]> git.proxmox.com Git - mirror_qemu.git/blob - cpu-exec.c
added cpu_resume_from_signal() - irq fix
[mirror_qemu.git] / cpu-exec.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #include "exec.h"
22 #include "disas.h"
23
24 #if !defined(CONFIG_SOFTMMU)
25 #undef EAX
26 #undef ECX
27 #undef EDX
28 #undef EBX
29 #undef ESP
30 #undef EBP
31 #undef ESI
32 #undef EDI
33 #undef EIP
34 #include <signal.h>
35 #include <sys/ucontext.h>
36 #endif
37
38 int tb_invalidated_flag;
39
40 //#define DEBUG_EXEC
41 //#define DEBUG_SIGNAL
42
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
46 {
47 longjmp(env->jmp_env, 1);
48 }
49 #endif
50
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
53 */
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
55 {
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
58 #endif
59
60 env = env1;
61
62 /* XXX: restore cpu registers saved in host registers */
63
64 #if !defined(CONFIG_SOFTMMU)
65 if (puc) {
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68 }
69 #endif
70 longjmp(env->jmp_env, 1);
71 }
72
73 /* main execution loop */
74
75 int cpu_exec(CPUState *env1)
76 {
77 int saved_T0, saved_T1, saved_T2;
78 CPUState *saved_env;
79 #ifdef reg_EAX
80 int saved_EAX;
81 #endif
82 #ifdef reg_ECX
83 int saved_ECX;
84 #endif
85 #ifdef reg_EDX
86 int saved_EDX;
87 #endif
88 #ifdef reg_EBX
89 int saved_EBX;
90 #endif
91 #ifdef reg_ESP
92 int saved_ESP;
93 #endif
94 #ifdef reg_EBP
95 int saved_EBP;
96 #endif
97 #ifdef reg_ESI
98 int saved_ESI;
99 #endif
100 #ifdef reg_EDI
101 int saved_EDI;
102 #endif
103 #ifdef __sparc__
104 int saved_i7, tmp_T0;
105 #endif
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 uint8_t *tc_ptr, *cs_base, *pc;
110 unsigned int flags;
111
112 /* first we save global registers */
113 saved_T0 = T0;
114 saved_T1 = T1;
115 saved_T2 = T2;
116 saved_env = env;
117 env = env1;
118 #ifdef __sparc__
119 /* we also save i7 because longjmp may not restore it */
120 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
121 #endif
122
123 #if defined(TARGET_I386)
124 #ifdef reg_EAX
125 saved_EAX = EAX;
126 EAX = env->regs[R_EAX];
127 #endif
128 #ifdef reg_ECX
129 saved_ECX = ECX;
130 ECX = env->regs[R_ECX];
131 #endif
132 #ifdef reg_EDX
133 saved_EDX = EDX;
134 EDX = env->regs[R_EDX];
135 #endif
136 #ifdef reg_EBX
137 saved_EBX = EBX;
138 EBX = env->regs[R_EBX];
139 #endif
140 #ifdef reg_ESP
141 saved_ESP = ESP;
142 ESP = env->regs[R_ESP];
143 #endif
144 #ifdef reg_EBP
145 saved_EBP = EBP;
146 EBP = env->regs[R_EBP];
147 #endif
148 #ifdef reg_ESI
149 saved_ESI = ESI;
150 ESI = env->regs[R_ESI];
151 #endif
152 #ifdef reg_EDI
153 saved_EDI = EDI;
154 EDI = env->regs[R_EDI];
155 #endif
156
157 /* put eflags in CPU temporary format */
158 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
159 DF = 1 - (2 * ((env->eflags >> 10) & 1));
160 CC_OP = CC_OP_EFLAGS;
161 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
162 #elif defined(TARGET_ARM)
163 {
164 unsigned int psr;
165 psr = env->cpsr;
166 env->CF = (psr >> 29) & 1;
167 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
168 env->VF = (psr << 3) & 0x80000000;
169 env->cpsr = psr & ~0xf0000000;
170 }
171 #elif defined(TARGET_SPARC)
172 #elif defined(TARGET_PPC)
173 #else
174 #error unsupported target CPU
175 #endif
176 env->exception_index = -1;
177
178 /* prepare setjmp context for exception handling */
179 for(;;) {
180 if (setjmp(env->jmp_env) == 0) {
181 env->current_tb = NULL;
182 /* if an exception is pending, we execute it here */
183 if (env->exception_index >= 0) {
184 if (env->exception_index >= EXCP_INTERRUPT) {
185 /* exit request from the cpu execution loop */
186 ret = env->exception_index;
187 break;
188 } else if (env->user_mode_only) {
189 /* if user mode only, we simulate a fake exception
190 which will be hanlded outside the cpu execution
191 loop */
192 #if defined(TARGET_I386)
193 do_interrupt_user(env->exception_index,
194 env->exception_is_int,
195 env->error_code,
196 env->exception_next_eip);
197 #endif
198 ret = env->exception_index;
199 break;
200 } else {
201 #if defined(TARGET_I386)
202 /* simulate a real cpu exception. On i386, it can
203 trigger new exceptions, but we do not handle
204 double or triple faults yet. */
205 do_interrupt(env->exception_index,
206 env->exception_is_int,
207 env->error_code,
208 env->exception_next_eip, 0);
209 #elif defined(TARGET_PPC)
210 do_interrupt(env);
211 #endif
212 }
213 env->exception_index = -1;
214 }
215 T0 = 0; /* force lookup of first TB */
216 for(;;) {
217 #ifdef __sparc__
218 /* g1 can be modified by some libc? functions */
219 tmp_T0 = T0;
220 #endif
221 interrupt_request = env->interrupt_request;
222 if (__builtin_expect(interrupt_request, 0)) {
223 #if defined(TARGET_I386)
224 /* if hardware interrupt pending, we execute it */
225 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
226 (env->eflags & IF_MASK) &&
227 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
228 int intno;
229 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
230 intno = cpu_get_pic_interrupt(env);
231 if (loglevel & CPU_LOG_TB_IN_ASM) {
232 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
233 }
234 do_interrupt(intno, 0, 0, 0, 1);
235 /* ensure that no TB jump will be modified as
236 the program flow was changed */
237 #ifdef __sparc__
238 tmp_T0 = 0;
239 #else
240 T0 = 0;
241 #endif
242 }
243 #elif defined(TARGET_PPC)
244 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
245 do_queue_exception(EXCP_EXTERNAL);
246 if (check_exception_state(env))
247 do_interrupt(env);
248 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
249 }
250 #endif
251 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
252 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
253 /* ensure that no TB jump will be modified as
254 the program flow was changed */
255 #ifdef __sparc__
256 tmp_T0 = 0;
257 #else
258 T0 = 0;
259 #endif
260 }
261 if (interrupt_request & CPU_INTERRUPT_EXIT) {
262 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
263 env->exception_index = EXCP_INTERRUPT;
264 cpu_loop_exit();
265 }
266 }
267 #ifdef DEBUG_EXEC
268 if (loglevel & CPU_LOG_EXEC) {
269 #if defined(TARGET_I386)
270 /* restore flags in standard format */
271 env->regs[R_EAX] = EAX;
272 env->regs[R_EBX] = EBX;
273 env->regs[R_ECX] = ECX;
274 env->regs[R_EDX] = EDX;
275 env->regs[R_ESI] = ESI;
276 env->regs[R_EDI] = EDI;
277 env->regs[R_EBP] = EBP;
278 env->regs[R_ESP] = ESP;
279 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
280 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
281 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
282 #elif defined(TARGET_ARM)
283 env->cpsr = compute_cpsr();
284 cpu_arm_dump_state(env, logfile, 0);
285 env->cpsr &= ~0xf0000000;
286 #elif defined(TARGET_SPARC)
287 cpu_sparc_dump_state (env, logfile, 0);
288 #elif defined(TARGET_PPC)
289 cpu_ppc_dump_state(env, logfile, 0);
290 #else
291 #error unsupported target CPU
292 #endif
293 }
294 #endif
295 /* we record a subset of the CPU state. It will
296 always be the same before a given translated block
297 is executed. */
298 #if defined(TARGET_I386)
299 flags = env->hflags;
300 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
301 cs_base = env->segs[R_CS].base;
302 pc = cs_base + env->eip;
303 #elif defined(TARGET_ARM)
304 flags = 0;
305 cs_base = 0;
306 pc = (uint8_t *)env->regs[15];
307 #elif defined(TARGET_SPARC)
308 flags = 0;
309 cs_base = (uint8_t *)env->npc;
310 pc = (uint8_t *) env->pc;
311 #elif defined(TARGET_PPC)
312 flags = 0;
313 cs_base = 0;
314 pc = (uint8_t *)env->nip;
315 #else
316 #error unsupported CPU
317 #endif
318 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
319 flags);
320 if (!tb) {
321 TranslationBlock **ptb1;
322 unsigned int h;
323 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
324
325
326 spin_lock(&tb_lock);
327
328 tb_invalidated_flag = 0;
329
330 /* find translated block using physical mappings */
331 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
332 phys_page1 = phys_pc & TARGET_PAGE_MASK;
333 phys_page2 = -1;
334 h = tb_phys_hash_func(phys_pc);
335 ptb1 = &tb_phys_hash[h];
336 for(;;) {
337 tb = *ptb1;
338 if (!tb)
339 goto not_found;
340 if (tb->pc == (unsigned long)pc &&
341 tb->page_addr[0] == phys_page1 &&
342 tb->cs_base == (unsigned long)cs_base &&
343 tb->flags == flags) {
344 /* check next page if needed */
345 if (tb->page_addr[1] != -1) {
346 virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) +
347 TARGET_PAGE_SIZE;
348 phys_page2 = get_phys_addr_code(env, virt_page2);
349 if (tb->page_addr[1] == phys_page2)
350 goto found;
351 } else {
352 goto found;
353 }
354 }
355 ptb1 = &tb->phys_hash_next;
356 }
357 not_found:
358 /* if no translated code available, then translate it now */
359 tb = tb_alloc((unsigned long)pc);
360 if (!tb) {
361 /* flush must be done */
362 tb_flush(env);
363 /* cannot fail at this point */
364 tb = tb_alloc((unsigned long)pc);
365 /* don't forget to invalidate previous TB info */
366 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
367 T0 = 0;
368 }
369 tc_ptr = code_gen_ptr;
370 tb->tc_ptr = tc_ptr;
371 tb->cs_base = (unsigned long)cs_base;
372 tb->flags = flags;
373 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
374 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
375
376 /* check next page if needed */
377 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
378 phys_page2 = -1;
379 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
380 phys_page2 = get_phys_addr_code(env, virt_page2);
381 }
382 tb_link_phys(tb, phys_pc, phys_page2);
383
384 found:
385 if (tb_invalidated_flag) {
386 /* as some TB could have been invalidated because
387 of memory exceptions while generating the code, we
388 must recompute the hash index here */
389 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
390 while (*ptb != NULL)
391 ptb = &(*ptb)->hash_next;
392 T0 = 0;
393 }
394 /* we add the TB in the virtual pc hash table */
395 *ptb = tb;
396 tb->hash_next = NULL;
397 tb_link(tb);
398 spin_unlock(&tb_lock);
399 }
400 #ifdef DEBUG_EXEC
401 if (loglevel & CPU_LOG_EXEC) {
402 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
403 (long)tb->tc_ptr, (long)tb->pc,
404 lookup_symbol((void *)tb->pc));
405 }
406 #endif
407 #ifdef __sparc__
408 T0 = tmp_T0;
409 #endif
410 /* see if we can patch the calling TB. */
411 if (T0 != 0
412 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
413 && (tb->cflags & CF_CODE_COPY) ==
414 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
415 #endif
416 ) {
417 spin_lock(&tb_lock);
418 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
419 #if defined(USE_CODE_COPY)
420 /* propagates the FP use info */
421 ((TranslationBlock *)(T0 & ~3))->cflags |=
422 (tb->cflags & CF_FP_USED);
423 #endif
424 spin_unlock(&tb_lock);
425 }
426 tc_ptr = tb->tc_ptr;
427 env->current_tb = tb;
428 /* execute the generated code */
429 gen_func = (void *)tc_ptr;
430 #if defined(__sparc__)
431 __asm__ __volatile__("call %0\n\t"
432 "mov %%o7,%%i0"
433 : /* no outputs */
434 : "r" (gen_func)
435 : "i0", "i1", "i2", "i3", "i4", "i5");
436 #elif defined(__arm__)
437 asm volatile ("mov pc, %0\n\t"
438 ".global exec_loop\n\t"
439 "exec_loop:\n\t"
440 : /* no outputs */
441 : "r" (gen_func)
442 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
443 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
444 {
445 if (!(tb->cflags & CF_CODE_COPY)) {
446 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
447 save_native_fp_state(env);
448 }
449 gen_func();
450 } else {
451 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
452 restore_native_fp_state(env);
453 }
454 /* we work with native eflags */
455 CC_SRC = cc_table[CC_OP].compute_all();
456 CC_OP = CC_OP_EFLAGS;
457 asm(".globl exec_loop\n"
458 "\n"
459 "debug1:\n"
460 " pushl %%ebp\n"
461 " fs movl %10, %9\n"
462 " fs movl %11, %%eax\n"
463 " andl $0x400, %%eax\n"
464 " fs orl %8, %%eax\n"
465 " pushl %%eax\n"
466 " popf\n"
467 " fs movl %%esp, %12\n"
468 " fs movl %0, %%eax\n"
469 " fs movl %1, %%ecx\n"
470 " fs movl %2, %%edx\n"
471 " fs movl %3, %%ebx\n"
472 " fs movl %4, %%esp\n"
473 " fs movl %5, %%ebp\n"
474 " fs movl %6, %%esi\n"
475 " fs movl %7, %%edi\n"
476 " fs jmp *%9\n"
477 "exec_loop:\n"
478 " fs movl %%esp, %4\n"
479 " fs movl %12, %%esp\n"
480 " fs movl %%eax, %0\n"
481 " fs movl %%ecx, %1\n"
482 " fs movl %%edx, %2\n"
483 " fs movl %%ebx, %3\n"
484 " fs movl %%ebp, %5\n"
485 " fs movl %%esi, %6\n"
486 " fs movl %%edi, %7\n"
487 " pushf\n"
488 " popl %%eax\n"
489 " movl %%eax, %%ecx\n"
490 " andl $0x400, %%ecx\n"
491 " shrl $9, %%ecx\n"
492 " andl $0x8d5, %%eax\n"
493 " fs movl %%eax, %8\n"
494 " movl $1, %%eax\n"
495 " subl %%ecx, %%eax\n"
496 " fs movl %%eax, %11\n"
497 " fs movl %9, %%ebx\n" /* get T0 value */
498 " popl %%ebp\n"
499 :
500 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
501 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
502 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
503 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
504 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
505 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
506 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
507 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
508 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
509 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
510 "a" (gen_func),
511 "m" (*(uint8_t *)offsetof(CPUState, df)),
512 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
513 : "%ecx", "%edx"
514 );
515 }
516 }
517 #else
518 gen_func();
519 #endif
520 env->current_tb = NULL;
521 /* reset soft MMU for next block (it can currently
522 only be set by a memory fault) */
523 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
524 if (env->hflags & HF_SOFTMMU_MASK) {
525 env->hflags &= ~HF_SOFTMMU_MASK;
526 /* do not allow linking to another block */
527 T0 = 0;
528 }
529 #endif
530 }
531 } else {
532 }
533 } /* for(;;) */
534
535
536 #if defined(TARGET_I386)
537 #if defined(USE_CODE_COPY)
538 if (env->native_fp_regs) {
539 save_native_fp_state(env);
540 }
541 #endif
542 /* restore flags in standard format */
543 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
544
545 /* restore global registers */
546 #ifdef reg_EAX
547 EAX = saved_EAX;
548 #endif
549 #ifdef reg_ECX
550 ECX = saved_ECX;
551 #endif
552 #ifdef reg_EDX
553 EDX = saved_EDX;
554 #endif
555 #ifdef reg_EBX
556 EBX = saved_EBX;
557 #endif
558 #ifdef reg_ESP
559 ESP = saved_ESP;
560 #endif
561 #ifdef reg_EBP
562 EBP = saved_EBP;
563 #endif
564 #ifdef reg_ESI
565 ESI = saved_ESI;
566 #endif
567 #ifdef reg_EDI
568 EDI = saved_EDI;
569 #endif
570 #elif defined(TARGET_ARM)
571 env->cpsr = compute_cpsr();
572 #elif defined(TARGET_SPARC)
573 #elif defined(TARGET_PPC)
574 #else
575 #error unsupported target CPU
576 #endif
577 #ifdef __sparc__
578 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
579 #endif
580 T0 = saved_T0;
581 T1 = saved_T1;
582 T2 = saved_T2;
583 env = saved_env;
584 return ret;
585 }
586
587 /* must only be called from the generated code as an exception can be
588 generated */
589 void tb_invalidate_page_range(target_ulong start, target_ulong end)
590 {
591 target_ulong phys_addr;
592 phys_addr = get_phys_addr_code(env, start);
593 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
594 }
595
596 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
597
598 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
599 {
600 CPUX86State *saved_env;
601
602 saved_env = env;
603 env = s;
604 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
605 selector &= 0xffff;
606 cpu_x86_load_seg_cache(env, seg_reg, selector,
607 (uint8_t *)(selector << 4), 0xffff, 0);
608 } else {
609 load_seg(seg_reg, selector);
610 }
611 env = saved_env;
612 }
613
614 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
615 {
616 CPUX86State *saved_env;
617
618 saved_env = env;
619 env = s;
620
621 helper_fsave(ptr, data32);
622
623 env = saved_env;
624 }
625
626 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
627 {
628 CPUX86State *saved_env;
629
630 saved_env = env;
631 env = s;
632
633 helper_frstor(ptr, data32);
634
635 env = saved_env;
636 }
637
638 #endif /* TARGET_I386 */
639
640 #if !defined(CONFIG_SOFTMMU)
641
642 #if defined(TARGET_I386)
643
644 /* 'pc' is the host PC at which the exception was raised. 'address' is
645 the effective address of the memory exception. 'is_write' is 1 if a
646 write caused the exception and otherwise 0'. 'old_set' is the
647 signal set which should be restored */
648 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
649 int is_write, sigset_t *old_set,
650 void *puc)
651 {
652 TranslationBlock *tb;
653 int ret;
654
655 if (cpu_single_env)
656 env = cpu_single_env; /* XXX: find a correct solution for multithread */
657 #if defined(DEBUG_SIGNAL)
658 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
659 pc, address, is_write, *(unsigned long *)old_set);
660 #endif
661 /* XXX: locking issue */
662 if (is_write && page_unprotect(address, pc, puc)) {
663 return 1;
664 }
665
666 /* see if it is an MMU fault */
667 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
668 ((env->hflags & HF_CPL_MASK) == 3), 0);
669 if (ret < 0)
670 return 0; /* not an MMU fault */
671 if (ret == 0)
672 return 1; /* the MMU fault was handled without causing real CPU fault */
673 /* now we have a real cpu fault */
674 tb = tb_find_pc(pc);
675 if (tb) {
676 /* the PC is inside the translated code. It means that we have
677 a virtual CPU fault */
678 cpu_restore_state(tb, env, pc, puc);
679 }
680 if (ret == 1) {
681 #if 0
682 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
683 env->eip, env->cr[2], env->error_code);
684 #endif
685 /* we restore the process signal mask as the sigreturn should
686 do it (XXX: use sigsetjmp) */
687 sigprocmask(SIG_SETMASK, old_set, NULL);
688 raise_exception_err(EXCP0E_PAGE, env->error_code);
689 } else {
690 /* activate soft MMU for this block */
691 env->hflags |= HF_SOFTMMU_MASK;
692 cpu_resume_from_signal(env, puc);
693 }
694 /* never comes here */
695 return 1;
696 }
697
698 #elif defined(TARGET_ARM)
699 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
700 int is_write, sigset_t *old_set,
701 void *puc)
702 {
703 /* XXX: do more */
704 return 0;
705 }
706 #elif defined(TARGET_SPARC)
707 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
708 int is_write, sigset_t *old_set,
709 void *puc)
710 {
711 /* XXX: locking issue */
712 if (is_write && page_unprotect(address, pc, puc)) {
713 return 1;
714 }
715 return 0;
716 }
717 #elif defined (TARGET_PPC)
718 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
719 int is_write, sigset_t *old_set,
720 void *puc)
721 {
722 TranslationBlock *tb;
723 int ret;
724
725 #if 1
726 if (cpu_single_env)
727 env = cpu_single_env; /* XXX: find a correct solution for multithread */
728 #endif
729 #if defined(DEBUG_SIGNAL)
730 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
731 pc, address, is_write, *(unsigned long *)old_set);
732 #endif
733 /* XXX: locking issue */
734 if (is_write && page_unprotect(address, pc, puc)) {
735 return 1;
736 }
737
738 /* see if it is an MMU fault */
739 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
740 if (ret < 0)
741 return 0; /* not an MMU fault */
742 if (ret == 0)
743 return 1; /* the MMU fault was handled without causing real CPU fault */
744
745 /* now we have a real cpu fault */
746 tb = tb_find_pc(pc);
747 if (tb) {
748 /* the PC is inside the translated code. It means that we have
749 a virtual CPU fault */
750 cpu_restore_state(tb, env, pc, puc);
751 }
752 if (ret == 1) {
753 #if 0
754 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
755 env->nip, env->error_code, tb);
756 #endif
757 /* we restore the process signal mask as the sigreturn should
758 do it (XXX: use sigsetjmp) */
759 sigprocmask(SIG_SETMASK, old_set, NULL);
760 do_queue_exception_err(env->exception_index, env->error_code);
761 } else {
762 /* activate soft MMU for this block */
763 cpu_resume_from_signal(env, puc);
764 }
765 /* never comes here */
766 return 1;
767 }
768 #else
769 #error unsupported target CPU
770 #endif
771
772 #if defined(__i386__)
773
774 #if defined(USE_CODE_COPY)
775 static void cpu_send_trap(unsigned long pc, int trap,
776 struct ucontext *uc)
777 {
778 TranslationBlock *tb;
779
780 if (cpu_single_env)
781 env = cpu_single_env; /* XXX: find a correct solution for multithread */
782 /* now we have a real cpu fault */
783 tb = tb_find_pc(pc);
784 if (tb) {
785 /* the PC is inside the translated code. It means that we have
786 a virtual CPU fault */
787 cpu_restore_state(tb, env, pc, uc);
788 }
789 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
790 raise_exception_err(trap, env->error_code);
791 }
792 #endif
793
794 int cpu_signal_handler(int host_signum, struct siginfo *info,
795 void *puc)
796 {
797 struct ucontext *uc = puc;
798 unsigned long pc;
799 int trapno;
800
801 #ifndef REG_EIP
802 /* for glibc 2.1 */
803 #define REG_EIP EIP
804 #define REG_ERR ERR
805 #define REG_TRAPNO TRAPNO
806 #endif
807 pc = uc->uc_mcontext.gregs[REG_EIP];
808 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
809 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
810 if (trapno == 0x00 || trapno == 0x05) {
811 /* send division by zero or bound exception */
812 cpu_send_trap(pc, trapno, uc);
813 return 1;
814 } else
815 #endif
816 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
817 trapno == 0xe ?
818 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
819 &uc->uc_sigmask, puc);
820 }
821
822 #elif defined(__x86_64__)
823
824 int cpu_signal_handler(int host_signum, struct siginfo *info,
825 void *puc)
826 {
827 struct ucontext *uc = puc;
828 unsigned long pc;
829
830 pc = uc->uc_mcontext.gregs[REG_RIP];
831 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
832 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
833 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
834 &uc->uc_sigmask, puc);
835 }
836
837 #elif defined(__powerpc)
838
839 int cpu_signal_handler(int host_signum, struct siginfo *info,
840 void *puc)
841 {
842 struct ucontext *uc = puc;
843 struct pt_regs *regs = uc->uc_mcontext.regs;
844 unsigned long pc;
845 int is_write;
846
847 pc = regs->nip;
848 is_write = 0;
849 #if 0
850 /* ppc 4xx case */
851 if (regs->dsisr & 0x00800000)
852 is_write = 1;
853 #else
854 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
855 is_write = 1;
856 #endif
857 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
858 is_write, &uc->uc_sigmask, puc);
859 }
860
861 #elif defined(__alpha__)
862
863 int cpu_signal_handler(int host_signum, struct siginfo *info,
864 void *puc)
865 {
866 struct ucontext *uc = puc;
867 uint32_t *pc = uc->uc_mcontext.sc_pc;
868 uint32_t insn = *pc;
869 int is_write = 0;
870
871 /* XXX: need kernel patch to get write flag faster */
872 switch (insn >> 26) {
873 case 0x0d: // stw
874 case 0x0e: // stb
875 case 0x0f: // stq_u
876 case 0x24: // stf
877 case 0x25: // stg
878 case 0x26: // sts
879 case 0x27: // stt
880 case 0x2c: // stl
881 case 0x2d: // stq
882 case 0x2e: // stl_c
883 case 0x2f: // stq_c
884 is_write = 1;
885 }
886
887 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
888 is_write, &uc->uc_sigmask, puc);
889 }
890 #elif defined(__sparc__)
891
892 int cpu_signal_handler(int host_signum, struct siginfo *info,
893 void *puc)
894 {
895 uint32_t *regs = (uint32_t *)(info + 1);
896 void *sigmask = (regs + 20);
897 unsigned long pc;
898 int is_write;
899 uint32_t insn;
900
901 /* XXX: is there a standard glibc define ? */
902 pc = regs[1];
903 /* XXX: need kernel patch to get write flag faster */
904 is_write = 0;
905 insn = *(uint32_t *)pc;
906 if ((insn >> 30) == 3) {
907 switch((insn >> 19) & 0x3f) {
908 case 0x05: // stb
909 case 0x06: // sth
910 case 0x04: // st
911 case 0x07: // std
912 case 0x24: // stf
913 case 0x27: // stdf
914 case 0x25: // stfsr
915 is_write = 1;
916 break;
917 }
918 }
919 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
920 is_write, sigmask, NULL);
921 }
922
923 #elif defined(__arm__)
924
925 int cpu_signal_handler(int host_signum, struct siginfo *info,
926 void *puc)
927 {
928 struct ucontext *uc = puc;
929 unsigned long pc;
930 int is_write;
931
932 pc = uc->uc_mcontext.gregs[R15];
933 /* XXX: compute is_write */
934 is_write = 0;
935 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
936 is_write,
937 &uc->uc_sigmask);
938 }
939
940 #elif defined(__mc68000)
941
942 int cpu_signal_handler(int host_signum, struct siginfo *info,
943 void *puc)
944 {
945 struct ucontext *uc = puc;
946 unsigned long pc;
947 int is_write;
948
949 pc = uc->uc_mcontext.gregs[16];
950 /* XXX: compute is_write */
951 is_write = 0;
952 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
953 is_write,
954 &uc->uc_sigmask, puc);
955 }
956
957 #else
958
959 #error host CPU specific signal handler needed
960
961 #endif
962
963 #endif /* !defined(CONFIG_SOFTMMU) */