]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
cpu-exec: wrap tcg_qemu_tb_exec() in a fn to restore the PC
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "tcg.h"
23 #include "qemu/atomic.h"
24 #include "sysemu/qtest.h"
25
26 //#define CONFIG_DEBUG_EXEC
27
28 bool qemu_cpu_has_work(CPUState *cpu)
29 {
30 return cpu_has_work(cpu);
31 }
32
33 void cpu_loop_exit(CPUArchState *env)
34 {
35 CPUState *cpu = ENV_GET_CPU(env);
36
37 cpu->current_tb = NULL;
38 siglongjmp(env->jmp_env, 1);
39 }
40
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
43 */
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
46 {
47 /* XXX: restore cpu registers saved in host registers */
48
49 env->exception_index = -1;
50 siglongjmp(env->jmp_env, 1);
51 }
52 #endif
53
54 /* Execute a TB, and fix up the CPU state afterwards if necessary */
55 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, uint8_t *tb_ptr)
56 {
57 CPUArchState *env = cpu->env_ptr;
58 tcg_target_ulong next_tb = tcg_qemu_tb_exec(env, tb_ptr);
59 if ((next_tb & TB_EXIT_MASK) > TB_EXIT_IDX1) {
60 /* We didn't start executing this TB (eg because the instruction
61 * counter hit zero); we must restore the guest PC to the address
62 * of the start of the TB.
63 */
64 TranslationBlock *tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
65 cpu_pc_from_tb(env, tb);
66 }
67 return next_tb;
68 }
69
70 /* Execute the code without caching the generated code. An interpreter
71 could be used if available. */
72 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
73 TranslationBlock *orig_tb)
74 {
75 CPUState *cpu = ENV_GET_CPU(env);
76 TranslationBlock *tb;
77
78 /* Should never happen.
79 We only end up here when an existing TB is too long. */
80 if (max_cycles > CF_COUNT_MASK)
81 max_cycles = CF_COUNT_MASK;
82
83 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
84 max_cycles);
85 cpu->current_tb = tb;
86 /* execute the generated code */
87 cpu_tb_exec(cpu, tb->tc_ptr);
88 cpu->current_tb = NULL;
89 tb_phys_invalidate(tb, -1);
90 tb_free(tb);
91 }
92
93 static TranslationBlock *tb_find_slow(CPUArchState *env,
94 target_ulong pc,
95 target_ulong cs_base,
96 uint64_t flags)
97 {
98 TranslationBlock *tb, **ptb1;
99 unsigned int h;
100 tb_page_addr_t phys_pc, phys_page1;
101 target_ulong virt_page2;
102
103 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
104
105 /* find translated block using physical mappings */
106 phys_pc = get_page_addr_code(env, pc);
107 phys_page1 = phys_pc & TARGET_PAGE_MASK;
108 h = tb_phys_hash_func(phys_pc);
109 ptb1 = &tcg_ctx.tb_ctx.tb_phys_hash[h];
110 for(;;) {
111 tb = *ptb1;
112 if (!tb)
113 goto not_found;
114 if (tb->pc == pc &&
115 tb->page_addr[0] == phys_page1 &&
116 tb->cs_base == cs_base &&
117 tb->flags == flags) {
118 /* check next page if needed */
119 if (tb->page_addr[1] != -1) {
120 tb_page_addr_t phys_page2;
121
122 virt_page2 = (pc & TARGET_PAGE_MASK) +
123 TARGET_PAGE_SIZE;
124 phys_page2 = get_page_addr_code(env, virt_page2);
125 if (tb->page_addr[1] == phys_page2)
126 goto found;
127 } else {
128 goto found;
129 }
130 }
131 ptb1 = &tb->phys_hash_next;
132 }
133 not_found:
134 /* if no translated code available, then translate it now */
135 tb = tb_gen_code(env, pc, cs_base, flags, 0);
136
137 found:
138 /* Move the last found TB to the head of the list */
139 if (likely(*ptb1)) {
140 *ptb1 = tb->phys_hash_next;
141 tb->phys_hash_next = tcg_ctx.tb_ctx.tb_phys_hash[h];
142 tcg_ctx.tb_ctx.tb_phys_hash[h] = tb;
143 }
144 /* we add the TB in the virtual pc hash table */
145 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
146 return tb;
147 }
148
149 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
150 {
151 TranslationBlock *tb;
152 target_ulong cs_base, pc;
153 int flags;
154
155 /* we record a subset of the CPU state. It will
156 always be the same before a given translated block
157 is executed. */
158 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
159 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
160 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
161 tb->flags != flags)) {
162 tb = tb_find_slow(env, pc, cs_base, flags);
163 }
164 return tb;
165 }
166
167 static CPUDebugExcpHandler *debug_excp_handler;
168
169 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
170 {
171 debug_excp_handler = handler;
172 }
173
174 static void cpu_handle_debug_exception(CPUArchState *env)
175 {
176 CPUWatchpoint *wp;
177
178 if (!env->watchpoint_hit) {
179 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
180 wp->flags &= ~BP_WATCHPOINT_HIT;
181 }
182 }
183 if (debug_excp_handler) {
184 debug_excp_handler(env);
185 }
186 }
187
188 /* main execution loop */
189
190 volatile sig_atomic_t exit_request;
191
192 int cpu_exec(CPUArchState *env)
193 {
194 CPUState *cpu = ENV_GET_CPU(env);
195 int ret, interrupt_request;
196 TranslationBlock *tb;
197 uint8_t *tc_ptr;
198 tcg_target_ulong next_tb;
199
200 if (env->halted) {
201 if (!cpu_has_work(cpu)) {
202 return EXCP_HALTED;
203 }
204
205 env->halted = 0;
206 }
207
208 cpu_single_env = env;
209
210 if (unlikely(exit_request)) {
211 cpu->exit_request = 1;
212 }
213
214 #if defined(TARGET_I386)
215 /* put eflags in CPU temporary format */
216 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
217 DF = 1 - (2 * ((env->eflags >> 10) & 1));
218 CC_OP = CC_OP_EFLAGS;
219 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
220 #elif defined(TARGET_SPARC)
221 #elif defined(TARGET_M68K)
222 env->cc_op = CC_OP_FLAGS;
223 env->cc_dest = env->sr & 0xf;
224 env->cc_x = (env->sr >> 4) & 1;
225 #elif defined(TARGET_ALPHA)
226 #elif defined(TARGET_ARM)
227 #elif defined(TARGET_UNICORE32)
228 #elif defined(TARGET_PPC)
229 env->reserve_addr = -1;
230 #elif defined(TARGET_LM32)
231 #elif defined(TARGET_MICROBLAZE)
232 #elif defined(TARGET_MIPS)
233 #elif defined(TARGET_OPENRISC)
234 #elif defined(TARGET_SH4)
235 #elif defined(TARGET_CRIS)
236 #elif defined(TARGET_S390X)
237 #elif defined(TARGET_XTENSA)
238 /* XXXXX */
239 #else
240 #error unsupported target CPU
241 #endif
242 env->exception_index = -1;
243
244 /* prepare setjmp context for exception handling */
245 for(;;) {
246 if (sigsetjmp(env->jmp_env, 0) == 0) {
247 /* if an exception is pending, we execute it here */
248 if (env->exception_index >= 0) {
249 if (env->exception_index >= EXCP_INTERRUPT) {
250 /* exit request from the cpu execution loop */
251 ret = env->exception_index;
252 if (ret == EXCP_DEBUG) {
253 cpu_handle_debug_exception(env);
254 }
255 break;
256 } else {
257 #if defined(CONFIG_USER_ONLY)
258 /* if user mode only, we simulate a fake exception
259 which will be handled outside the cpu execution
260 loop */
261 #if defined(TARGET_I386)
262 do_interrupt(env);
263 #endif
264 ret = env->exception_index;
265 break;
266 #else
267 do_interrupt(env);
268 env->exception_index = -1;
269 #endif
270 }
271 }
272
273 next_tb = 0; /* force lookup of first TB */
274 for(;;) {
275 interrupt_request = env->interrupt_request;
276 if (unlikely(interrupt_request)) {
277 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
278 /* Mask out external interrupts for this step. */
279 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
280 }
281 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
282 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
283 env->exception_index = EXCP_DEBUG;
284 cpu_loop_exit(env);
285 }
286 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
287 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
288 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
289 if (interrupt_request & CPU_INTERRUPT_HALT) {
290 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
291 env->halted = 1;
292 env->exception_index = EXCP_HLT;
293 cpu_loop_exit(env);
294 }
295 #endif
296 #if defined(TARGET_I386)
297 #if !defined(CONFIG_USER_ONLY)
298 if (interrupt_request & CPU_INTERRUPT_POLL) {
299 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
300 apic_poll_irq(env->apic_state);
301 }
302 #endif
303 if (interrupt_request & CPU_INTERRUPT_INIT) {
304 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
305 0);
306 do_cpu_init(x86_env_get_cpu(env));
307 env->exception_index = EXCP_HALTED;
308 cpu_loop_exit(env);
309 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
310 do_cpu_sipi(x86_env_get_cpu(env));
311 } else if (env->hflags2 & HF2_GIF_MASK) {
312 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
313 !(env->hflags & HF_SMM_MASK)) {
314 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
315 0);
316 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
317 do_smm_enter(env);
318 next_tb = 0;
319 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
320 !(env->hflags2 & HF2_NMI_MASK)) {
321 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
322 env->hflags2 |= HF2_NMI_MASK;
323 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
324 next_tb = 0;
325 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
326 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
327 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
328 next_tb = 0;
329 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
330 (((env->hflags2 & HF2_VINTR_MASK) &&
331 (env->hflags2 & HF2_HIF_MASK)) ||
332 (!(env->hflags2 & HF2_VINTR_MASK) &&
333 (env->eflags & IF_MASK &&
334 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
335 int intno;
336 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
337 0);
338 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
339 intno = cpu_get_pic_interrupt(env);
340 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
341 do_interrupt_x86_hardirq(env, intno, 1);
342 /* ensure that no TB jump will be modified as
343 the program flow was changed */
344 next_tb = 0;
345 #if !defined(CONFIG_USER_ONLY)
346 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
347 (env->eflags & IF_MASK) &&
348 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
349 int intno;
350 /* FIXME: this should respect TPR */
351 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
352 0);
353 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
354 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
355 do_interrupt_x86_hardirq(env, intno, 1);
356 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
357 next_tb = 0;
358 #endif
359 }
360 }
361 #elif defined(TARGET_PPC)
362 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
363 cpu_reset(cpu);
364 }
365 if (interrupt_request & CPU_INTERRUPT_HARD) {
366 ppc_hw_interrupt(env);
367 if (env->pending_interrupts == 0)
368 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
369 next_tb = 0;
370 }
371 #elif defined(TARGET_LM32)
372 if ((interrupt_request & CPU_INTERRUPT_HARD)
373 && (env->ie & IE_IE)) {
374 env->exception_index = EXCP_IRQ;
375 do_interrupt(env);
376 next_tb = 0;
377 }
378 #elif defined(TARGET_MICROBLAZE)
379 if ((interrupt_request & CPU_INTERRUPT_HARD)
380 && (env->sregs[SR_MSR] & MSR_IE)
381 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
382 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
383 env->exception_index = EXCP_IRQ;
384 do_interrupt(env);
385 next_tb = 0;
386 }
387 #elif defined(TARGET_MIPS)
388 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
389 cpu_mips_hw_interrupts_pending(env)) {
390 /* Raise it */
391 env->exception_index = EXCP_EXT_INTERRUPT;
392 env->error_code = 0;
393 do_interrupt(env);
394 next_tb = 0;
395 }
396 #elif defined(TARGET_OPENRISC)
397 {
398 int idx = -1;
399 if ((interrupt_request & CPU_INTERRUPT_HARD)
400 && (env->sr & SR_IEE)) {
401 idx = EXCP_INT;
402 }
403 if ((interrupt_request & CPU_INTERRUPT_TIMER)
404 && (env->sr & SR_TEE)) {
405 idx = EXCP_TICK;
406 }
407 if (idx >= 0) {
408 env->exception_index = idx;
409 do_interrupt(env);
410 next_tb = 0;
411 }
412 }
413 #elif defined(TARGET_SPARC)
414 if (interrupt_request & CPU_INTERRUPT_HARD) {
415 if (cpu_interrupts_enabled(env) &&
416 env->interrupt_index > 0) {
417 int pil = env->interrupt_index & 0xf;
418 int type = env->interrupt_index & 0xf0;
419
420 if (((type == TT_EXTINT) &&
421 cpu_pil_allowed(env, pil)) ||
422 type != TT_EXTINT) {
423 env->exception_index = env->interrupt_index;
424 do_interrupt(env);
425 next_tb = 0;
426 }
427 }
428 }
429 #elif defined(TARGET_ARM)
430 if (interrupt_request & CPU_INTERRUPT_FIQ
431 && !(env->uncached_cpsr & CPSR_F)) {
432 env->exception_index = EXCP_FIQ;
433 do_interrupt(env);
434 next_tb = 0;
435 }
436 /* ARMv7-M interrupt return works by loading a magic value
437 into the PC. On real hardware the load causes the
438 return to occur. The qemu implementation performs the
439 jump normally, then does the exception return when the
440 CPU tries to execute code at the magic address.
441 This will cause the magic PC value to be pushed to
442 the stack if an interrupt occurred at the wrong time.
443 We avoid this by disabling interrupts when
444 pc contains a magic address. */
445 if (interrupt_request & CPU_INTERRUPT_HARD
446 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
447 || !(env->uncached_cpsr & CPSR_I))) {
448 env->exception_index = EXCP_IRQ;
449 do_interrupt(env);
450 next_tb = 0;
451 }
452 #elif defined(TARGET_UNICORE32)
453 if (interrupt_request & CPU_INTERRUPT_HARD
454 && !(env->uncached_asr & ASR_I)) {
455 env->exception_index = UC32_EXCP_INTR;
456 do_interrupt(env);
457 next_tb = 0;
458 }
459 #elif defined(TARGET_SH4)
460 if (interrupt_request & CPU_INTERRUPT_HARD) {
461 do_interrupt(env);
462 next_tb = 0;
463 }
464 #elif defined(TARGET_ALPHA)
465 {
466 int idx = -1;
467 /* ??? This hard-codes the OSF/1 interrupt levels. */
468 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
469 case 0 ... 3:
470 if (interrupt_request & CPU_INTERRUPT_HARD) {
471 idx = EXCP_DEV_INTERRUPT;
472 }
473 /* FALLTHRU */
474 case 4:
475 if (interrupt_request & CPU_INTERRUPT_TIMER) {
476 idx = EXCP_CLK_INTERRUPT;
477 }
478 /* FALLTHRU */
479 case 5:
480 if (interrupt_request & CPU_INTERRUPT_SMP) {
481 idx = EXCP_SMP_INTERRUPT;
482 }
483 /* FALLTHRU */
484 case 6:
485 if (interrupt_request & CPU_INTERRUPT_MCHK) {
486 idx = EXCP_MCHK;
487 }
488 }
489 if (idx >= 0) {
490 env->exception_index = idx;
491 env->error_code = 0;
492 do_interrupt(env);
493 next_tb = 0;
494 }
495 }
496 #elif defined(TARGET_CRIS)
497 if (interrupt_request & CPU_INTERRUPT_HARD
498 && (env->pregs[PR_CCS] & I_FLAG)
499 && !env->locked_irq) {
500 env->exception_index = EXCP_IRQ;
501 do_interrupt(env);
502 next_tb = 0;
503 }
504 if (interrupt_request & CPU_INTERRUPT_NMI) {
505 unsigned int m_flag_archval;
506 if (env->pregs[PR_VR] < 32) {
507 m_flag_archval = M_FLAG_V10;
508 } else {
509 m_flag_archval = M_FLAG_V32;
510 }
511 if ((env->pregs[PR_CCS] & m_flag_archval)) {
512 env->exception_index = EXCP_NMI;
513 do_interrupt(env);
514 next_tb = 0;
515 }
516 }
517 #elif defined(TARGET_M68K)
518 if (interrupt_request & CPU_INTERRUPT_HARD
519 && ((env->sr & SR_I) >> SR_I_SHIFT)
520 < env->pending_level) {
521 /* Real hardware gets the interrupt vector via an
522 IACK cycle at this point. Current emulated
523 hardware doesn't rely on this, so we
524 provide/save the vector when the interrupt is
525 first signalled. */
526 env->exception_index = env->pending_vector;
527 do_interrupt_m68k_hardirq(env);
528 next_tb = 0;
529 }
530 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
531 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
532 (env->psw.mask & PSW_MASK_EXT)) {
533 do_interrupt(env);
534 next_tb = 0;
535 }
536 #elif defined(TARGET_XTENSA)
537 if (interrupt_request & CPU_INTERRUPT_HARD) {
538 env->exception_index = EXC_IRQ;
539 do_interrupt(env);
540 next_tb = 0;
541 }
542 #endif
543 /* Don't use the cached interrupt_request value,
544 do_interrupt may have updated the EXITTB flag. */
545 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
546 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547 /* ensure that no TB jump will be modified as
548 the program flow was changed */
549 next_tb = 0;
550 }
551 }
552 if (unlikely(cpu->exit_request)) {
553 cpu->exit_request = 0;
554 env->exception_index = EXCP_INTERRUPT;
555 cpu_loop_exit(env);
556 }
557 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
558 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
559 /* restore flags in standard format */
560 #if defined(TARGET_I386)
561 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
562 | (DF & DF_MASK);
563 log_cpu_state(env, CPU_DUMP_CCOP);
564 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
565 #elif defined(TARGET_M68K)
566 cpu_m68k_flush_flags(env, env->cc_op);
567 env->cc_op = CC_OP_FLAGS;
568 env->sr = (env->sr & 0xffe0)
569 | env->cc_dest | (env->cc_x << 4);
570 log_cpu_state(env, 0);
571 #else
572 log_cpu_state(env, 0);
573 #endif
574 }
575 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
576 spin_lock(&tcg_ctx.tb_ctx.tb_lock);
577 tb = tb_find_fast(env);
578 /* Note: we do it here to avoid a gcc bug on Mac OS X when
579 doing it in tb_find_slow */
580 if (tcg_ctx.tb_ctx.tb_invalidated_flag) {
581 /* as some TB could have been invalidated because
582 of memory exceptions while generating the code, we
583 must recompute the hash index here */
584 next_tb = 0;
585 tcg_ctx.tb_ctx.tb_invalidated_flag = 0;
586 }
587 #ifdef CONFIG_DEBUG_EXEC
588 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
589 tb->tc_ptr, tb->pc,
590 lookup_symbol(tb->pc));
591 #endif
592 /* see if we can patch the calling TB. When the TB
593 spans two pages, we cannot safely do a direct
594 jump. */
595 if (next_tb != 0 && tb->page_addr[1] == -1) {
596 tb_add_jump((TranslationBlock *)(next_tb & ~TB_EXIT_MASK),
597 next_tb & TB_EXIT_MASK, tb);
598 }
599 spin_unlock(&tcg_ctx.tb_ctx.tb_lock);
600
601 /* cpu_interrupt might be called while translating the
602 TB, but before it is linked into a potentially
603 infinite loop and becomes env->current_tb. Avoid
604 starting execution if there is a pending interrupt. */
605 cpu->current_tb = tb;
606 barrier();
607 if (likely(!cpu->exit_request)) {
608 tc_ptr = tb->tc_ptr;
609 /* execute the generated code */
610 next_tb = cpu_tb_exec(cpu, tc_ptr);
611 if ((next_tb & TB_EXIT_MASK) == TB_EXIT_ICOUNT_EXPIRED) {
612 /* Instruction counter expired. */
613 int insns_left;
614 tb = (TranslationBlock *)(next_tb & ~TB_EXIT_MASK);
615 insns_left = env->icount_decr.u32;
616 if (env->icount_extra && insns_left >= 0) {
617 /* Refill decrementer and continue execution. */
618 env->icount_extra += insns_left;
619 if (env->icount_extra > 0xffff) {
620 insns_left = 0xffff;
621 } else {
622 insns_left = env->icount_extra;
623 }
624 env->icount_extra -= insns_left;
625 env->icount_decr.u16.low = insns_left;
626 } else {
627 if (insns_left > 0) {
628 /* Execute remaining instructions. */
629 cpu_exec_nocache(env, insns_left, tb);
630 }
631 env->exception_index = EXCP_INTERRUPT;
632 next_tb = 0;
633 cpu_loop_exit(env);
634 }
635 }
636 }
637 cpu->current_tb = NULL;
638 /* reset soft MMU for next block (it can currently
639 only be set by a memory fault) */
640 } /* for(;;) */
641 } else {
642 /* Reload env after longjmp - the compiler may have smashed all
643 * local variables as longjmp is marked 'noreturn'. */
644 env = cpu_single_env;
645 }
646 } /* for(;;) */
647
648
649 #if defined(TARGET_I386)
650 /* restore flags in standard format */
651 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
652 | (DF & DF_MASK);
653 #elif defined(TARGET_ARM)
654 /* XXX: Save/restore host fpu exception state?. */
655 #elif defined(TARGET_UNICORE32)
656 #elif defined(TARGET_SPARC)
657 #elif defined(TARGET_PPC)
658 #elif defined(TARGET_LM32)
659 #elif defined(TARGET_M68K)
660 cpu_m68k_flush_flags(env, env->cc_op);
661 env->cc_op = CC_OP_FLAGS;
662 env->sr = (env->sr & 0xffe0)
663 | env->cc_dest | (env->cc_x << 4);
664 #elif defined(TARGET_MICROBLAZE)
665 #elif defined(TARGET_MIPS)
666 #elif defined(TARGET_OPENRISC)
667 #elif defined(TARGET_SH4)
668 #elif defined(TARGET_ALPHA)
669 #elif defined(TARGET_CRIS)
670 #elif defined(TARGET_S390X)
671 #elif defined(TARGET_XTENSA)
672 /* XXXXX */
673 #else
674 #error unsupported target CPU
675 #endif
676
677 /* fail safe : never use cpu_single_env outside cpu_exec() */
678 cpu_single_env = NULL;
679 return ret;
680 }