]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
Use target_ulong type for emulator registers.
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
46 {
47 longjmp(env->jmp_env, 1);
48 }
49 #endif
50 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51 #define reg_T2
52 #endif
53
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
58 {
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61 #endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67 #if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72 #endif
73 longjmp(env->jmp_env, 1);
74 }
75
76
77 static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80 {
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
151 }
152
153 static inline TranslationBlock *tb_find_fast(void)
154 {
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
158
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162 #if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
174 cs_base = 0;
175 pc = env->regs[15];
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181 #else
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184 | env->psrs;
185 #endif
186 cs_base = env->npc;
187 pc = env->pc;
188 #elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
191 cs_base = 0;
192 pc = env->nip;
193 #elif defined(TARGET_MIPS)
194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195 cs_base = 0;
196 pc = env->PC;
197 #elif defined(TARGET_M68K)
198 flags = env->fpcr & M68K_FPCR_PREC;
199 cs_base = 0;
200 pc = env->pc;
201 #elif defined(TARGET_SH4)
202 flags = env->sr & (SR_MD | SR_RB);
203 cs_base = 0; /* XXXXX */
204 pc = env->pc;
205 #else
206 #error unsupported CPU
207 #endif
208 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210 tb->flags != flags, 0)) {
211 tb = tb_find_slow(pc, cs_base, flags);
212 /* Note: we do it here to avoid a gcc bug on Mac OS X when
213 doing it in tb_find_slow */
214 if (tb_invalidated_flag) {
215 /* as some TB could have been invalidated because
216 of memory exceptions while generating the code, we
217 must recompute the hash index here */
218 T0 = 0;
219 }
220 }
221 return tb;
222 }
223
224
225 /* main execution loop */
226
227 int cpu_exec(CPUState *env1)
228 {
229 target_ulong saved_T0, saved_T1;
230 #if defined(reg_T2)
231 target_ulong saved_T2;
232 #endif
233 CPUState *saved_env;
234 #if defined(TARGET_I386)
235 #ifdef reg_EAX
236 int saved_EAX;
237 #endif
238 #ifdef reg_ECX
239 int saved_ECX;
240 #endif
241 #ifdef reg_EDX
242 int saved_EDX;
243 #endif
244 #ifdef reg_EBX
245 int saved_EBX;
246 #endif
247 #ifdef reg_ESP
248 int saved_ESP;
249 #endif
250 #ifdef reg_EBP
251 int saved_EBP;
252 #endif
253 #ifdef reg_ESI
254 int saved_ESI;
255 #endif
256 #ifdef reg_EDI
257 int saved_EDI;
258 #endif
259 #elif defined(TARGET_SPARC)
260 #if defined(reg_REGWPTR)
261 uint32_t *saved_regwptr;
262 #endif
263 #endif
264 #if defined(__sparc__) && !defined(HOST_SOLARIS)
265 int saved_i7;
266 target_ulong tmp_T0;
267 #endif
268 int ret, interrupt_request;
269 void (*gen_func)(void);
270 TranslationBlock *tb;
271 uint8_t *tc_ptr;
272
273 #if defined(TARGET_I386)
274 /* handle exit of HALTED state */
275 if (env1->hflags & HF_HALTED_MASK) {
276 /* disable halt condition */
277 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
278 (env1->eflags & IF_MASK)) {
279 env1->hflags &= ~HF_HALTED_MASK;
280 } else {
281 return EXCP_HALTED;
282 }
283 }
284 #elif defined(TARGET_PPC)
285 if (env1->halted) {
286 if (env1->msr[MSR_EE] &&
287 (env1->interrupt_request &
288 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
289 env1->halted = 0;
290 } else {
291 return EXCP_HALTED;
292 }
293 }
294 #elif defined(TARGET_SPARC)
295 if (env1->halted) {
296 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
297 (env1->psret != 0)) {
298 env1->halted = 0;
299 } else {
300 return EXCP_HALTED;
301 }
302 }
303 #elif defined(TARGET_ARM)
304 if (env1->halted) {
305 /* An interrupt wakes the CPU even if the I and F CPSR bits are
306 set. */
307 if (env1->interrupt_request
308 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
309 env1->halted = 0;
310 } else {
311 return EXCP_HALTED;
312 }
313 }
314 #elif defined(TARGET_MIPS)
315 if (env1->halted) {
316 if (env1->interrupt_request &
317 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
318 env1->halted = 0;
319 } else {
320 return EXCP_HALTED;
321 }
322 }
323 #endif
324
325 cpu_single_env = env1;
326
327 /* first we save global registers */
328 saved_env = env;
329 env = env1;
330 saved_T0 = T0;
331 saved_T1 = T1;
332 #if defined(reg_T2)
333 saved_T2 = T2;
334 #endif
335 #if defined(__sparc__) && !defined(HOST_SOLARIS)
336 /* we also save i7 because longjmp may not restore it */
337 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
338 #endif
339
340 #if defined(TARGET_I386)
341 #ifdef reg_EAX
342 saved_EAX = EAX;
343 #endif
344 #ifdef reg_ECX
345 saved_ECX = ECX;
346 #endif
347 #ifdef reg_EDX
348 saved_EDX = EDX;
349 #endif
350 #ifdef reg_EBX
351 saved_EBX = EBX;
352 #endif
353 #ifdef reg_ESP
354 saved_ESP = ESP;
355 #endif
356 #ifdef reg_EBP
357 saved_EBP = EBP;
358 #endif
359 #ifdef reg_ESI
360 saved_ESI = ESI;
361 #endif
362 #ifdef reg_EDI
363 saved_EDI = EDI;
364 #endif
365
366 env_to_regs();
367 /* put eflags in CPU temporary format */
368 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
369 DF = 1 - (2 * ((env->eflags >> 10) & 1));
370 CC_OP = CC_OP_EFLAGS;
371 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
372 #elif defined(TARGET_ARM)
373 #elif defined(TARGET_SPARC)
374 #if defined(reg_REGWPTR)
375 saved_regwptr = REGWPTR;
376 #endif
377 #elif defined(TARGET_PPC)
378 #elif defined(TARGET_M68K)
379 env->cc_op = CC_OP_FLAGS;
380 env->cc_dest = env->sr & 0xf;
381 env->cc_x = (env->sr >> 4) & 1;
382 #elif defined(TARGET_MIPS)
383 #elif defined(TARGET_SH4)
384 /* XXXXX */
385 #else
386 #error unsupported target CPU
387 #endif
388 env->exception_index = -1;
389
390 /* prepare setjmp context for exception handling */
391 for(;;) {
392 if (setjmp(env->jmp_env) == 0) {
393 env->current_tb = NULL;
394 /* if an exception is pending, we execute it here */
395 if (env->exception_index >= 0) {
396 if (env->exception_index >= EXCP_INTERRUPT) {
397 /* exit request from the cpu execution loop */
398 ret = env->exception_index;
399 break;
400 } else if (env->user_mode_only) {
401 /* if user mode only, we simulate a fake exception
402 which will be handled outside the cpu execution
403 loop */
404 #if defined(TARGET_I386)
405 do_interrupt_user(env->exception_index,
406 env->exception_is_int,
407 env->error_code,
408 env->exception_next_eip);
409 #endif
410 ret = env->exception_index;
411 break;
412 } else {
413 #if defined(TARGET_I386)
414 /* simulate a real cpu exception. On i386, it can
415 trigger new exceptions, but we do not handle
416 double or triple faults yet. */
417 do_interrupt(env->exception_index,
418 env->exception_is_int,
419 env->error_code,
420 env->exception_next_eip, 0);
421 #elif defined(TARGET_PPC)
422 do_interrupt(env);
423 #elif defined(TARGET_MIPS)
424 do_interrupt(env);
425 #elif defined(TARGET_SPARC)
426 do_interrupt(env->exception_index);
427 #elif defined(TARGET_ARM)
428 do_interrupt(env);
429 #elif defined(TARGET_SH4)
430 do_interrupt(env);
431 #endif
432 }
433 env->exception_index = -1;
434 }
435 #ifdef USE_KQEMU
436 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
437 int ret;
438 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
439 ret = kqemu_cpu_exec(env);
440 /* put eflags in CPU temporary format */
441 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
442 DF = 1 - (2 * ((env->eflags >> 10) & 1));
443 CC_OP = CC_OP_EFLAGS;
444 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
445 if (ret == 1) {
446 /* exception */
447 longjmp(env->jmp_env, 1);
448 } else if (ret == 2) {
449 /* softmmu execution needed */
450 } else {
451 if (env->interrupt_request != 0) {
452 /* hardware interrupt will be executed just after */
453 } else {
454 /* otherwise, we restart */
455 longjmp(env->jmp_env, 1);
456 }
457 }
458 }
459 #endif
460
461 T0 = 0; /* force lookup of first TB */
462 for(;;) {
463 #if defined(__sparc__) && !defined(HOST_SOLARIS)
464 /* g1 can be modified by some libc? functions */
465 tmp_T0 = T0;
466 #endif
467 interrupt_request = env->interrupt_request;
468 if (__builtin_expect(interrupt_request, 0)) {
469 #if defined(TARGET_I386)
470 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
471 !(env->hflags & HF_SMM_MASK)) {
472 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
473 do_smm_enter();
474 #if defined(__sparc__) && !defined(HOST_SOLARIS)
475 tmp_T0 = 0;
476 #else
477 T0 = 0;
478 #endif
479 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
480 (env->eflags & IF_MASK) &&
481 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
482 int intno;
483 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
484 intno = cpu_get_pic_interrupt(env);
485 if (loglevel & CPU_LOG_TB_IN_ASM) {
486 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
487 }
488 do_interrupt(intno, 0, 0, 0, 1);
489 /* ensure that no TB jump will be modified as
490 the program flow was changed */
491 #if defined(__sparc__) && !defined(HOST_SOLARIS)
492 tmp_T0 = 0;
493 #else
494 T0 = 0;
495 #endif
496 }
497 #elif defined(TARGET_PPC)
498 #if 0
499 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
500 cpu_ppc_reset(env);
501 }
502 #endif
503 if (msr_ee != 0) {
504 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
505 /* Raise it */
506 env->exception_index = EXCP_EXTERNAL;
507 env->error_code = 0;
508 do_interrupt(env);
509 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
510 #if defined(__sparc__) && !defined(HOST_SOLARIS)
511 tmp_T0 = 0;
512 #else
513 T0 = 0;
514 #endif
515 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
516 /* Raise it */
517 env->exception_index = EXCP_DECR;
518 env->error_code = 0;
519 do_interrupt(env);
520 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
521 #if defined(__sparc__) && !defined(HOST_SOLARIS)
522 tmp_T0 = 0;
523 #else
524 T0 = 0;
525 #endif
526 }
527 }
528 #elif defined(TARGET_MIPS)
529 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
530 (env->CP0_Status & (1 << CP0St_IE)) &&
531 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
532 !(env->hflags & MIPS_HFLAG_EXL) &&
533 !(env->hflags & MIPS_HFLAG_ERL) &&
534 !(env->hflags & MIPS_HFLAG_DM)) {
535 /* Raise it */
536 env->exception_index = EXCP_EXT_INTERRUPT;
537 env->error_code = 0;
538 do_interrupt(env);
539 #if defined(__sparc__) && !defined(HOST_SOLARIS)
540 tmp_T0 = 0;
541 #else
542 T0 = 0;
543 #endif
544 }
545 #elif defined(TARGET_SPARC)
546 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
547 (env->psret != 0)) {
548 int pil = env->interrupt_index & 15;
549 int type = env->interrupt_index & 0xf0;
550
551 if (((type == TT_EXTINT) &&
552 (pil == 15 || pil > env->psrpil)) ||
553 type != TT_EXTINT) {
554 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
555 do_interrupt(env->interrupt_index);
556 env->interrupt_index = 0;
557 #if defined(__sparc__) && !defined(HOST_SOLARIS)
558 tmp_T0 = 0;
559 #else
560 T0 = 0;
561 #endif
562 }
563 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
564 //do_interrupt(0, 0, 0, 0, 0);
565 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
566 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
567 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
568 env->halted = 1;
569 env->exception_index = EXCP_HLT;
570 cpu_loop_exit();
571 }
572 #elif defined(TARGET_ARM)
573 if (interrupt_request & CPU_INTERRUPT_FIQ
574 && !(env->uncached_cpsr & CPSR_F)) {
575 env->exception_index = EXCP_FIQ;
576 do_interrupt(env);
577 }
578 if (interrupt_request & CPU_INTERRUPT_HARD
579 && !(env->uncached_cpsr & CPSR_I)) {
580 env->exception_index = EXCP_IRQ;
581 do_interrupt(env);
582 }
583 #elif defined(TARGET_SH4)
584 /* XXXXX */
585 #endif
586 /* Don't use the cached interupt_request value,
587 do_interrupt may have updated the EXITTB flag. */
588 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
589 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
590 /* ensure that no TB jump will be modified as
591 the program flow was changed */
592 #if defined(__sparc__) && !defined(HOST_SOLARIS)
593 tmp_T0 = 0;
594 #else
595 T0 = 0;
596 #endif
597 }
598 if (interrupt_request & CPU_INTERRUPT_EXIT) {
599 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
600 env->exception_index = EXCP_INTERRUPT;
601 cpu_loop_exit();
602 }
603 }
604 #ifdef DEBUG_EXEC
605 if ((loglevel & CPU_LOG_TB_CPU)) {
606 #if defined(TARGET_I386)
607 /* restore flags in standard format */
608 #ifdef reg_EAX
609 env->regs[R_EAX] = EAX;
610 #endif
611 #ifdef reg_EBX
612 env->regs[R_EBX] = EBX;
613 #endif
614 #ifdef reg_ECX
615 env->regs[R_ECX] = ECX;
616 #endif
617 #ifdef reg_EDX
618 env->regs[R_EDX] = EDX;
619 #endif
620 #ifdef reg_ESI
621 env->regs[R_ESI] = ESI;
622 #endif
623 #ifdef reg_EDI
624 env->regs[R_EDI] = EDI;
625 #endif
626 #ifdef reg_EBP
627 env->regs[R_EBP] = EBP;
628 #endif
629 #ifdef reg_ESP
630 env->regs[R_ESP] = ESP;
631 #endif
632 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
633 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
634 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
635 #elif defined(TARGET_ARM)
636 cpu_dump_state(env, logfile, fprintf, 0);
637 #elif defined(TARGET_SPARC)
638 REGWPTR = env->regbase + (env->cwp * 16);
639 env->regwptr = REGWPTR;
640 cpu_dump_state(env, logfile, fprintf, 0);
641 #elif defined(TARGET_PPC)
642 cpu_dump_state(env, logfile, fprintf, 0);
643 #elif defined(TARGET_M68K)
644 cpu_m68k_flush_flags(env, env->cc_op);
645 env->cc_op = CC_OP_FLAGS;
646 env->sr = (env->sr & 0xffe0)
647 | env->cc_dest | (env->cc_x << 4);
648 cpu_dump_state(env, logfile, fprintf, 0);
649 #elif defined(TARGET_MIPS)
650 cpu_dump_state(env, logfile, fprintf, 0);
651 #elif defined(TARGET_SH4)
652 cpu_dump_state(env, logfile, fprintf, 0);
653 #else
654 #error unsupported target CPU
655 #endif
656 }
657 #endif
658 tb = tb_find_fast();
659 #ifdef DEBUG_EXEC
660 if ((loglevel & CPU_LOG_EXEC)) {
661 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
662 (long)tb->tc_ptr, tb->pc,
663 lookup_symbol(tb->pc));
664 }
665 #endif
666 #if defined(__sparc__) && !defined(HOST_SOLARIS)
667 T0 = tmp_T0;
668 #endif
669 /* see if we can patch the calling TB. When the TB
670 spans two pages, we cannot safely do a direct
671 jump. */
672 {
673 if (T0 != 0 &&
674 #if USE_KQEMU
675 (env->kqemu_enabled != 2) &&
676 #endif
677 tb->page_addr[1] == -1
678 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
679 && (tb->cflags & CF_CODE_COPY) ==
680 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
681 #endif
682 ) {
683 spin_lock(&tb_lock);
684 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
685 #if defined(USE_CODE_COPY)
686 /* propagates the FP use info */
687 ((TranslationBlock *)(T0 & ~3))->cflags |=
688 (tb->cflags & CF_FP_USED);
689 #endif
690 spin_unlock(&tb_lock);
691 }
692 }
693 tc_ptr = tb->tc_ptr;
694 env->current_tb = tb;
695 /* execute the generated code */
696 gen_func = (void *)tc_ptr;
697 #if defined(__sparc__)
698 __asm__ __volatile__("call %0\n\t"
699 "mov %%o7,%%i0"
700 : /* no outputs */
701 : "r" (gen_func)
702 : "i0", "i1", "i2", "i3", "i4", "i5",
703 "l0", "l1", "l2", "l3", "l4", "l5",
704 "l6", "l7");
705 #elif defined(__arm__)
706 asm volatile ("mov pc, %0\n\t"
707 ".global exec_loop\n\t"
708 "exec_loop:\n\t"
709 : /* no outputs */
710 : "r" (gen_func)
711 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
712 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
713 {
714 if (!(tb->cflags & CF_CODE_COPY)) {
715 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
716 save_native_fp_state(env);
717 }
718 gen_func();
719 } else {
720 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
721 restore_native_fp_state(env);
722 }
723 /* we work with native eflags */
724 CC_SRC = cc_table[CC_OP].compute_all();
725 CC_OP = CC_OP_EFLAGS;
726 asm(".globl exec_loop\n"
727 "\n"
728 "debug1:\n"
729 " pushl %%ebp\n"
730 " fs movl %10, %9\n"
731 " fs movl %11, %%eax\n"
732 " andl $0x400, %%eax\n"
733 " fs orl %8, %%eax\n"
734 " pushl %%eax\n"
735 " popf\n"
736 " fs movl %%esp, %12\n"
737 " fs movl %0, %%eax\n"
738 " fs movl %1, %%ecx\n"
739 " fs movl %2, %%edx\n"
740 " fs movl %3, %%ebx\n"
741 " fs movl %4, %%esp\n"
742 " fs movl %5, %%ebp\n"
743 " fs movl %6, %%esi\n"
744 " fs movl %7, %%edi\n"
745 " fs jmp *%9\n"
746 "exec_loop:\n"
747 " fs movl %%esp, %4\n"
748 " fs movl %12, %%esp\n"
749 " fs movl %%eax, %0\n"
750 " fs movl %%ecx, %1\n"
751 " fs movl %%edx, %2\n"
752 " fs movl %%ebx, %3\n"
753 " fs movl %%ebp, %5\n"
754 " fs movl %%esi, %6\n"
755 " fs movl %%edi, %7\n"
756 " pushf\n"
757 " popl %%eax\n"
758 " movl %%eax, %%ecx\n"
759 " andl $0x400, %%ecx\n"
760 " shrl $9, %%ecx\n"
761 " andl $0x8d5, %%eax\n"
762 " fs movl %%eax, %8\n"
763 " movl $1, %%eax\n"
764 " subl %%ecx, %%eax\n"
765 " fs movl %%eax, %11\n"
766 " fs movl %9, %%ebx\n" /* get T0 value */
767 " popl %%ebp\n"
768 :
769 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
770 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
771 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
772 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
773 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
774 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
775 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
776 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
777 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
778 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
779 "a" (gen_func),
780 "m" (*(uint8_t *)offsetof(CPUState, df)),
781 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
782 : "%ecx", "%edx"
783 );
784 }
785 }
786 #elif defined(__ia64)
787 struct fptr {
788 void *ip;
789 void *gp;
790 } fp;
791
792 fp.ip = tc_ptr;
793 fp.gp = code_gen_buffer + 2 * (1 << 20);
794 (*(void (*)(void)) &fp)();
795 #else
796 gen_func();
797 #endif
798 env->current_tb = NULL;
799 /* reset soft MMU for next block (it can currently
800 only be set by a memory fault) */
801 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
802 if (env->hflags & HF_SOFTMMU_MASK) {
803 env->hflags &= ~HF_SOFTMMU_MASK;
804 /* do not allow linking to another block */
805 T0 = 0;
806 }
807 #endif
808 #if defined(USE_KQEMU)
809 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
810 if (kqemu_is_ok(env) &&
811 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
812 cpu_loop_exit();
813 }
814 #endif
815 }
816 } else {
817 env_to_regs();
818 }
819 } /* for(;;) */
820
821
822 #if defined(TARGET_I386)
823 #if defined(USE_CODE_COPY)
824 if (env->native_fp_regs) {
825 save_native_fp_state(env);
826 }
827 #endif
828 /* restore flags in standard format */
829 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
830
831 /* restore global registers */
832 #ifdef reg_EAX
833 EAX = saved_EAX;
834 #endif
835 #ifdef reg_ECX
836 ECX = saved_ECX;
837 #endif
838 #ifdef reg_EDX
839 EDX = saved_EDX;
840 #endif
841 #ifdef reg_EBX
842 EBX = saved_EBX;
843 #endif
844 #ifdef reg_ESP
845 ESP = saved_ESP;
846 #endif
847 #ifdef reg_EBP
848 EBP = saved_EBP;
849 #endif
850 #ifdef reg_ESI
851 ESI = saved_ESI;
852 #endif
853 #ifdef reg_EDI
854 EDI = saved_EDI;
855 #endif
856 #elif defined(TARGET_ARM)
857 /* XXX: Save/restore host fpu exception state?. */
858 #elif defined(TARGET_SPARC)
859 #if defined(reg_REGWPTR)
860 REGWPTR = saved_regwptr;
861 #endif
862 #elif defined(TARGET_PPC)
863 #elif defined(TARGET_M68K)
864 cpu_m68k_flush_flags(env, env->cc_op);
865 env->cc_op = CC_OP_FLAGS;
866 env->sr = (env->sr & 0xffe0)
867 | env->cc_dest | (env->cc_x << 4);
868 #elif defined(TARGET_MIPS)
869 #elif defined(TARGET_SH4)
870 /* XXXXX */
871 #else
872 #error unsupported target CPU
873 #endif
874 #if defined(__sparc__) && !defined(HOST_SOLARIS)
875 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
876 #endif
877 T0 = saved_T0;
878 T1 = saved_T1;
879 #if defined(reg_T2)
880 T2 = saved_T2;
881 #endif
882 env = saved_env;
883 /* fail safe : never use cpu_single_env outside cpu_exec() */
884 cpu_single_env = NULL;
885 return ret;
886 }
887
888 /* must only be called from the generated code as an exception can be
889 generated */
890 void tb_invalidate_page_range(target_ulong start, target_ulong end)
891 {
892 /* XXX: cannot enable it yet because it yields to MMU exception
893 where NIP != read address on PowerPC */
894 #if 0
895 target_ulong phys_addr;
896 phys_addr = get_phys_addr_code(env, start);
897 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
898 #endif
899 }
900
901 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
902
903 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
904 {
905 CPUX86State *saved_env;
906
907 saved_env = env;
908 env = s;
909 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
910 selector &= 0xffff;
911 cpu_x86_load_seg_cache(env, seg_reg, selector,
912 (selector << 4), 0xffff, 0);
913 } else {
914 load_seg(seg_reg, selector);
915 }
916 env = saved_env;
917 }
918
919 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
920 {
921 CPUX86State *saved_env;
922
923 saved_env = env;
924 env = s;
925
926 helper_fsave((target_ulong)ptr, data32);
927
928 env = saved_env;
929 }
930
931 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
932 {
933 CPUX86State *saved_env;
934
935 saved_env = env;
936 env = s;
937
938 helper_frstor((target_ulong)ptr, data32);
939
940 env = saved_env;
941 }
942
943 #endif /* TARGET_I386 */
944
945 #if !defined(CONFIG_SOFTMMU)
946
947 #if defined(TARGET_I386)
948
949 /* 'pc' is the host PC at which the exception was raised. 'address' is
950 the effective address of the memory exception. 'is_write' is 1 if a
951 write caused the exception and otherwise 0'. 'old_set' is the
952 signal set which should be restored */
953 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
954 int is_write, sigset_t *old_set,
955 void *puc)
956 {
957 TranslationBlock *tb;
958 int ret;
959
960 if (cpu_single_env)
961 env = cpu_single_env; /* XXX: find a correct solution for multithread */
962 #if defined(DEBUG_SIGNAL)
963 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
964 pc, address, is_write, *(unsigned long *)old_set);
965 #endif
966 /* XXX: locking issue */
967 if (is_write && page_unprotect(h2g(address), pc, puc)) {
968 return 1;
969 }
970
971 /* see if it is an MMU fault */
972 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
973 ((env->hflags & HF_CPL_MASK) == 3), 0);
974 if (ret < 0)
975 return 0; /* not an MMU fault */
976 if (ret == 0)
977 return 1; /* the MMU fault was handled without causing real CPU fault */
978 /* now we have a real cpu fault */
979 tb = tb_find_pc(pc);
980 if (tb) {
981 /* the PC is inside the translated code. It means that we have
982 a virtual CPU fault */
983 cpu_restore_state(tb, env, pc, puc);
984 }
985 if (ret == 1) {
986 #if 0
987 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
988 env->eip, env->cr[2], env->error_code);
989 #endif
990 /* we restore the process signal mask as the sigreturn should
991 do it (XXX: use sigsetjmp) */
992 sigprocmask(SIG_SETMASK, old_set, NULL);
993 raise_exception_err(env->exception_index, env->error_code);
994 } else {
995 /* activate soft MMU for this block */
996 env->hflags |= HF_SOFTMMU_MASK;
997 cpu_resume_from_signal(env, puc);
998 }
999 /* never comes here */
1000 return 1;
1001 }
1002
1003 #elif defined(TARGET_ARM)
1004 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1005 int is_write, sigset_t *old_set,
1006 void *puc)
1007 {
1008 TranslationBlock *tb;
1009 int ret;
1010
1011 if (cpu_single_env)
1012 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1013 #if defined(DEBUG_SIGNAL)
1014 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1015 pc, address, is_write, *(unsigned long *)old_set);
1016 #endif
1017 /* XXX: locking issue */
1018 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1019 return 1;
1020 }
1021 /* see if it is an MMU fault */
1022 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
1023 if (ret < 0)
1024 return 0; /* not an MMU fault */
1025 if (ret == 0)
1026 return 1; /* the MMU fault was handled without causing real CPU fault */
1027 /* now we have a real cpu fault */
1028 tb = tb_find_pc(pc);
1029 if (tb) {
1030 /* the PC is inside the translated code. It means that we have
1031 a virtual CPU fault */
1032 cpu_restore_state(tb, env, pc, puc);
1033 }
1034 /* we restore the process signal mask as the sigreturn should
1035 do it (XXX: use sigsetjmp) */
1036 sigprocmask(SIG_SETMASK, old_set, NULL);
1037 cpu_loop_exit();
1038 }
1039 #elif defined(TARGET_SPARC)
1040 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1041 int is_write, sigset_t *old_set,
1042 void *puc)
1043 {
1044 TranslationBlock *tb;
1045 int ret;
1046
1047 if (cpu_single_env)
1048 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1049 #if defined(DEBUG_SIGNAL)
1050 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1051 pc, address, is_write, *(unsigned long *)old_set);
1052 #endif
1053 /* XXX: locking issue */
1054 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1055 return 1;
1056 }
1057 /* see if it is an MMU fault */
1058 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1059 if (ret < 0)
1060 return 0; /* not an MMU fault */
1061 if (ret == 0)
1062 return 1; /* the MMU fault was handled without causing real CPU fault */
1063 /* now we have a real cpu fault */
1064 tb = tb_find_pc(pc);
1065 if (tb) {
1066 /* the PC is inside the translated code. It means that we have
1067 a virtual CPU fault */
1068 cpu_restore_state(tb, env, pc, puc);
1069 }
1070 /* we restore the process signal mask as the sigreturn should
1071 do it (XXX: use sigsetjmp) */
1072 sigprocmask(SIG_SETMASK, old_set, NULL);
1073 cpu_loop_exit();
1074 }
1075 #elif defined (TARGET_PPC)
1076 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1077 int is_write, sigset_t *old_set,
1078 void *puc)
1079 {
1080 TranslationBlock *tb;
1081 int ret;
1082
1083 if (cpu_single_env)
1084 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1085 #if defined(DEBUG_SIGNAL)
1086 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1087 pc, address, is_write, *(unsigned long *)old_set);
1088 #endif
1089 /* XXX: locking issue */
1090 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1091 return 1;
1092 }
1093
1094 /* see if it is an MMU fault */
1095 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1096 if (ret < 0)
1097 return 0; /* not an MMU fault */
1098 if (ret == 0)
1099 return 1; /* the MMU fault was handled without causing real CPU fault */
1100
1101 /* now we have a real cpu fault */
1102 tb = tb_find_pc(pc);
1103 if (tb) {
1104 /* the PC is inside the translated code. It means that we have
1105 a virtual CPU fault */
1106 cpu_restore_state(tb, env, pc, puc);
1107 }
1108 if (ret == 1) {
1109 #if 0
1110 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1111 env->nip, env->error_code, tb);
1112 #endif
1113 /* we restore the process signal mask as the sigreturn should
1114 do it (XXX: use sigsetjmp) */
1115 sigprocmask(SIG_SETMASK, old_set, NULL);
1116 do_raise_exception_err(env->exception_index, env->error_code);
1117 } else {
1118 /* activate soft MMU for this block */
1119 cpu_resume_from_signal(env, puc);
1120 }
1121 /* never comes here */
1122 return 1;
1123 }
1124
1125 #elif defined(TARGET_M68K)
1126 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1127 int is_write, sigset_t *old_set,
1128 void *puc)
1129 {
1130 TranslationBlock *tb;
1131 int ret;
1132
1133 if (cpu_single_env)
1134 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1135 #if defined(DEBUG_SIGNAL)
1136 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1137 pc, address, is_write, *(unsigned long *)old_set);
1138 #endif
1139 /* XXX: locking issue */
1140 if (is_write && page_unprotect(address, pc, puc)) {
1141 return 1;
1142 }
1143 /* see if it is an MMU fault */
1144 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1145 if (ret < 0)
1146 return 0; /* not an MMU fault */
1147 if (ret == 0)
1148 return 1; /* the MMU fault was handled without causing real CPU fault */
1149 /* now we have a real cpu fault */
1150 tb = tb_find_pc(pc);
1151 if (tb) {
1152 /* the PC is inside the translated code. It means that we have
1153 a virtual CPU fault */
1154 cpu_restore_state(tb, env, pc, puc);
1155 }
1156 /* we restore the process signal mask as the sigreturn should
1157 do it (XXX: use sigsetjmp) */
1158 sigprocmask(SIG_SETMASK, old_set, NULL);
1159 cpu_loop_exit();
1160 /* never comes here */
1161 return 1;
1162 }
1163
1164 #elif defined (TARGET_MIPS)
1165 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1166 int is_write, sigset_t *old_set,
1167 void *puc)
1168 {
1169 TranslationBlock *tb;
1170 int ret;
1171
1172 if (cpu_single_env)
1173 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1174 #if defined(DEBUG_SIGNAL)
1175 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1176 pc, address, is_write, *(unsigned long *)old_set);
1177 #endif
1178 /* XXX: locking issue */
1179 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1180 return 1;
1181 }
1182
1183 /* see if it is an MMU fault */
1184 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1185 if (ret < 0)
1186 return 0; /* not an MMU fault */
1187 if (ret == 0)
1188 return 1; /* the MMU fault was handled without causing real CPU fault */
1189
1190 /* now we have a real cpu fault */
1191 tb = tb_find_pc(pc);
1192 if (tb) {
1193 /* the PC is inside the translated code. It means that we have
1194 a virtual CPU fault */
1195 cpu_restore_state(tb, env, pc, puc);
1196 }
1197 if (ret == 1) {
1198 #if 0
1199 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1200 env->nip, env->error_code, tb);
1201 #endif
1202 /* we restore the process signal mask as the sigreturn should
1203 do it (XXX: use sigsetjmp) */
1204 sigprocmask(SIG_SETMASK, old_set, NULL);
1205 do_raise_exception_err(env->exception_index, env->error_code);
1206 } else {
1207 /* activate soft MMU for this block */
1208 cpu_resume_from_signal(env, puc);
1209 }
1210 /* never comes here */
1211 return 1;
1212 }
1213
1214 #elif defined (TARGET_SH4)
1215 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1216 int is_write, sigset_t *old_set,
1217 void *puc)
1218 {
1219 TranslationBlock *tb;
1220 int ret;
1221
1222 if (cpu_single_env)
1223 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1224 #if defined(DEBUG_SIGNAL)
1225 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1226 pc, address, is_write, *(unsigned long *)old_set);
1227 #endif
1228 /* XXX: locking issue */
1229 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1230 return 1;
1231 }
1232
1233 /* see if it is an MMU fault */
1234 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1235 if (ret < 0)
1236 return 0; /* not an MMU fault */
1237 if (ret == 0)
1238 return 1; /* the MMU fault was handled without causing real CPU fault */
1239
1240 /* now we have a real cpu fault */
1241 tb = tb_find_pc(pc);
1242 if (tb) {
1243 /* the PC is inside the translated code. It means that we have
1244 a virtual CPU fault */
1245 cpu_restore_state(tb, env, pc, puc);
1246 }
1247 #if 0
1248 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1249 env->nip, env->error_code, tb);
1250 #endif
1251 /* we restore the process signal mask as the sigreturn should
1252 do it (XXX: use sigsetjmp) */
1253 sigprocmask(SIG_SETMASK, old_set, NULL);
1254 cpu_loop_exit();
1255 /* never comes here */
1256 return 1;
1257 }
1258 #else
1259 #error unsupported target CPU
1260 #endif
1261
1262 #if defined(__i386__)
1263
1264 #if defined(USE_CODE_COPY)
1265 static void cpu_send_trap(unsigned long pc, int trap,
1266 struct ucontext *uc)
1267 {
1268 TranslationBlock *tb;
1269
1270 if (cpu_single_env)
1271 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1272 /* now we have a real cpu fault */
1273 tb = tb_find_pc(pc);
1274 if (tb) {
1275 /* the PC is inside the translated code. It means that we have
1276 a virtual CPU fault */
1277 cpu_restore_state(tb, env, pc, uc);
1278 }
1279 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1280 raise_exception_err(trap, env->error_code);
1281 }
1282 #endif
1283
1284 int cpu_signal_handler(int host_signum, void *pinfo,
1285 void *puc)
1286 {
1287 siginfo_t *info = pinfo;
1288 struct ucontext *uc = puc;
1289 unsigned long pc;
1290 int trapno;
1291
1292 #ifndef REG_EIP
1293 /* for glibc 2.1 */
1294 #define REG_EIP EIP
1295 #define REG_ERR ERR
1296 #define REG_TRAPNO TRAPNO
1297 #endif
1298 pc = uc->uc_mcontext.gregs[REG_EIP];
1299 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1300 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1301 if (trapno == 0x00 || trapno == 0x05) {
1302 /* send division by zero or bound exception */
1303 cpu_send_trap(pc, trapno, uc);
1304 return 1;
1305 } else
1306 #endif
1307 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1308 trapno == 0xe ?
1309 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1310 &uc->uc_sigmask, puc);
1311 }
1312
1313 #elif defined(__x86_64__)
1314
1315 int cpu_signal_handler(int host_signum, void *pinfo,
1316 void *puc)
1317 {
1318 siginfo_t *info = pinfo;
1319 struct ucontext *uc = puc;
1320 unsigned long pc;
1321
1322 pc = uc->uc_mcontext.gregs[REG_RIP];
1323 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1324 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1325 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1326 &uc->uc_sigmask, puc);
1327 }
1328
1329 #elif defined(__powerpc__)
1330
1331 /***********************************************************************
1332 * signal context platform-specific definitions
1333 * From Wine
1334 */
1335 #ifdef linux
1336 /* All Registers access - only for local access */
1337 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1338 /* Gpr Registers access */
1339 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1340 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1341 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1342 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1343 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1344 # define LR_sig(context) REG_sig(link, context) /* Link register */
1345 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1346 /* Float Registers access */
1347 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1348 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1349 /* Exception Registers access */
1350 # define DAR_sig(context) REG_sig(dar, context)
1351 # define DSISR_sig(context) REG_sig(dsisr, context)
1352 # define TRAP_sig(context) REG_sig(trap, context)
1353 #endif /* linux */
1354
1355 #ifdef __APPLE__
1356 # include <sys/ucontext.h>
1357 typedef struct ucontext SIGCONTEXT;
1358 /* All Registers access - only for local access */
1359 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1360 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1361 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1362 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1363 /* Gpr Registers access */
1364 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1365 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1366 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1367 # define CTR_sig(context) REG_sig(ctr, context)
1368 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1369 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1370 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1371 /* Float Registers access */
1372 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1373 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1374 /* Exception Registers access */
1375 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1376 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1377 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1378 #endif /* __APPLE__ */
1379
1380 int cpu_signal_handler(int host_signum, void *pinfo,
1381 void *puc)
1382 {
1383 siginfo_t *info = pinfo;
1384 struct ucontext *uc = puc;
1385 unsigned long pc;
1386 int is_write;
1387
1388 pc = IAR_sig(uc);
1389 is_write = 0;
1390 #if 0
1391 /* ppc 4xx case */
1392 if (DSISR_sig(uc) & 0x00800000)
1393 is_write = 1;
1394 #else
1395 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1396 is_write = 1;
1397 #endif
1398 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1399 is_write, &uc->uc_sigmask, puc);
1400 }
1401
1402 #elif defined(__alpha__)
1403
1404 int cpu_signal_handler(int host_signum, void *pinfo,
1405 void *puc)
1406 {
1407 siginfo_t *info = pinfo;
1408 struct ucontext *uc = puc;
1409 uint32_t *pc = uc->uc_mcontext.sc_pc;
1410 uint32_t insn = *pc;
1411 int is_write = 0;
1412
1413 /* XXX: need kernel patch to get write flag faster */
1414 switch (insn >> 26) {
1415 case 0x0d: // stw
1416 case 0x0e: // stb
1417 case 0x0f: // stq_u
1418 case 0x24: // stf
1419 case 0x25: // stg
1420 case 0x26: // sts
1421 case 0x27: // stt
1422 case 0x2c: // stl
1423 case 0x2d: // stq
1424 case 0x2e: // stl_c
1425 case 0x2f: // stq_c
1426 is_write = 1;
1427 }
1428
1429 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1430 is_write, &uc->uc_sigmask, puc);
1431 }
1432 #elif defined(__sparc__)
1433
1434 int cpu_signal_handler(int host_signum, void *pinfo,
1435 void *puc)
1436 {
1437 siginfo_t *info = pinfo;
1438 uint32_t *regs = (uint32_t *)(info + 1);
1439 void *sigmask = (regs + 20);
1440 unsigned long pc;
1441 int is_write;
1442 uint32_t insn;
1443
1444 /* XXX: is there a standard glibc define ? */
1445 pc = regs[1];
1446 /* XXX: need kernel patch to get write flag faster */
1447 is_write = 0;
1448 insn = *(uint32_t *)pc;
1449 if ((insn >> 30) == 3) {
1450 switch((insn >> 19) & 0x3f) {
1451 case 0x05: // stb
1452 case 0x06: // sth
1453 case 0x04: // st
1454 case 0x07: // std
1455 case 0x24: // stf
1456 case 0x27: // stdf
1457 case 0x25: // stfsr
1458 is_write = 1;
1459 break;
1460 }
1461 }
1462 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1463 is_write, sigmask, NULL);
1464 }
1465
1466 #elif defined(__arm__)
1467
1468 int cpu_signal_handler(int host_signum, void *pinfo,
1469 void *puc)
1470 {
1471 siginfo_t *info = pinfo;
1472 struct ucontext *uc = puc;
1473 unsigned long pc;
1474 int is_write;
1475
1476 pc = uc->uc_mcontext.gregs[R15];
1477 /* XXX: compute is_write */
1478 is_write = 0;
1479 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1480 is_write,
1481 &uc->uc_sigmask, puc);
1482 }
1483
1484 #elif defined(__mc68000)
1485
1486 int cpu_signal_handler(int host_signum, void *pinfo,
1487 void *puc)
1488 {
1489 siginfo_t *info = pinfo;
1490 struct ucontext *uc = puc;
1491 unsigned long pc;
1492 int is_write;
1493
1494 pc = uc->uc_mcontext.gregs[16];
1495 /* XXX: compute is_write */
1496 is_write = 0;
1497 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1498 is_write,
1499 &uc->uc_sigmask, puc);
1500 }
1501
1502 #elif defined(__ia64)
1503
1504 #ifndef __ISR_VALID
1505 /* This ought to be in <bits/siginfo.h>... */
1506 # define __ISR_VALID 1
1507 #endif
1508
1509 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1510 {
1511 siginfo_t *info = pinfo;
1512 struct ucontext *uc = puc;
1513 unsigned long ip;
1514 int is_write = 0;
1515
1516 ip = uc->uc_mcontext.sc_ip;
1517 switch (host_signum) {
1518 case SIGILL:
1519 case SIGFPE:
1520 case SIGSEGV:
1521 case SIGBUS:
1522 case SIGTRAP:
1523 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1524 /* ISR.W (write-access) is bit 33: */
1525 is_write = (info->si_isr >> 33) & 1;
1526 break;
1527
1528 default:
1529 break;
1530 }
1531 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1532 is_write,
1533 &uc->uc_sigmask, puc);
1534 }
1535
1536 #elif defined(__s390__)
1537
1538 int cpu_signal_handler(int host_signum, void *pinfo,
1539 void *puc)
1540 {
1541 siginfo_t *info = pinfo;
1542 struct ucontext *uc = puc;
1543 unsigned long pc;
1544 int is_write;
1545
1546 pc = uc->uc_mcontext.psw.addr;
1547 /* XXX: compute is_write */
1548 is_write = 0;
1549 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1550 is_write,
1551 &uc->uc_sigmask, puc);
1552 }
1553
1554 #else
1555
1556 #error host CPU specific signal handler needed
1557
1558 #endif
1559
1560 #endif /* !defined(CONFIG_SOFTMMU) */