]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
target-s390x: support OC and NC in the EX instruction
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor/monitor.h"
29 #include "qapi/qmp/qerror.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/dma.h"
33 #include "sysemu/kvm.h"
34 #include "qmp-commands.h"
35
36 #include "qemu/thread.h"
37 #include "sysemu/cpus.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/main-loop.h"
40 #include "qemu/bitmap.h"
41 #include "qemu/seqlock.h"
42 #include "qapi-event.h"
43 #include "hw/nmi.h"
44
45 #ifndef _WIN32
46 #include "qemu/compatfd.h"
47 #endif
48
49 #ifdef CONFIG_LINUX
50
51 #include <sys/prctl.h>
52
53 #ifndef PR_MCE_KILL
54 #define PR_MCE_KILL 33
55 #endif
56
57 #ifndef PR_MCE_KILL_SET
58 #define PR_MCE_KILL_SET 1
59 #endif
60
61 #ifndef PR_MCE_KILL_EARLY
62 #define PR_MCE_KILL_EARLY 1
63 #endif
64
65 #endif /* CONFIG_LINUX */
66
67 static CPUState *next_cpu;
68 int64_t max_delay;
69 int64_t max_advance;
70
71 bool cpu_is_stopped(CPUState *cpu)
72 {
73 return cpu->stopped || !runstate_is_running();
74 }
75
76 static bool cpu_thread_is_idle(CPUState *cpu)
77 {
78 if (cpu->stop || cpu->queued_work_first) {
79 return false;
80 }
81 if (cpu_is_stopped(cpu)) {
82 return true;
83 }
84 if (!cpu->halted || cpu_has_work(cpu) ||
85 kvm_halt_in_kernel()) {
86 return false;
87 }
88 return true;
89 }
90
91 static bool all_cpu_threads_idle(void)
92 {
93 CPUState *cpu;
94
95 CPU_FOREACH(cpu) {
96 if (!cpu_thread_is_idle(cpu)) {
97 return false;
98 }
99 }
100 return true;
101 }
102
103 /***********************************************************/
104 /* guest cycle counter */
105
106 /* Protected by TimersState seqlock */
107
108 static int64_t vm_clock_warp_start = -1;
109 /* Conversion factor from emulated instructions to virtual clock ticks. */
110 static int icount_time_shift;
111 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
112 #define MAX_ICOUNT_SHIFT 10
113
114 static QEMUTimer *icount_rt_timer;
115 static QEMUTimer *icount_vm_timer;
116 static QEMUTimer *icount_warp_timer;
117
118 typedef struct TimersState {
119 /* Protected by BQL. */
120 int64_t cpu_ticks_prev;
121 int64_t cpu_ticks_offset;
122
123 /* cpu_clock_offset can be read out of BQL, so protect it with
124 * this lock.
125 */
126 QemuSeqLock vm_clock_seqlock;
127 int64_t cpu_clock_offset;
128 int32_t cpu_ticks_enabled;
129 int64_t dummy;
130
131 /* Compensate for varying guest execution speed. */
132 int64_t qemu_icount_bias;
133 /* Only written by TCG thread */
134 int64_t qemu_icount;
135 } TimersState;
136
137 static TimersState timers_state;
138
139 int64_t cpu_get_icount_raw(void)
140 {
141 int64_t icount;
142 CPUState *cpu = current_cpu;
143
144 icount = timers_state.qemu_icount;
145 if (cpu) {
146 if (!cpu_can_do_io(cpu)) {
147 fprintf(stderr, "Bad icount read\n");
148 exit(1);
149 }
150 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
151 }
152 return icount;
153 }
154
155 /* Return the virtual CPU time, based on the instruction counter. */
156 static int64_t cpu_get_icount_locked(void)
157 {
158 int64_t icount = cpu_get_icount_raw();
159 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
160 }
161
162 int64_t cpu_get_icount(void)
163 {
164 int64_t icount;
165 unsigned start;
166
167 do {
168 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
169 icount = cpu_get_icount_locked();
170 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
171
172 return icount;
173 }
174
175 int64_t cpu_icount_to_ns(int64_t icount)
176 {
177 return icount << icount_time_shift;
178 }
179
180 /* return the host CPU cycle counter and handle stop/restart */
181 /* Caller must hold the BQL */
182 int64_t cpu_get_ticks(void)
183 {
184 int64_t ticks;
185
186 if (use_icount) {
187 return cpu_get_icount();
188 }
189
190 ticks = timers_state.cpu_ticks_offset;
191 if (timers_state.cpu_ticks_enabled) {
192 ticks += cpu_get_real_ticks();
193 }
194
195 if (timers_state.cpu_ticks_prev > ticks) {
196 /* Note: non increasing ticks may happen if the host uses
197 software suspend */
198 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
199 ticks = timers_state.cpu_ticks_prev;
200 }
201
202 timers_state.cpu_ticks_prev = ticks;
203 return ticks;
204 }
205
206 static int64_t cpu_get_clock_locked(void)
207 {
208 int64_t ticks;
209
210 ticks = timers_state.cpu_clock_offset;
211 if (timers_state.cpu_ticks_enabled) {
212 ticks += get_clock();
213 }
214
215 return ticks;
216 }
217
218 /* return the host CPU monotonic timer and handle stop/restart */
219 int64_t cpu_get_clock(void)
220 {
221 int64_t ti;
222 unsigned start;
223
224 do {
225 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
226 ti = cpu_get_clock_locked();
227 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
228
229 return ti;
230 }
231
232 /* return the offset between the host clock and virtual CPU clock */
233 int64_t cpu_get_clock_offset(void)
234 {
235 int64_t ti;
236 unsigned start;
237
238 do {
239 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
240 ti = timers_state.cpu_clock_offset;
241 if (!timers_state.cpu_ticks_enabled) {
242 ti -= get_clock();
243 }
244 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
245
246 return -ti;
247 }
248
249 /* enable cpu_get_ticks()
250 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
251 */
252 void cpu_enable_ticks(void)
253 {
254 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
255 seqlock_write_lock(&timers_state.vm_clock_seqlock);
256 if (!timers_state.cpu_ticks_enabled) {
257 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
258 timers_state.cpu_clock_offset -= get_clock();
259 timers_state.cpu_ticks_enabled = 1;
260 }
261 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
262 }
263
264 /* disable cpu_get_ticks() : the clock is stopped. You must not call
265 * cpu_get_ticks() after that.
266 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
267 */
268 void cpu_disable_ticks(void)
269 {
270 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
271 seqlock_write_lock(&timers_state.vm_clock_seqlock);
272 if (timers_state.cpu_ticks_enabled) {
273 timers_state.cpu_ticks_offset += cpu_get_real_ticks();
274 timers_state.cpu_clock_offset = cpu_get_clock_locked();
275 timers_state.cpu_ticks_enabled = 0;
276 }
277 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
278 }
279
280 /* Correlation between real and virtual time is always going to be
281 fairly approximate, so ignore small variation.
282 When the guest is idle real and virtual time will be aligned in
283 the IO wait loop. */
284 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
285
286 static void icount_adjust(void)
287 {
288 int64_t cur_time;
289 int64_t cur_icount;
290 int64_t delta;
291
292 /* Protected by TimersState mutex. */
293 static int64_t last_delta;
294
295 /* If the VM is not running, then do nothing. */
296 if (!runstate_is_running()) {
297 return;
298 }
299
300 seqlock_write_lock(&timers_state.vm_clock_seqlock);
301 cur_time = cpu_get_clock_locked();
302 cur_icount = cpu_get_icount_locked();
303
304 delta = cur_icount - cur_time;
305 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
306 if (delta > 0
307 && last_delta + ICOUNT_WOBBLE < delta * 2
308 && icount_time_shift > 0) {
309 /* The guest is getting too far ahead. Slow time down. */
310 icount_time_shift--;
311 }
312 if (delta < 0
313 && last_delta - ICOUNT_WOBBLE > delta * 2
314 && icount_time_shift < MAX_ICOUNT_SHIFT) {
315 /* The guest is getting too far behind. Speed time up. */
316 icount_time_shift++;
317 }
318 last_delta = delta;
319 timers_state.qemu_icount_bias = cur_icount
320 - (timers_state.qemu_icount << icount_time_shift);
321 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
322 }
323
324 static void icount_adjust_rt(void *opaque)
325 {
326 timer_mod(icount_rt_timer,
327 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
328 icount_adjust();
329 }
330
331 static void icount_adjust_vm(void *opaque)
332 {
333 timer_mod(icount_vm_timer,
334 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
335 get_ticks_per_sec() / 10);
336 icount_adjust();
337 }
338
339 static int64_t qemu_icount_round(int64_t count)
340 {
341 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
342 }
343
344 static void icount_warp_rt(void *opaque)
345 {
346 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
347 * changes from -1 to another value, so the race here is okay.
348 */
349 if (atomic_read(&vm_clock_warp_start) == -1) {
350 return;
351 }
352
353 seqlock_write_lock(&timers_state.vm_clock_seqlock);
354 if (runstate_is_running()) {
355 int64_t clock = cpu_get_clock_locked();
356 int64_t warp_delta;
357
358 warp_delta = clock - vm_clock_warp_start;
359 if (use_icount == 2) {
360 /*
361 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
362 * far ahead of real time.
363 */
364 int64_t cur_icount = cpu_get_icount_locked();
365 int64_t delta = clock - cur_icount;
366 warp_delta = MIN(warp_delta, delta);
367 }
368 timers_state.qemu_icount_bias += warp_delta;
369 }
370 vm_clock_warp_start = -1;
371 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
372
373 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
374 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
375 }
376 }
377
378 void qtest_clock_warp(int64_t dest)
379 {
380 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
381 assert(qtest_enabled());
382 while (clock < dest) {
383 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
384 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
385 seqlock_write_lock(&timers_state.vm_clock_seqlock);
386 timers_state.qemu_icount_bias += warp;
387 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
388
389 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
390 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
391 }
392 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
393 }
394
395 void qemu_clock_warp(QEMUClockType type)
396 {
397 int64_t clock;
398 int64_t deadline;
399
400 /*
401 * There are too many global variables to make the "warp" behavior
402 * applicable to other clocks. But a clock argument removes the
403 * need for if statements all over the place.
404 */
405 if (type != QEMU_CLOCK_VIRTUAL || !use_icount) {
406 return;
407 }
408
409 /*
410 * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now.
411 * This ensures that the deadline for the timer is computed correctly below.
412 * This also makes sure that the insn counter is synchronized before the
413 * CPU starts running, in case the CPU is woken by an event other than
414 * the earliest QEMU_CLOCK_VIRTUAL timer.
415 */
416 icount_warp_rt(NULL);
417 timer_del(icount_warp_timer);
418 if (!all_cpu_threads_idle()) {
419 return;
420 }
421
422 if (qtest_enabled()) {
423 /* When testing, qtest commands advance icount. */
424 return;
425 }
426
427 /* We want to use the earliest deadline from ALL vm_clocks */
428 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
429 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
430 if (deadline < 0) {
431 return;
432 }
433
434 if (deadline > 0) {
435 /*
436 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
437 * sleep. Otherwise, the CPU might be waiting for a future timer
438 * interrupt to wake it up, but the interrupt never comes because
439 * the vCPU isn't running any insns and thus doesn't advance the
440 * QEMU_CLOCK_VIRTUAL.
441 *
442 * An extreme solution for this problem would be to never let VCPUs
443 * sleep in icount mode if there is a pending QEMU_CLOCK_VIRTUAL
444 * timer; rather time could just advance to the next QEMU_CLOCK_VIRTUAL
445 * event. Instead, we do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL
446 * after some "real" time, (related to the time left until the next
447 * event) has passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
448 * This avoids that the warps are visible externally; for example,
449 * you will not be sending network packets continuously instead of
450 * every 100ms.
451 */
452 seqlock_write_lock(&timers_state.vm_clock_seqlock);
453 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
454 vm_clock_warp_start = clock;
455 }
456 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
457 timer_mod_anticipate(icount_warp_timer, clock + deadline);
458 } else if (deadline == 0) {
459 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
460 }
461 }
462
463 static bool icount_state_needed(void *opaque)
464 {
465 return use_icount;
466 }
467
468 /*
469 * This is a subsection for icount migration.
470 */
471 static const VMStateDescription icount_vmstate_timers = {
472 .name = "timer/icount",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .fields = (VMStateField[]) {
476 VMSTATE_INT64(qemu_icount_bias, TimersState),
477 VMSTATE_INT64(qemu_icount, TimersState),
478 VMSTATE_END_OF_LIST()
479 }
480 };
481
482 static const VMStateDescription vmstate_timers = {
483 .name = "timer",
484 .version_id = 2,
485 .minimum_version_id = 1,
486 .fields = (VMStateField[]) {
487 VMSTATE_INT64(cpu_ticks_offset, TimersState),
488 VMSTATE_INT64(dummy, TimersState),
489 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
490 VMSTATE_END_OF_LIST()
491 },
492 .subsections = (VMStateSubsection[]) {
493 {
494 .vmsd = &icount_vmstate_timers,
495 .needed = icount_state_needed,
496 }, {
497 /* empty */
498 }
499 }
500 };
501
502 void cpu_ticks_init(void)
503 {
504 seqlock_init(&timers_state.vm_clock_seqlock, NULL);
505 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
506 }
507
508 void configure_icount(QemuOpts *opts, Error **errp)
509 {
510 const char *option;
511 char *rem_str = NULL;
512
513 option = qemu_opt_get(opts, "shift");
514 if (!option) {
515 if (qemu_opt_get(opts, "align") != NULL) {
516 error_setg(errp, "Please specify shift option when using align");
517 }
518 return;
519 }
520 icount_align_option = qemu_opt_get_bool(opts, "align", false);
521 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
522 icount_warp_rt, NULL);
523 if (strcmp(option, "auto") != 0) {
524 errno = 0;
525 icount_time_shift = strtol(option, &rem_str, 0);
526 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
527 error_setg(errp, "icount: Invalid shift value");
528 }
529 use_icount = 1;
530 return;
531 } else if (icount_align_option) {
532 error_setg(errp, "shift=auto and align=on are incompatible");
533 }
534
535 use_icount = 2;
536
537 /* 125MIPS seems a reasonable initial guess at the guest speed.
538 It will be corrected fairly quickly anyway. */
539 icount_time_shift = 3;
540
541 /* Have both realtime and virtual time triggers for speed adjustment.
542 The realtime trigger catches emulated time passing too slowly,
543 the virtual time trigger catches emulated time passing too fast.
544 Realtime triggers occur even when idle, so use them less frequently
545 than VM triggers. */
546 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
547 icount_adjust_rt, NULL);
548 timer_mod(icount_rt_timer,
549 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
550 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
551 icount_adjust_vm, NULL);
552 timer_mod(icount_vm_timer,
553 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
554 get_ticks_per_sec() / 10);
555 }
556
557 /***********************************************************/
558 void hw_error(const char *fmt, ...)
559 {
560 va_list ap;
561 CPUState *cpu;
562
563 va_start(ap, fmt);
564 fprintf(stderr, "qemu: hardware error: ");
565 vfprintf(stderr, fmt, ap);
566 fprintf(stderr, "\n");
567 CPU_FOREACH(cpu) {
568 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
569 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
570 }
571 va_end(ap);
572 abort();
573 }
574
575 void cpu_synchronize_all_states(void)
576 {
577 CPUState *cpu;
578
579 CPU_FOREACH(cpu) {
580 cpu_synchronize_state(cpu);
581 }
582 }
583
584 void cpu_synchronize_all_post_reset(void)
585 {
586 CPUState *cpu;
587
588 CPU_FOREACH(cpu) {
589 cpu_synchronize_post_reset(cpu);
590 }
591 }
592
593 void cpu_synchronize_all_post_init(void)
594 {
595 CPUState *cpu;
596
597 CPU_FOREACH(cpu) {
598 cpu_synchronize_post_init(cpu);
599 }
600 }
601
602 void cpu_clean_all_dirty(void)
603 {
604 CPUState *cpu;
605
606 CPU_FOREACH(cpu) {
607 cpu_clean_state(cpu);
608 }
609 }
610
611 static int do_vm_stop(RunState state)
612 {
613 int ret = 0;
614
615 if (runstate_is_running()) {
616 cpu_disable_ticks();
617 pause_all_vcpus();
618 runstate_set(state);
619 vm_state_notify(0, state);
620 qapi_event_send_stop(&error_abort);
621 }
622
623 bdrv_drain_all();
624 ret = bdrv_flush_all();
625
626 return ret;
627 }
628
629 static bool cpu_can_run(CPUState *cpu)
630 {
631 if (cpu->stop) {
632 return false;
633 }
634 if (cpu_is_stopped(cpu)) {
635 return false;
636 }
637 return true;
638 }
639
640 static void cpu_handle_guest_debug(CPUState *cpu)
641 {
642 gdb_set_stop_cpu(cpu);
643 qemu_system_debug_request();
644 cpu->stopped = true;
645 }
646
647 static void cpu_signal(int sig)
648 {
649 if (current_cpu) {
650 cpu_exit(current_cpu);
651 }
652 exit_request = 1;
653 }
654
655 #ifdef CONFIG_LINUX
656 static void sigbus_reraise(void)
657 {
658 sigset_t set;
659 struct sigaction action;
660
661 memset(&action, 0, sizeof(action));
662 action.sa_handler = SIG_DFL;
663 if (!sigaction(SIGBUS, &action, NULL)) {
664 raise(SIGBUS);
665 sigemptyset(&set);
666 sigaddset(&set, SIGBUS);
667 sigprocmask(SIG_UNBLOCK, &set, NULL);
668 }
669 perror("Failed to re-raise SIGBUS!\n");
670 abort();
671 }
672
673 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
674 void *ctx)
675 {
676 if (kvm_on_sigbus(siginfo->ssi_code,
677 (void *)(intptr_t)siginfo->ssi_addr)) {
678 sigbus_reraise();
679 }
680 }
681
682 static void qemu_init_sigbus(void)
683 {
684 struct sigaction action;
685
686 memset(&action, 0, sizeof(action));
687 action.sa_flags = SA_SIGINFO;
688 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
689 sigaction(SIGBUS, &action, NULL);
690
691 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
692 }
693
694 static void qemu_kvm_eat_signals(CPUState *cpu)
695 {
696 struct timespec ts = { 0, 0 };
697 siginfo_t siginfo;
698 sigset_t waitset;
699 sigset_t chkset;
700 int r;
701
702 sigemptyset(&waitset);
703 sigaddset(&waitset, SIG_IPI);
704 sigaddset(&waitset, SIGBUS);
705
706 do {
707 r = sigtimedwait(&waitset, &siginfo, &ts);
708 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
709 perror("sigtimedwait");
710 exit(1);
711 }
712
713 switch (r) {
714 case SIGBUS:
715 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
716 sigbus_reraise();
717 }
718 break;
719 default:
720 break;
721 }
722
723 r = sigpending(&chkset);
724 if (r == -1) {
725 perror("sigpending");
726 exit(1);
727 }
728 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
729 }
730
731 #else /* !CONFIG_LINUX */
732
733 static void qemu_init_sigbus(void)
734 {
735 }
736
737 static void qemu_kvm_eat_signals(CPUState *cpu)
738 {
739 }
740 #endif /* !CONFIG_LINUX */
741
742 #ifndef _WIN32
743 static void dummy_signal(int sig)
744 {
745 }
746
747 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
748 {
749 int r;
750 sigset_t set;
751 struct sigaction sigact;
752
753 memset(&sigact, 0, sizeof(sigact));
754 sigact.sa_handler = dummy_signal;
755 sigaction(SIG_IPI, &sigact, NULL);
756
757 pthread_sigmask(SIG_BLOCK, NULL, &set);
758 sigdelset(&set, SIG_IPI);
759 sigdelset(&set, SIGBUS);
760 r = kvm_set_signal_mask(cpu, &set);
761 if (r) {
762 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
763 exit(1);
764 }
765 }
766
767 static void qemu_tcg_init_cpu_signals(void)
768 {
769 sigset_t set;
770 struct sigaction sigact;
771
772 memset(&sigact, 0, sizeof(sigact));
773 sigact.sa_handler = cpu_signal;
774 sigaction(SIG_IPI, &sigact, NULL);
775
776 sigemptyset(&set);
777 sigaddset(&set, SIG_IPI);
778 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
779 }
780
781 #else /* _WIN32 */
782 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
783 {
784 abort();
785 }
786
787 static void qemu_tcg_init_cpu_signals(void)
788 {
789 }
790 #endif /* _WIN32 */
791
792 static QemuMutex qemu_global_mutex;
793 static QemuCond qemu_io_proceeded_cond;
794 static bool iothread_requesting_mutex;
795
796 static QemuThread io_thread;
797
798 static QemuThread *tcg_cpu_thread;
799 static QemuCond *tcg_halt_cond;
800
801 /* cpu creation */
802 static QemuCond qemu_cpu_cond;
803 /* system init */
804 static QemuCond qemu_pause_cond;
805 static QemuCond qemu_work_cond;
806
807 void qemu_init_cpu_loop(void)
808 {
809 qemu_init_sigbus();
810 qemu_cond_init(&qemu_cpu_cond);
811 qemu_cond_init(&qemu_pause_cond);
812 qemu_cond_init(&qemu_work_cond);
813 qemu_cond_init(&qemu_io_proceeded_cond);
814 qemu_mutex_init(&qemu_global_mutex);
815
816 qemu_thread_get_self(&io_thread);
817 }
818
819 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
820 {
821 struct qemu_work_item wi;
822
823 if (qemu_cpu_is_self(cpu)) {
824 func(data);
825 return;
826 }
827
828 wi.func = func;
829 wi.data = data;
830 wi.free = false;
831 if (cpu->queued_work_first == NULL) {
832 cpu->queued_work_first = &wi;
833 } else {
834 cpu->queued_work_last->next = &wi;
835 }
836 cpu->queued_work_last = &wi;
837 wi.next = NULL;
838 wi.done = false;
839
840 qemu_cpu_kick(cpu);
841 while (!wi.done) {
842 CPUState *self_cpu = current_cpu;
843
844 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
845 current_cpu = self_cpu;
846 }
847 }
848
849 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
850 {
851 struct qemu_work_item *wi;
852
853 if (qemu_cpu_is_self(cpu)) {
854 func(data);
855 return;
856 }
857
858 wi = g_malloc0(sizeof(struct qemu_work_item));
859 wi->func = func;
860 wi->data = data;
861 wi->free = true;
862 if (cpu->queued_work_first == NULL) {
863 cpu->queued_work_first = wi;
864 } else {
865 cpu->queued_work_last->next = wi;
866 }
867 cpu->queued_work_last = wi;
868 wi->next = NULL;
869 wi->done = false;
870
871 qemu_cpu_kick(cpu);
872 }
873
874 static void flush_queued_work(CPUState *cpu)
875 {
876 struct qemu_work_item *wi;
877
878 if (cpu->queued_work_first == NULL) {
879 return;
880 }
881
882 while ((wi = cpu->queued_work_first)) {
883 cpu->queued_work_first = wi->next;
884 wi->func(wi->data);
885 wi->done = true;
886 if (wi->free) {
887 g_free(wi);
888 }
889 }
890 cpu->queued_work_last = NULL;
891 qemu_cond_broadcast(&qemu_work_cond);
892 }
893
894 static void qemu_wait_io_event_common(CPUState *cpu)
895 {
896 if (cpu->stop) {
897 cpu->stop = false;
898 cpu->stopped = true;
899 qemu_cond_signal(&qemu_pause_cond);
900 }
901 flush_queued_work(cpu);
902 cpu->thread_kicked = false;
903 }
904
905 static void qemu_tcg_wait_io_event(void)
906 {
907 CPUState *cpu;
908
909 while (all_cpu_threads_idle()) {
910 /* Start accounting real time to the virtual clock if the CPUs
911 are idle. */
912 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
913 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
914 }
915
916 while (iothread_requesting_mutex) {
917 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
918 }
919
920 CPU_FOREACH(cpu) {
921 qemu_wait_io_event_common(cpu);
922 }
923 }
924
925 static void qemu_kvm_wait_io_event(CPUState *cpu)
926 {
927 while (cpu_thread_is_idle(cpu)) {
928 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
929 }
930
931 qemu_kvm_eat_signals(cpu);
932 qemu_wait_io_event_common(cpu);
933 }
934
935 static void *qemu_kvm_cpu_thread_fn(void *arg)
936 {
937 CPUState *cpu = arg;
938 int r;
939
940 qemu_mutex_lock(&qemu_global_mutex);
941 qemu_thread_get_self(cpu->thread);
942 cpu->thread_id = qemu_get_thread_id();
943 cpu->can_do_io = 1;
944 current_cpu = cpu;
945
946 r = kvm_init_vcpu(cpu);
947 if (r < 0) {
948 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
949 exit(1);
950 }
951
952 qemu_kvm_init_cpu_signals(cpu);
953
954 /* signal CPU creation */
955 cpu->created = true;
956 qemu_cond_signal(&qemu_cpu_cond);
957
958 while (1) {
959 if (cpu_can_run(cpu)) {
960 r = kvm_cpu_exec(cpu);
961 if (r == EXCP_DEBUG) {
962 cpu_handle_guest_debug(cpu);
963 }
964 }
965 qemu_kvm_wait_io_event(cpu);
966 }
967
968 return NULL;
969 }
970
971 static void *qemu_dummy_cpu_thread_fn(void *arg)
972 {
973 #ifdef _WIN32
974 fprintf(stderr, "qtest is not supported under Windows\n");
975 exit(1);
976 #else
977 CPUState *cpu = arg;
978 sigset_t waitset;
979 int r;
980
981 qemu_mutex_lock_iothread();
982 qemu_thread_get_self(cpu->thread);
983 cpu->thread_id = qemu_get_thread_id();
984 cpu->can_do_io = 1;
985
986 sigemptyset(&waitset);
987 sigaddset(&waitset, SIG_IPI);
988
989 /* signal CPU creation */
990 cpu->created = true;
991 qemu_cond_signal(&qemu_cpu_cond);
992
993 current_cpu = cpu;
994 while (1) {
995 current_cpu = NULL;
996 qemu_mutex_unlock_iothread();
997 do {
998 int sig;
999 r = sigwait(&waitset, &sig);
1000 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1001 if (r == -1) {
1002 perror("sigwait");
1003 exit(1);
1004 }
1005 qemu_mutex_lock_iothread();
1006 current_cpu = cpu;
1007 qemu_wait_io_event_common(cpu);
1008 }
1009
1010 return NULL;
1011 #endif
1012 }
1013
1014 static void tcg_exec_all(void);
1015
1016 static void *qemu_tcg_cpu_thread_fn(void *arg)
1017 {
1018 CPUState *cpu = arg;
1019
1020 qemu_tcg_init_cpu_signals();
1021 qemu_thread_get_self(cpu->thread);
1022
1023 qemu_mutex_lock(&qemu_global_mutex);
1024 CPU_FOREACH(cpu) {
1025 cpu->thread_id = qemu_get_thread_id();
1026 cpu->created = true;
1027 cpu->can_do_io = 1;
1028 }
1029 qemu_cond_signal(&qemu_cpu_cond);
1030
1031 /* wait for initial kick-off after machine start */
1032 while (QTAILQ_FIRST(&cpus)->stopped) {
1033 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
1034
1035 /* process any pending work */
1036 CPU_FOREACH(cpu) {
1037 qemu_wait_io_event_common(cpu);
1038 }
1039 }
1040
1041 while (1) {
1042 tcg_exec_all();
1043
1044 if (use_icount) {
1045 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1046
1047 if (deadline == 0) {
1048 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1049 }
1050 }
1051 qemu_tcg_wait_io_event();
1052 }
1053
1054 return NULL;
1055 }
1056
1057 static void qemu_cpu_kick_thread(CPUState *cpu)
1058 {
1059 #ifndef _WIN32
1060 int err;
1061
1062 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1063 if (err) {
1064 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1065 exit(1);
1066 }
1067 #else /* _WIN32 */
1068 if (!qemu_cpu_is_self(cpu)) {
1069 CONTEXT tcgContext;
1070
1071 if (SuspendThread(cpu->hThread) == (DWORD)-1) {
1072 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
1073 GetLastError());
1074 exit(1);
1075 }
1076
1077 /* On multi-core systems, we are not sure that the thread is actually
1078 * suspended until we can get the context.
1079 */
1080 tcgContext.ContextFlags = CONTEXT_CONTROL;
1081 while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
1082 continue;
1083 }
1084
1085 cpu_signal(0);
1086
1087 if (ResumeThread(cpu->hThread) == (DWORD)-1) {
1088 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
1089 GetLastError());
1090 exit(1);
1091 }
1092 }
1093 #endif
1094 }
1095
1096 void qemu_cpu_kick(CPUState *cpu)
1097 {
1098 qemu_cond_broadcast(cpu->halt_cond);
1099 if (!tcg_enabled() && !cpu->thread_kicked) {
1100 qemu_cpu_kick_thread(cpu);
1101 cpu->thread_kicked = true;
1102 }
1103 }
1104
1105 void qemu_cpu_kick_self(void)
1106 {
1107 #ifndef _WIN32
1108 assert(current_cpu);
1109
1110 if (!current_cpu->thread_kicked) {
1111 qemu_cpu_kick_thread(current_cpu);
1112 current_cpu->thread_kicked = true;
1113 }
1114 #else
1115 abort();
1116 #endif
1117 }
1118
1119 bool qemu_cpu_is_self(CPUState *cpu)
1120 {
1121 return qemu_thread_is_self(cpu->thread);
1122 }
1123
1124 static bool qemu_in_vcpu_thread(void)
1125 {
1126 return current_cpu && qemu_cpu_is_self(current_cpu);
1127 }
1128
1129 void qemu_mutex_lock_iothread(void)
1130 {
1131 if (!tcg_enabled()) {
1132 qemu_mutex_lock(&qemu_global_mutex);
1133 } else {
1134 iothread_requesting_mutex = true;
1135 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1136 qemu_cpu_kick_thread(first_cpu);
1137 qemu_mutex_lock(&qemu_global_mutex);
1138 }
1139 iothread_requesting_mutex = false;
1140 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1141 }
1142 }
1143
1144 void qemu_mutex_unlock_iothread(void)
1145 {
1146 qemu_mutex_unlock(&qemu_global_mutex);
1147 }
1148
1149 static int all_vcpus_paused(void)
1150 {
1151 CPUState *cpu;
1152
1153 CPU_FOREACH(cpu) {
1154 if (!cpu->stopped) {
1155 return 0;
1156 }
1157 }
1158
1159 return 1;
1160 }
1161
1162 void pause_all_vcpus(void)
1163 {
1164 CPUState *cpu;
1165
1166 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1167 CPU_FOREACH(cpu) {
1168 cpu->stop = true;
1169 qemu_cpu_kick(cpu);
1170 }
1171
1172 if (qemu_in_vcpu_thread()) {
1173 cpu_stop_current();
1174 if (!kvm_enabled()) {
1175 CPU_FOREACH(cpu) {
1176 cpu->stop = false;
1177 cpu->stopped = true;
1178 }
1179 return;
1180 }
1181 }
1182
1183 while (!all_vcpus_paused()) {
1184 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1185 CPU_FOREACH(cpu) {
1186 qemu_cpu_kick(cpu);
1187 }
1188 }
1189 }
1190
1191 void cpu_resume(CPUState *cpu)
1192 {
1193 cpu->stop = false;
1194 cpu->stopped = false;
1195 qemu_cpu_kick(cpu);
1196 }
1197
1198 void resume_all_vcpus(void)
1199 {
1200 CPUState *cpu;
1201
1202 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1203 CPU_FOREACH(cpu) {
1204 cpu_resume(cpu);
1205 }
1206 }
1207
1208 /* For temporary buffers for forming a name */
1209 #define VCPU_THREAD_NAME_SIZE 16
1210
1211 static void qemu_tcg_init_vcpu(CPUState *cpu)
1212 {
1213 char thread_name[VCPU_THREAD_NAME_SIZE];
1214
1215 tcg_cpu_address_space_init(cpu, cpu->as);
1216
1217 /* share a single thread for all cpus with TCG */
1218 if (!tcg_cpu_thread) {
1219 cpu->thread = g_malloc0(sizeof(QemuThread));
1220 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1221 qemu_cond_init(cpu->halt_cond);
1222 tcg_halt_cond = cpu->halt_cond;
1223 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1224 cpu->cpu_index);
1225 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1226 cpu, QEMU_THREAD_JOINABLE);
1227 #ifdef _WIN32
1228 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1229 #endif
1230 while (!cpu->created) {
1231 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1232 }
1233 tcg_cpu_thread = cpu->thread;
1234 } else {
1235 cpu->thread = tcg_cpu_thread;
1236 cpu->halt_cond = tcg_halt_cond;
1237 }
1238 }
1239
1240 static void qemu_kvm_start_vcpu(CPUState *cpu)
1241 {
1242 char thread_name[VCPU_THREAD_NAME_SIZE];
1243
1244 cpu->thread = g_malloc0(sizeof(QemuThread));
1245 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1246 qemu_cond_init(cpu->halt_cond);
1247 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1248 cpu->cpu_index);
1249 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1250 cpu, QEMU_THREAD_JOINABLE);
1251 while (!cpu->created) {
1252 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1253 }
1254 }
1255
1256 static void qemu_dummy_start_vcpu(CPUState *cpu)
1257 {
1258 char thread_name[VCPU_THREAD_NAME_SIZE];
1259
1260 cpu->thread = g_malloc0(sizeof(QemuThread));
1261 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1262 qemu_cond_init(cpu->halt_cond);
1263 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1264 cpu->cpu_index);
1265 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1266 QEMU_THREAD_JOINABLE);
1267 while (!cpu->created) {
1268 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1269 }
1270 }
1271
1272 void qemu_init_vcpu(CPUState *cpu)
1273 {
1274 cpu->nr_cores = smp_cores;
1275 cpu->nr_threads = smp_threads;
1276 cpu->stopped = true;
1277 if (kvm_enabled()) {
1278 qemu_kvm_start_vcpu(cpu);
1279 } else if (tcg_enabled()) {
1280 qemu_tcg_init_vcpu(cpu);
1281 } else {
1282 qemu_dummy_start_vcpu(cpu);
1283 }
1284 }
1285
1286 void cpu_stop_current(void)
1287 {
1288 if (current_cpu) {
1289 current_cpu->stop = false;
1290 current_cpu->stopped = true;
1291 cpu_exit(current_cpu);
1292 qemu_cond_signal(&qemu_pause_cond);
1293 }
1294 }
1295
1296 int vm_stop(RunState state)
1297 {
1298 if (qemu_in_vcpu_thread()) {
1299 qemu_system_vmstop_request_prepare();
1300 qemu_system_vmstop_request(state);
1301 /*
1302 * FIXME: should not return to device code in case
1303 * vm_stop() has been requested.
1304 */
1305 cpu_stop_current();
1306 return 0;
1307 }
1308
1309 return do_vm_stop(state);
1310 }
1311
1312 /* does a state transition even if the VM is already stopped,
1313 current state is forgotten forever */
1314 int vm_stop_force_state(RunState state)
1315 {
1316 if (runstate_is_running()) {
1317 return vm_stop(state);
1318 } else {
1319 runstate_set(state);
1320 /* Make sure to return an error if the flush in a previous vm_stop()
1321 * failed. */
1322 return bdrv_flush_all();
1323 }
1324 }
1325
1326 static int tcg_cpu_exec(CPUArchState *env)
1327 {
1328 CPUState *cpu = ENV_GET_CPU(env);
1329 int ret;
1330 #ifdef CONFIG_PROFILER
1331 int64_t ti;
1332 #endif
1333
1334 #ifdef CONFIG_PROFILER
1335 ti = profile_getclock();
1336 #endif
1337 if (use_icount) {
1338 int64_t count;
1339 int64_t deadline;
1340 int decr;
1341 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1342 + cpu->icount_extra);
1343 cpu->icount_decr.u16.low = 0;
1344 cpu->icount_extra = 0;
1345 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1346
1347 /* Maintain prior (possibly buggy) behaviour where if no deadline
1348 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1349 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1350 * nanoseconds.
1351 */
1352 if ((deadline < 0) || (deadline > INT32_MAX)) {
1353 deadline = INT32_MAX;
1354 }
1355
1356 count = qemu_icount_round(deadline);
1357 timers_state.qemu_icount += count;
1358 decr = (count > 0xffff) ? 0xffff : count;
1359 count -= decr;
1360 cpu->icount_decr.u16.low = decr;
1361 cpu->icount_extra = count;
1362 }
1363 ret = cpu_exec(env);
1364 #ifdef CONFIG_PROFILER
1365 qemu_time += profile_getclock() - ti;
1366 #endif
1367 if (use_icount) {
1368 /* Fold pending instructions back into the
1369 instruction counter, and clear the interrupt flag. */
1370 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1371 + cpu->icount_extra);
1372 cpu->icount_decr.u32 = 0;
1373 cpu->icount_extra = 0;
1374 }
1375 return ret;
1376 }
1377
1378 static void tcg_exec_all(void)
1379 {
1380 int r;
1381
1382 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1383 qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
1384
1385 if (next_cpu == NULL) {
1386 next_cpu = first_cpu;
1387 }
1388 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1389 CPUState *cpu = next_cpu;
1390 CPUArchState *env = cpu->env_ptr;
1391
1392 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1393 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1394
1395 if (cpu_can_run(cpu)) {
1396 r = tcg_cpu_exec(env);
1397 if (r == EXCP_DEBUG) {
1398 cpu_handle_guest_debug(cpu);
1399 break;
1400 }
1401 } else if (cpu->stop || cpu->stopped) {
1402 break;
1403 }
1404 }
1405 exit_request = 0;
1406 }
1407
1408 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1409 {
1410 /* XXX: implement xxx_cpu_list for targets that still miss it */
1411 #if defined(cpu_list)
1412 cpu_list(f, cpu_fprintf);
1413 #endif
1414 }
1415
1416 CpuInfoList *qmp_query_cpus(Error **errp)
1417 {
1418 CpuInfoList *head = NULL, *cur_item = NULL;
1419 CPUState *cpu;
1420
1421 CPU_FOREACH(cpu) {
1422 CpuInfoList *info;
1423 #if defined(TARGET_I386)
1424 X86CPU *x86_cpu = X86_CPU(cpu);
1425 CPUX86State *env = &x86_cpu->env;
1426 #elif defined(TARGET_PPC)
1427 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1428 CPUPPCState *env = &ppc_cpu->env;
1429 #elif defined(TARGET_SPARC)
1430 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1431 CPUSPARCState *env = &sparc_cpu->env;
1432 #elif defined(TARGET_MIPS)
1433 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1434 CPUMIPSState *env = &mips_cpu->env;
1435 #elif defined(TARGET_TRICORE)
1436 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1437 CPUTriCoreState *env = &tricore_cpu->env;
1438 #endif
1439
1440 cpu_synchronize_state(cpu);
1441
1442 info = g_malloc0(sizeof(*info));
1443 info->value = g_malloc0(sizeof(*info->value));
1444 info->value->CPU = cpu->cpu_index;
1445 info->value->current = (cpu == first_cpu);
1446 info->value->halted = cpu->halted;
1447 info->value->thread_id = cpu->thread_id;
1448 #if defined(TARGET_I386)
1449 info->value->has_pc = true;
1450 info->value->pc = env->eip + env->segs[R_CS].base;
1451 #elif defined(TARGET_PPC)
1452 info->value->has_nip = true;
1453 info->value->nip = env->nip;
1454 #elif defined(TARGET_SPARC)
1455 info->value->has_pc = true;
1456 info->value->pc = env->pc;
1457 info->value->has_npc = true;
1458 info->value->npc = env->npc;
1459 #elif defined(TARGET_MIPS)
1460 info->value->has_PC = true;
1461 info->value->PC = env->active_tc.PC;
1462 #elif defined(TARGET_TRICORE)
1463 info->value->has_PC = true;
1464 info->value->PC = env->PC;
1465 #endif
1466
1467 /* XXX: waiting for the qapi to support GSList */
1468 if (!cur_item) {
1469 head = cur_item = info;
1470 } else {
1471 cur_item->next = info;
1472 cur_item = info;
1473 }
1474 }
1475
1476 return head;
1477 }
1478
1479 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1480 bool has_cpu, int64_t cpu_index, Error **errp)
1481 {
1482 FILE *f;
1483 uint32_t l;
1484 CPUState *cpu;
1485 uint8_t buf[1024];
1486
1487 if (!has_cpu) {
1488 cpu_index = 0;
1489 }
1490
1491 cpu = qemu_get_cpu(cpu_index);
1492 if (cpu == NULL) {
1493 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1494 "a CPU number");
1495 return;
1496 }
1497
1498 f = fopen(filename, "wb");
1499 if (!f) {
1500 error_setg_file_open(errp, errno, filename);
1501 return;
1502 }
1503
1504 while (size != 0) {
1505 l = sizeof(buf);
1506 if (l > size)
1507 l = size;
1508 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1509 error_setg(errp, "Invalid addr 0x%016" PRIx64 "specified", addr);
1510 goto exit;
1511 }
1512 if (fwrite(buf, 1, l, f) != l) {
1513 error_set(errp, QERR_IO_ERROR);
1514 goto exit;
1515 }
1516 addr += l;
1517 size -= l;
1518 }
1519
1520 exit:
1521 fclose(f);
1522 }
1523
1524 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1525 Error **errp)
1526 {
1527 FILE *f;
1528 uint32_t l;
1529 uint8_t buf[1024];
1530
1531 f = fopen(filename, "wb");
1532 if (!f) {
1533 error_setg_file_open(errp, errno, filename);
1534 return;
1535 }
1536
1537 while (size != 0) {
1538 l = sizeof(buf);
1539 if (l > size)
1540 l = size;
1541 cpu_physical_memory_read(addr, buf, l);
1542 if (fwrite(buf, 1, l, f) != l) {
1543 error_set(errp, QERR_IO_ERROR);
1544 goto exit;
1545 }
1546 addr += l;
1547 size -= l;
1548 }
1549
1550 exit:
1551 fclose(f);
1552 }
1553
1554 void qmp_inject_nmi(Error **errp)
1555 {
1556 #if defined(TARGET_I386)
1557 CPUState *cs;
1558
1559 CPU_FOREACH(cs) {
1560 X86CPU *cpu = X86_CPU(cs);
1561
1562 if (!cpu->apic_state) {
1563 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
1564 } else {
1565 apic_deliver_nmi(cpu->apic_state);
1566 }
1567 }
1568 #else
1569 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1570 #endif
1571 }
1572
1573 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1574 {
1575 if (!use_icount) {
1576 return;
1577 }
1578
1579 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1580 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1581 if (icount_align_option) {
1582 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1583 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1584 } else {
1585 cpu_fprintf(f, "Max guest delay NA\n");
1586 cpu_fprintf(f, "Max guest advance NA\n");
1587 }
1588 }