]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
PowerPC System emulation (Jocelyn Mayer)
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 int tb_invalidated_flag;
25
26 //#define DEBUG_EXEC
27 //#define DEBUG_SIGNAL
28
29 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
30 /* XXX: unify with i386 target */
31 void cpu_loop_exit(void)
32 {
33 longjmp(env->jmp_env, 1);
34 }
35 #endif
36
37 /* main execution loop */
38
39 int cpu_exec(CPUState *env1)
40 {
41 int saved_T0, saved_T1, saved_T2;
42 CPUState *saved_env;
43 #ifdef reg_EAX
44 int saved_EAX;
45 #endif
46 #ifdef reg_ECX
47 int saved_ECX;
48 #endif
49 #ifdef reg_EDX
50 int saved_EDX;
51 #endif
52 #ifdef reg_EBX
53 int saved_EBX;
54 #endif
55 #ifdef reg_ESP
56 int saved_ESP;
57 #endif
58 #ifdef reg_EBP
59 int saved_EBP;
60 #endif
61 #ifdef reg_ESI
62 int saved_ESI;
63 #endif
64 #ifdef reg_EDI
65 int saved_EDI;
66 #endif
67 #ifdef __sparc__
68 int saved_i7, tmp_T0;
69 #endif
70 int code_gen_size, ret, interrupt_request;
71 void (*gen_func)(void);
72 TranslationBlock *tb, **ptb;
73 uint8_t *tc_ptr, *cs_base, *pc;
74 unsigned int flags;
75
76 /* first we save global registers */
77 saved_T0 = T0;
78 saved_T1 = T1;
79 saved_T2 = T2;
80 saved_env = env;
81 env = env1;
82 #ifdef __sparc__
83 /* we also save i7 because longjmp may not restore it */
84 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85 #endif
86
87 #if defined(TARGET_I386)
88 #ifdef reg_EAX
89 saved_EAX = EAX;
90 EAX = env->regs[R_EAX];
91 #endif
92 #ifdef reg_ECX
93 saved_ECX = ECX;
94 ECX = env->regs[R_ECX];
95 #endif
96 #ifdef reg_EDX
97 saved_EDX = EDX;
98 EDX = env->regs[R_EDX];
99 #endif
100 #ifdef reg_EBX
101 saved_EBX = EBX;
102 EBX = env->regs[R_EBX];
103 #endif
104 #ifdef reg_ESP
105 saved_ESP = ESP;
106 ESP = env->regs[R_ESP];
107 #endif
108 #ifdef reg_EBP
109 saved_EBP = EBP;
110 EBP = env->regs[R_EBP];
111 #endif
112 #ifdef reg_ESI
113 saved_ESI = ESI;
114 ESI = env->regs[R_ESI];
115 #endif
116 #ifdef reg_EDI
117 saved_EDI = EDI;
118 EDI = env->regs[R_EDI];
119 #endif
120
121 /* put eflags in CPU temporary format */
122 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123 DF = 1 - (2 * ((env->eflags >> 10) & 1));
124 CC_OP = CC_OP_EFLAGS;
125 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126 #elif defined(TARGET_ARM)
127 {
128 unsigned int psr;
129 psr = env->cpsr;
130 env->CF = (psr >> 29) & 1;
131 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132 env->VF = (psr << 3) & 0x80000000;
133 env->cpsr = psr & ~0xf0000000;
134 }
135 #elif defined(TARGET_SPARC)
136 #elif defined(TARGET_PPC)
137 #else
138 #error unsupported target CPU
139 #endif
140 env->exception_index = -1;
141
142 /* prepare setjmp context for exception handling */
143 for(;;) {
144 if (setjmp(env->jmp_env) == 0) {
145 /* if an exception is pending, we execute it here */
146 if (env->exception_index >= 0) {
147 if (env->exception_index >= EXCP_INTERRUPT) {
148 /* exit request from the cpu execution loop */
149 ret = env->exception_index;
150 break;
151 } else if (env->user_mode_only) {
152 /* if user mode only, we simulate a fake exception
153 which will be hanlded outside the cpu execution
154 loop */
155 #if defined(TARGET_I386)
156 do_interrupt_user(env->exception_index,
157 env->exception_is_int,
158 env->error_code,
159 env->exception_next_eip);
160 #endif
161 ret = env->exception_index;
162 break;
163 } else {
164 #if defined(TARGET_I386)
165 /* simulate a real cpu exception. On i386, it can
166 trigger new exceptions, but we do not handle
167 double or triple faults yet. */
168 do_interrupt(env->exception_index,
169 env->exception_is_int,
170 env->error_code,
171 env->exception_next_eip, 0);
172 #elif defined(TARGET_PPC)
173 do_interrupt(env);
174 #endif
175 }
176 env->exception_index = -1;
177 }
178 T0 = 0; /* force lookup of first TB */
179 for(;;) {
180 #ifdef __sparc__
181 /* g1 can be modified by some libc? functions */
182 tmp_T0 = T0;
183 #endif
184 interrupt_request = env->interrupt_request;
185 if (__builtin_expect(interrupt_request, 0)) {
186 #if defined(TARGET_I386)
187 /* if hardware interrupt pending, we execute it */
188 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189 (env->eflags & IF_MASK) &&
190 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
191 int intno;
192 intno = cpu_x86_get_pic_interrupt(env);
193 if (loglevel) {
194 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
195 }
196 do_interrupt(intno, 0, 0, 0, 1);
197 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
198 /* ensure that no TB jump will be modified as
199 the program flow was changed */
200 #ifdef __sparc__
201 tmp_T0 = 0;
202 #else
203 T0 = 0;
204 #endif
205 }
206 #elif defined(TARGET_PPC)
207 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
208 do_queue_exception(EXCP_EXTERNAL);
209 if (check_exception_state(env))
210 do_interrupt(env);
211 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
212 }
213 #endif
214 if (interrupt_request & CPU_INTERRUPT_EXIT) {
215 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
216 env->exception_index = EXCP_INTERRUPT;
217 cpu_loop_exit();
218 }
219 }
220 #ifdef DEBUG_EXEC
221 if (loglevel) {
222 #if defined(TARGET_I386)
223 /* restore flags in standard format */
224 env->regs[R_EAX] = EAX;
225 env->regs[R_EBX] = EBX;
226 env->regs[R_ECX] = ECX;
227 env->regs[R_EDX] = EDX;
228 env->regs[R_ESI] = ESI;
229 env->regs[R_EDI] = EDI;
230 env->regs[R_EBP] = EBP;
231 env->regs[R_ESP] = ESP;
232 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
233 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
234 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
235 #elif defined(TARGET_ARM)
236 env->cpsr = compute_cpsr();
237 cpu_arm_dump_state(env, logfile, 0);
238 env->cpsr &= ~0xf0000000;
239 #elif defined(TARGET_SPARC)
240 cpu_sparc_dump_state (env, logfile, 0);
241 #elif defined(TARGET_PPC)
242 cpu_ppc_dump_state(env, logfile, 0);
243 #else
244 #error unsupported target CPU
245 #endif
246 }
247 #endif
248 /* we record a subset of the CPU state. It will
249 always be the same before a given translated block
250 is executed. */
251 #if defined(TARGET_I386)
252 flags = env->hflags;
253 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
254 cs_base = env->segs[R_CS].base;
255 pc = cs_base + env->eip;
256 #elif defined(TARGET_ARM)
257 flags = 0;
258 cs_base = 0;
259 pc = (uint8_t *)env->regs[15];
260 #elif defined(TARGET_SPARC)
261 flags = 0;
262 cs_base = (uint8_t *)env->npc;
263 pc = (uint8_t *) env->pc;
264 #elif defined(TARGET_PPC)
265 flags = 0;
266 cs_base = 0;
267 pc = (uint8_t *)env->nip;
268 #else
269 #error unsupported CPU
270 #endif
271 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
272 flags);
273 if (!tb) {
274 TranslationBlock **ptb1;
275 unsigned int h;
276 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
277
278
279 spin_lock(&tb_lock);
280
281 tb_invalidated_flag = 0;
282
283 /* find translated block using physical mappings */
284 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
285 phys_page1 = phys_pc & TARGET_PAGE_MASK;
286 phys_page2 = -1;
287 h = tb_phys_hash_func(phys_pc);
288 ptb1 = &tb_phys_hash[h];
289 for(;;) {
290 tb = *ptb1;
291 if (!tb)
292 goto not_found;
293 if (tb->pc == (unsigned long)pc &&
294 tb->page_addr[0] == phys_page1 &&
295 tb->cs_base == (unsigned long)cs_base &&
296 tb->flags == flags) {
297 /* check next page if needed */
298 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
299 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
300 phys_page2 = get_phys_addr_code(env, virt_page2);
301 if (tb->page_addr[1] == phys_page2)
302 goto found;
303 } else {
304 goto found;
305 }
306 }
307 ptb1 = &tb->phys_hash_next;
308 }
309 not_found:
310 /* if no translated code available, then translate it now */
311 tb = tb_alloc((unsigned long)pc);
312 if (!tb) {
313 /* flush must be done */
314 tb_flush(env);
315 /* cannot fail at this point */
316 tb = tb_alloc((unsigned long)pc);
317 /* don't forget to invalidate previous TB info */
318 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
319 T0 = 0;
320 }
321 tc_ptr = code_gen_ptr;
322 tb->tc_ptr = tc_ptr;
323 tb->cs_base = (unsigned long)cs_base;
324 tb->flags = flags;
325 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
326 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
327
328 /* check next page if needed */
329 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
330 phys_page2 = -1;
331 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
332 phys_page2 = get_phys_addr_code(env, virt_page2);
333 }
334 tb_link_phys(tb, phys_pc, phys_page2);
335
336 found:
337 if (tb_invalidated_flag) {
338 /* as some TB could have been invalidated because
339 of memory exceptions while generating the code, we
340 must recompute the hash index here */
341 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
342 while (*ptb != NULL)
343 ptb = &(*ptb)->hash_next;
344 T0 = 0;
345 }
346 /* we add the TB in the virtual pc hash table */
347 *ptb = tb;
348 tb->hash_next = NULL;
349 tb_link(tb);
350 spin_unlock(&tb_lock);
351 }
352 #ifdef DEBUG_EXEC
353 if (loglevel) {
354 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
355 (long)tb->tc_ptr, (long)tb->pc,
356 lookup_symbol((void *)tb->pc));
357 }
358 #endif
359 #ifdef __sparc__
360 T0 = tmp_T0;
361 #endif
362 /* see if we can patch the calling TB. */
363 if (T0 != 0) {
364 spin_lock(&tb_lock);
365 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
366 spin_unlock(&tb_lock);
367 }
368 tc_ptr = tb->tc_ptr;
369 env->current_tb = tb;
370 /* execute the generated code */
371 gen_func = (void *)tc_ptr;
372 #if defined(__sparc__)
373 __asm__ __volatile__("call %0\n\t"
374 "mov %%o7,%%i0"
375 : /* no outputs */
376 : "r" (gen_func)
377 : "i0", "i1", "i2", "i3", "i4", "i5");
378 #elif defined(__arm__)
379 asm volatile ("mov pc, %0\n\t"
380 ".global exec_loop\n\t"
381 "exec_loop:\n\t"
382 : /* no outputs */
383 : "r" (gen_func)
384 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
385 #else
386 gen_func();
387 #endif
388 env->current_tb = NULL;
389 /* reset soft MMU for next block (it can currently
390 only be set by a memory fault) */
391 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
392 if (env->hflags & HF_SOFTMMU_MASK) {
393 env->hflags &= ~HF_SOFTMMU_MASK;
394 /* do not allow linking to another block */
395 T0 = 0;
396 }
397 #endif
398 }
399 } else {
400 }
401 } /* for(;;) */
402
403
404 #if defined(TARGET_I386)
405 /* restore flags in standard format */
406 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
407
408 /* restore global registers */
409 #ifdef reg_EAX
410 EAX = saved_EAX;
411 #endif
412 #ifdef reg_ECX
413 ECX = saved_ECX;
414 #endif
415 #ifdef reg_EDX
416 EDX = saved_EDX;
417 #endif
418 #ifdef reg_EBX
419 EBX = saved_EBX;
420 #endif
421 #ifdef reg_ESP
422 ESP = saved_ESP;
423 #endif
424 #ifdef reg_EBP
425 EBP = saved_EBP;
426 #endif
427 #ifdef reg_ESI
428 ESI = saved_ESI;
429 #endif
430 #ifdef reg_EDI
431 EDI = saved_EDI;
432 #endif
433 #elif defined(TARGET_ARM)
434 env->cpsr = compute_cpsr();
435 #elif defined(TARGET_SPARC)
436 #elif defined(TARGET_PPC)
437 #else
438 #error unsupported target CPU
439 #endif
440 #ifdef __sparc__
441 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
442 #endif
443 T0 = saved_T0;
444 T1 = saved_T1;
445 T2 = saved_T2;
446 env = saved_env;
447 return ret;
448 }
449
450 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
451
452 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
453 {
454 CPUX86State *saved_env;
455
456 saved_env = env;
457 env = s;
458 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
459 selector &= 0xffff;
460 cpu_x86_load_seg_cache(env, seg_reg, selector,
461 (uint8_t *)(selector << 4), 0xffff, 0);
462 } else {
463 load_seg(seg_reg, selector);
464 }
465 env = saved_env;
466 }
467
468 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
469 {
470 CPUX86State *saved_env;
471
472 saved_env = env;
473 env = s;
474
475 helper_fsave(ptr, data32);
476
477 env = saved_env;
478 }
479
480 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
481 {
482 CPUX86State *saved_env;
483
484 saved_env = env;
485 env = s;
486
487 helper_frstor(ptr, data32);
488
489 env = saved_env;
490 }
491
492 #endif /* TARGET_I386 */
493
494 #undef EAX
495 #undef ECX
496 #undef EDX
497 #undef EBX
498 #undef ESP
499 #undef EBP
500 #undef ESI
501 #undef EDI
502 #undef EIP
503 #include <signal.h>
504 #include <sys/ucontext.h>
505
506 #if defined(TARGET_I386)
507
508 /* 'pc' is the host PC at which the exception was raised. 'address' is
509 the effective address of the memory exception. 'is_write' is 1 if a
510 write caused the exception and otherwise 0'. 'old_set' is the
511 signal set which should be restored */
512 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
513 int is_write, sigset_t *old_set)
514 {
515 TranslationBlock *tb;
516 int ret;
517
518 if (cpu_single_env)
519 env = cpu_single_env; /* XXX: find a correct solution for multithread */
520 #if defined(DEBUG_SIGNAL)
521 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
522 pc, address, is_write, *(unsigned long *)old_set);
523 #endif
524 /* XXX: locking issue */
525 if (is_write && page_unprotect(address)) {
526 return 1;
527 }
528 /* see if it is an MMU fault */
529 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
530 ((env->hflags & HF_CPL_MASK) == 3), 0);
531 if (ret < 0)
532 return 0; /* not an MMU fault */
533 if (ret == 0)
534 return 1; /* the MMU fault was handled without causing real CPU fault */
535 /* now we have a real cpu fault */
536 tb = tb_find_pc(pc);
537 if (tb) {
538 /* the PC is inside the translated code. It means that we have
539 a virtual CPU fault */
540 cpu_restore_state(tb, env, pc);
541 }
542 if (ret == 1) {
543 #if 0
544 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
545 env->eip, env->cr[2], env->error_code);
546 #endif
547 /* we restore the process signal mask as the sigreturn should
548 do it (XXX: use sigsetjmp) */
549 sigprocmask(SIG_SETMASK, old_set, NULL);
550 raise_exception_err(EXCP0E_PAGE, env->error_code);
551 } else {
552 /* activate soft MMU for this block */
553 env->hflags |= HF_SOFTMMU_MASK;
554 sigprocmask(SIG_SETMASK, old_set, NULL);
555 cpu_loop_exit();
556 }
557 /* never comes here */
558 return 1;
559 }
560
561 #elif defined(TARGET_ARM)
562 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
563 int is_write, sigset_t *old_set)
564 {
565 /* XXX: do more */
566 return 0;
567 }
568 #elif defined(TARGET_SPARC)
569 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
570 int is_write, sigset_t *old_set)
571 {
572 /* XXX: locking issue */
573 if (is_write && page_unprotect(address)) {
574 return 1;
575 }
576 return 0;
577 }
578 #elif defined (TARGET_PPC)
579 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
580 int is_write, sigset_t *old_set)
581 {
582 TranslationBlock *tb;
583 int ret;
584
585 #if 1
586 if (cpu_single_env)
587 env = cpu_single_env; /* XXX: find a correct solution for multithread */
588 #endif
589 #if defined(DEBUG_SIGNAL)
590 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
591 pc, address, is_write, *(unsigned long *)old_set);
592 #endif
593 /* XXX: locking issue */
594 if (is_write && page_unprotect(address)) {
595 return 1;
596 }
597
598 /* see if it is an MMU fault */
599 ret = cpu_ppc_handle_mmu_fault(env, address, is_write | ACCESS_INT, msr_pr, 0);
600 if (ret < 0)
601 return 0; /* not an MMU fault */
602 if (ret == 0)
603 return 1; /* the MMU fault was handled without causing real CPU fault */
604
605 /* now we have a real cpu fault */
606 tb = tb_find_pc(pc);
607 if (tb) {
608 /* the PC is inside the translated code. It means that we have
609 a virtual CPU fault */
610 cpu_restore_state(tb, env, pc);
611 }
612 if (ret == 1) {
613 #if 0
614 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
615 env->nip, env->error_code, tb);
616 #endif
617 /* we restore the process signal mask as the sigreturn should
618 do it (XXX: use sigsetjmp) */
619 sigprocmask(SIG_SETMASK, old_set, NULL);
620 do_queue_exception_err(env->exception_index, env->error_code);
621 } else {
622 /* activate soft MMU for this block */
623 sigprocmask(SIG_SETMASK, old_set, NULL);
624 cpu_loop_exit();
625 }
626 /* never comes here */
627 return 1;
628 }
629 #else
630 #error unsupported target CPU
631 #endif
632
633 #if defined(__i386__)
634
635 int cpu_signal_handler(int host_signum, struct siginfo *info,
636 void *puc)
637 {
638 struct ucontext *uc = puc;
639 unsigned long pc;
640
641 #ifndef REG_EIP
642 /* for glibc 2.1 */
643 #define REG_EIP EIP
644 #define REG_ERR ERR
645 #define REG_TRAPNO TRAPNO
646 #endif
647 pc = uc->uc_mcontext.gregs[REG_EIP];
648 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
649 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
650 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
651 &uc->uc_sigmask);
652 }
653
654 #elif defined(__powerpc)
655
656 int cpu_signal_handler(int host_signum, struct siginfo *info,
657 void *puc)
658 {
659 struct ucontext *uc = puc;
660 struct pt_regs *regs = uc->uc_mcontext.regs;
661 unsigned long pc;
662 int is_write;
663
664 pc = regs->nip;
665 is_write = 0;
666 #if 0
667 /* ppc 4xx case */
668 if (regs->dsisr & 0x00800000)
669 is_write = 1;
670 #else
671 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
672 is_write = 1;
673 #endif
674 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
675 is_write, &uc->uc_sigmask);
676 }
677
678 #elif defined(__alpha__)
679
680 int cpu_signal_handler(int host_signum, struct siginfo *info,
681 void *puc)
682 {
683 struct ucontext *uc = puc;
684 uint32_t *pc = uc->uc_mcontext.sc_pc;
685 uint32_t insn = *pc;
686 int is_write = 0;
687
688 /* XXX: need kernel patch to get write flag faster */
689 switch (insn >> 26) {
690 case 0x0d: // stw
691 case 0x0e: // stb
692 case 0x0f: // stq_u
693 case 0x24: // stf
694 case 0x25: // stg
695 case 0x26: // sts
696 case 0x27: // stt
697 case 0x2c: // stl
698 case 0x2d: // stq
699 case 0x2e: // stl_c
700 case 0x2f: // stq_c
701 is_write = 1;
702 }
703
704 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
705 is_write, &uc->uc_sigmask);
706 }
707 #elif defined(__sparc__)
708
709 int cpu_signal_handler(int host_signum, struct siginfo *info,
710 void *puc)
711 {
712 uint32_t *regs = (uint32_t *)(info + 1);
713 void *sigmask = (regs + 20);
714 unsigned long pc;
715 int is_write;
716 uint32_t insn;
717
718 /* XXX: is there a standard glibc define ? */
719 pc = regs[1];
720 /* XXX: need kernel patch to get write flag faster */
721 is_write = 0;
722 insn = *(uint32_t *)pc;
723 if ((insn >> 30) == 3) {
724 switch((insn >> 19) & 0x3f) {
725 case 0x05: // stb
726 case 0x06: // sth
727 case 0x04: // st
728 case 0x07: // std
729 case 0x24: // stf
730 case 0x27: // stdf
731 case 0x25: // stfsr
732 is_write = 1;
733 break;
734 }
735 }
736 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
737 is_write, sigmask);
738 }
739
740 #elif defined(__arm__)
741
742 int cpu_signal_handler(int host_signum, struct siginfo *info,
743 void *puc)
744 {
745 struct ucontext *uc = puc;
746 unsigned long pc;
747 int is_write;
748
749 pc = uc->uc_mcontext.gregs[R15];
750 /* XXX: compute is_write */
751 is_write = 0;
752 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
753 is_write,
754 &uc->uc_sigmask);
755 }
756
757 #elif defined(__mc68000)
758
759 int cpu_signal_handler(int host_signum, struct siginfo *info,
760 void *puc)
761 {
762 struct ucontext *uc = puc;
763 unsigned long pc;
764 int is_write;
765
766 pc = uc->uc_mcontext.gregs[16];
767 /* XXX: compute is_write */
768 is_write = 0;
769 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
770 is_write,
771 &uc->uc_sigmask);
772 }
773
774 #else
775
776 #error host CPU specific signal handler needed
777
778 #endif