then translate it now */
265 tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
266
267 found:
268 /* Move the last found TB to the head of the list */
269 if (likely(*ptb1)) {
270 *ptb1 = tb->phys_hash_next;
271 tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h];
272 tcg_ctx.tb_ctx.tb_phys_hash[h] = tb;
273 }
274 /* we add the TB in the virtual pc hash table */
275 cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
276 return tb;
277 }
278
279 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
280 {
281 CPUState *cpu = ENV_GET_CPU(env);
282 TranslationBlock *tb;
283 target_ulong cs_base, pc;
284 int flags;
285
286 /* we record a subset of the CPU state. It will
287 always be the same before a given translated block
288 is executed. */
289 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
290 tb = cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
291 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
292 tb->flags != flags)) {
293 tb = tb_find_slow(env, pc, cs_base, flags);
294 }
295 return tb;
296 }
297
298 static void cpu_handle_debug_exception(CPUArchState *env)
299 {
300 CPUState *cpu = ENV_GET_CPU(env);
301 CPUClass *cc = CPU_GET_CLASS(cpu);
302 CPUWatchpoint *wp;
303
304 if (!cpu->watchpoint_hit) {
305 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
306 wp->flags &= ~BP_WATCHPOINT_HIT;
307 }
308 }
309
310 cc->debug_excp_handler(cpu);
311 }
312
313 /* main execution loop */
314
315 volatile sig_atomic_t exit_request;
316
317 int cpu_exec(CPUArchState *env)
318 {
319 CPUState *cpu = ENV_GET_CPU(env);
320 CPUClass *cc = CPU_GET_CLASS(cpu);
321 #ifdef TARGET_I386
322 X86CPU *x86_cpu = X86_CPU(cpu);
323 #endif
324 int ret, interrupt_request;
325 TranslationBlock *tb;
326 uint8_t *tc_ptr;
327 uintptr_t next_tb;
328 SyncClocks sc;
329
330 /* This must be volatile so it is not trashed by longjmp() */
331 volatile bool have_tb_lock = false;
332
333 if (cpu->halted) {
334 if (!cpu_has_work(cpu)) {
335 return EXCP_HALTED;
336 }
337
338 cpu->halted = 0;
339 }
340
341 current_cpu = cpu;
342
343 /* As long as current_cpu is null, up to the assignment just above,
344 * requests by other threads to exit the execution loop are expected to
345 * be issued using the exit_request global. We must make sure that our
346 * evaluation of the global value is performed past the current_cpu
347 * value transition point, which requires a memory barrier as well as
348 * an instruction scheduling constraint on modern architectures. */
349 smp_mb();
350
351 if (unlikely(exit_request)) {
352 cpu->exit_request = 1;
353 }
354
355 cc->cpu_exec_enter(cpu);
356 cpu->exception_index = -1;
357
358 /* Calculate difference between guest clock and host clock.
359 * This delay includes the delay of the last cycle, so
360 * what we have to do is sleep until it is 0. As for the
361 * advance/delay we gain here, we try to fix it next time.
362 */
363 init_delay_params(&sc, cpu);
364
365 /* prepare setjmp context for exception handling */
366 for(;;) {
367 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
368 /* if an exception is pending, we execute it here */
369 if (cpu->exception_index >= 0) {
370 if (cpu->exception_index >= EXCP_INTERRUPT) {
371 /* exit request from the cpu execution loop */
372 ret = cpu->exception_index;
373 if (ret == EXCP_DEBUG) {
374 cpu_handle_debug_exception(env);
375 }
376 break;
377 } else {
378 #if defined(CONFIG_USER_ONLY)
379 /* if user mode only, we simulate a fake exception
380 which will be handled outside the cpu execution
381 loop */
382 #if defined(TARGET_I386)
383 cc->do_interrupt(cpu);
384 #endif
385 ret = cpu->exception_index;
386 break;
387 #else
388 cc->do_interrupt(cpu);
389 cpu->exception_index = -1;
390 #endif
391 }
392 }
393
394 next_tb = 0; /* force lookup of first TB */
395 for(;;) {
396 interrupt_request = cpu->interrupt_request;
397 if (unlikely(interrupt_request)) {
398 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
399 /* Mask out external interrupts for this step. */
400 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
401 }
402 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
403 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
404 cpu->exception_index = EXCP_DEBUG;
405 cpu_loop_exit(cpu);
406 }
407 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
408 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
409 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || \
410 defined(TARGET_UNICORE32) || defined(TARGET_TRICORE)
411 if (interrupt_request & CPU_INTERRUPT_HALT) {
412 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
413 cpu->halted = 1;
414 cpu->exception_index = EXCP_HLT;
415 cpu_loop_exit(cpu);
416 }
417 #endif
418 #if defined(TARGET_I386)
419 if (interrupt_request & CPU_INTERRUPT_INIT) {
420 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0);
421 do_cpu_init(x86_cpu);
422 cpu->exception_index = EXCP_HALTED;
423 cpu_loop_exit(cpu);
424 }
425 #else
426 if (interrupt_request & CPU_INTERRUPT_RESET) {
427 cpu_reset(cpu);
428 }
429 #endif
430 #if defined(TARGET_I386)
431 #if !defined(CONFIG_USER_ONLY)
432 if (interrupt_request & CPU_INTERRUPT_POLL) {
433 cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
434 apic_poll_irq(x86_cpu->apic_state);
435 }
436 #endif
437 if (interrupt_request & CPU_INTERRUPT_SIPI) {
438 do_cpu_sipi(x86_cpu);
439 } else if (env->hflags2 & HF2_GIF_MASK) {
440 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
441 !(env->hflags & HF_SMM_MASK)) {
442 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
443 0);
444 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
445 do_smm_enter(x86_cpu);
446 next_tb = 0;
447 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
448 !(env->hflags2 & HF2_NMI_MASK)) {
449 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
450 env->hflags2 |= HF2_NMI_MASK;
451 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
452 next_tb = 0;
453 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
454 cpu->interrupt_request &= ~CPU_INTERRUPT_MCE;
455 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
456 next_tb = 0;
457 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
458 (((env->hflags2 & HF2_VINTR_MASK) &&
459 (env->hflags2 & HF2_HIF_MASK)) ||
460 (!(env->hflags2 & HF2_VINTR_MASK) &&
461 (env->eflags & IF_MASK &&
462 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
463 int intno;
464 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
465 0);
466 cpu->interrupt_request &= ~(CPU_INTERRUPT_HARD |
467 CPU_INTERRUPT_VIRQ);
468 intno = cpu_get_pic_interrupt(env);
469 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
470 do_interrupt_x86_hardirq(env, intno, 1);
471 /* ensure that no TB jump will be modified as
472 the program flow was changed */
473 next_tb = 0;
474 #if !defined(CONFIG_USER_ONLY)
475 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
476 (env->eflags & IF_MASK) &&
477 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
478 int intno;
479 /* FIXME: this should respect TPR */
480 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
481 0);
482 intno = ldl_phys(cpu->as,
483 env->vm_vmcb
484 + offsetof(struct vmcb,
485 control.int_vector));
486 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
487 do_interrupt_x86_hardirq(env, intno, 1);
488 cpu->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
489 next_tb = 0;
490 #endif
491 }
492 }
493 #elif defined(TARGET_PPC)
494 if (interrupt_request & CPU_INTERRUPT_HARD) {
495 ppc_hw_interrupt(env);
496 if (env->pending_interrupts == 0) {
497 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
498 }
499 next_tb = 0;
500 }
501 #elif defined(TARGET_LM32)
502 if ((interrupt_request & CPU_INTERRUPT_HARD)
503 && (env->ie & IE_IE)) {
504 cpu->exception_index = EXCP_IRQ;
505 cc->do_interrupt(cpu);
506 next_tb = 0;
507 }
508 #elif defined(TARGET_MICROBLAZE)
509 if ((interrupt_request & CPU_INTERRUPT_HARD)
510 && (env->sregs[SR_MSR] & MSR_IE)
511 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
512 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
513 cpu->exception_index = EXCP_IRQ;
514 cc->do_interrupt(cpu);
515 next_tb = 0;
516 }
517 #elif defined(TARGET_MIPS)
518 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
519 cpu_mips_hw_interrupts_pending(env)) {
520 /* Raise it */
521 cpu->exception_index = EXCP_EXT_INTERRUPT;
522 env->error_code = 0;
523 cc->do_interrupt(cpu);
524 next_tb = 0;
525 }
526 #elif defined(TARGET_TRICORE)
527 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
528 cc->do_interrupt(cpu);
529 next_tb = 0;
530 }
531
532 #elif defined(TARGET_OPENRISC)
533 {
534 int idx = -1;
535 if ((interrupt_request & CPU_INTERRUPT_HARD)
536 && (env->sr & SR_IEE)) {
537 idx = EXCP_INT;
538 }
539 if ((interrupt_request & CPU_INTERRUPT_TIMER)
540 && (env->sr & SR_TEE)) {
541 idx = EXCP_TICK;
542 }
543 if (idx >= 0) {
544 cpu->exception_index = idx;
545 cc->do_interrupt(cpu);
546 next_tb = 0;
547 }
548 }
549 #elif defined(TARGET_SPARC)
550 if (interrupt_request & CPU_INTERRUPT_HARD) {
551 if (cpu_interrupts_enabled(env) &&
552 env->interrupt_index > 0) {
553 int pil = env->interrupt_index & 0xf;
554 int type = env->interrupt_index & 0xf0;
555
556 if (((type == TT_EXTINT) &&
557 cpu_pil_allowed(env, pil)) ||
558 type != TT_EXTINT) {
559 cpu->exception_index = env->interrupt_index;
560 cc->do_interrupt(cpu);
561 next_tb = 0;
562 }
563 }
564 }
565 #elif defined(TARGET_ARM)
566 if (interrupt_request & CPU_INTERRUPT_FIQ
567 && !(env->daif & PSTATE_F)) {
568 cpu->exception_index = EXCP_FIQ;
569 cc->do_interrupt(cpu);
570 next_tb = 0;
571 }
572 /* ARMv7-M interrupt return works by loading a magic value
573 into the PC. On real hardware the load causes the
574 return to occur. The qemu implementation performs the
575 jump normally, then does the exception return when the
576 CPU tries to execute code at the magic address.
577 This will cause the magic PC value to be pushed to
578 the stack if an interrupt occurred at the wrong time.
579 We avoid this by disabling interrupts when
580 pc contains a magic address. */
581 if (interrupt_request & CPU_INTERRUPT_HARD
582 && !(env->daif & PSTATE_I)
583 && (!IS_M(env) || env->regs[15] < 0xfffffff0)) {
584 cpu->exception_index = EXCP_IRQ;
585 cc->do_interrupt(cpu);
586 next_tb = 0;
587 }
588 #elif defined(TARGET_UNICORE32)
589 if (interrupt_request & CPU_INTERRUPT_HARD
590 && !(env->uncached_asr & ASR_I)) {
591 cpu->exception_index = UC32_EXCP_INTR;
592 cc->do_interrupt(cpu);
593 next_tb = 0;
594 }
595 #elif defined(TARGET_SH4)
596 if (interrupt_request & CPU_INTERRUPT_HARD) {
597 cc->do_interrupt(cpu);
598 next_tb = 0;
599 }
600 #elif defined(TARGET_ALPHA)
601 {
602 int idx = -1;
603 /* ??? This hard-codes the OSF/1 interrupt levels. */
604 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
605 case 0 ... 3:
606 if (interrupt_request & CPU_INTERRUPT_HARD) {
607 idx = EXCP_DEV_INTERRUPT;
608 }
609 /* FALLTHRU */
610 case 4:
611 if (interrupt_request & CPU_INTERRUPT_TIMER) {
612 idx = EXCP_CLK_INTERRUPT;
613 }
614 /* FALLTHRU */
615 case 5:
616 if (interrupt_request & CPU_INTERRUPT_SMP) {
617 idx = EXCP_SMP_INTERRUPT;
618 }
619 /* FALLTHRU */
620 case 6:
621 if (interrupt_request & CPU_INTERRUPT_MCHK) {
622 idx = EXCP_MCHK;
623 }
624 }
625 if (idx >= 0) {
626 cpu->exception_index = idx;
627 env->error_code = 0;
628 cc->do_interrupt(cpu);
629 next_tb = 0;
630 }
631 }
632 #elif defined(TARGET_CRIS)
633 if (interrupt_request & CPU_INTERRUPT_HARD
634 && (env->pregs[PR_CCS] & I_FLAG)
635 && !env->locked_irq) {
636 cpu->exception_index = EXCP_IRQ;
637 cc->do_interrupt(cpu);
638 next_tb = 0;
639 }
640 if (interrupt_request & CPU_INTERRUPT_NMI) {
641 unsigned int m_flag_archval;
642 if (env->pregs[PR_VR] < 32) {
643 m_flag_archval = M_FLAG_V10;
644 } else {
645 m_flag_archval = M_FLAG_V32;
646 }
647 if ((env->pregs[PR_CCS] & m_flag_archval)) {
648 cpu->exception_index = EXCP_NMI;
649 cc->do_interrupt(cpu);
650 next_tb = 0;
651 }
652 }
653 #elif defined(TARGET_M68K)
654 if (interrupt_request & CPU_INTERRUPT_HARD
655 && ((env->sr & SR_I) >> SR_I_SHIFT)
656 < env->pending_level) {
657 /* Real hardware gets the interrupt vector via an
658 IACK cycle at this point. Current emulated
659 hardware doesn't rely on this, so we
660 provide/save the vector when the interrupt is
661 first signalled. */
662 cpu->exception_index = env->pending_vector;
663 do_interrupt_m68k_hardirq(env);
664 next_tb = 0;
665 }
666 #endif
667 /* The target hook has 3 exit conditions:
668 False when the interrupt isn't processed,
669 True when it is, and we should restart on a new TB,
670 and via longjmp via cpu_loop_exit. */
671 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
672 next_tb = 0;
673 }
674 /* Don't use the cached interrupt_request value,
675 do_interrupt may have updated the EXITTB flag. */
676 if (cpu->interrupt_request & CPU_INTERRUPT_EXITTB) {
677 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
678 /* ensure that no TB jump will be modified as
679 the program flow was changed */
680 next_tb = 0;
681 }
682 }
683 if (unlikely(cpu->exit_request)) {
684 cpu->exit_request = 0;
685 cpu->exception_index = EXCP_INTERRUPT;
686 cpu_loop_exit(cpu);
687 }
688 spin_lock(&tcg_ctx.tb_ctx.tb_lock);
689 have_tb_lock = true;
690 tb = tb_find_fast(env);
691 /* Note: we do it here to avoid a gcc bug on Mac OS X when
692 doing it in tb_find_slow */
693 if (tcg_ctx.tb_ctx.tb_invalidated_flag) {
694 /* as some TB could have been invalidated because
695 of memory exceptions while generating the code, we
696 must recompute the hash index here */
697 next_tb = 0;
698 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
699 }
700 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
701 qemu_log("Trace %p [" TARGET_FMT_lx "] %s\n",
702 tb->tc_ptr, tb->pc, lookup_symbol(tb->pc));
703 }
704 /* see if we can patch the calling TB. When the TB
705 spans two pages, we cannot safely do a direct
706 jump. */
707 if (next_tb != 0 && tb->page_addr[1] == -1) {
708 tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK),
709 next_tb & TB_EXIT_MASK, tb);
710 }
711 have_tb_lock = false;
712 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
713
714 /* cpu_interrupt might be called while translating the
715 TB, but before it is linked into a potentially
716 infinite loop and becomes env->current_tb. Avoid
717 starting execution if there is a pending interrupt. */
718 cpu->current_tb = tb;
719 barrier();
720 if (likely(!cpu->exit_request)) {
721 trace_exec_tb(tb, tb->pc);
722 tc_ptr = tb->tc_ptr;
723 /* execute the generated code */
724 next_tb = cpu_tb_exec(cpu, tc_ptr);
725 switch (next_tb & TB_EXIT_MASK) {
726 case TB_EXIT_REQUESTED:
727 /* Something asked us to stop executing
728 * chained TBs; just continue round the main
729 * loop. Whatever requested the exit will also
730 * have set something else (eg exit_request or
731 * interrupt_request) which we will handle
732 * next time around the loop.
733 */
734 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
735 next_tb = 0;
736 break;
737 case TB_EXIT_ICOUNT_EXPIRED:
738 {
739 /* Instruction counter expired. */
740 int insns_left;
741 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
742 insns_left = cpu->icount_decr.u32;
743 if (cpu->icount_extra && insns_left >= 0) {
744 /* Refill decrementer and continue execution. */
745 cpu->icount_extra += insns_left;
746 if (cpu->icount_extra > 0xffff) {
747 insns_left = 0xffff;
748 } else {
749 insns_left = cpu->icount_extra;
750 }
751 cpu->icount_extra -= insns_left;
752 cpu->icount_decr.u16.low = insns_left;
753 } else {
754 if (insns_left > 0) {
755 /* Execute remaining instructions. */
756 cpu_exec_nocache(env, insns_left, tb);
757 align_clocks(&sc, cpu);
758 }
759 cpu->exception_index = EXCP_INTERRUPT;
760 next_tb = 0;
761 cpu_loop_exit(cpu);
762 }
763 break;
764 }
765 default:
766 break;
767 }
768 }
769 cpu->current_tb = NULL;
770 /* Try to align the host and virtual clocks
771 if the guest is in advance */
772 align_clocks(&sc, cpu);
773 /* reset soft MMU for next block (it can currently
774 only be set by a memory fault) */
775 } /* for(;;) */
776 } else {
777 /* Reload env after longjmp - the compiler may have smashed all
778 * local variables as longjmp is marked 'noreturn'. */
779 cpu = current_cpu;
780 env = cpu->env_ptr;
781 cc = CPU_GET_CLASS(cpu);
782 #ifdef TARGET_I386
783 x86_cpu = X86_CPU(cpu);
784 #endif
785 if (have_tb_lock) {
786 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
787 have_tb_lock = false;
788 }
789 }
790 } /* for(;;) */
791
792 cc->cpu_exec_exit(cpu);
793
794 /* fail safe : never use current_cpu outside cpu_exec() */
795 current_cpu = NULL;
796 return ret;
797 }