]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
cpu: Reclaim vCPU objects
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "monitor/monitor.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qemu/error-report.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/block-backend.h"
34 #include "exec/gdbstub.h"
35 #include "sysemu/dma.h"
36 #include "sysemu/kvm.h"
37 #include "qmp-commands.h"
38 #include "exec/exec-all.h"
39
40 #include "qemu/thread.h"
41 #include "sysemu/cpus.h"
42 #include "sysemu/qtest.h"
43 #include "qemu/main-loop.h"
44 #include "qemu/bitmap.h"
45 #include "qemu/seqlock.h"
46 #include "qapi-event.h"
47 #include "hw/nmi.h"
48 #include "sysemu/replay.h"
49
50 #ifndef _WIN32
51 #include "qemu/compatfd.h"
52 #endif
53
54 #ifdef CONFIG_LINUX
55
56 #include <sys/prctl.h>
57
58 #ifndef PR_MCE_KILL
59 #define PR_MCE_KILL 33
60 #endif
61
62 #ifndef PR_MCE_KILL_SET
63 #define PR_MCE_KILL_SET 1
64 #endif
65
66 #ifndef PR_MCE_KILL_EARLY
67 #define PR_MCE_KILL_EARLY 1
68 #endif
69
70 #endif /* CONFIG_LINUX */
71
72 static CPUState *next_cpu;
73 int64_t max_delay;
74 int64_t max_advance;
75
76 /* vcpu throttling controls */
77 static QEMUTimer *throttle_timer;
78 static unsigned int throttle_percentage;
79
80 #define CPU_THROTTLE_PCT_MIN 1
81 #define CPU_THROTTLE_PCT_MAX 99
82 #define CPU_THROTTLE_TIMESLICE_NS 10000000
83
84 bool cpu_is_stopped(CPUState *cpu)
85 {
86 return cpu->stopped || !runstate_is_running();
87 }
88
89 static bool cpu_thread_is_idle(CPUState *cpu)
90 {
91 if (cpu->stop || cpu->queued_work_first) {
92 return false;
93 }
94 if (cpu_is_stopped(cpu)) {
95 return true;
96 }
97 if (!cpu->halted || cpu_has_work(cpu) ||
98 kvm_halt_in_kernel()) {
99 return false;
100 }
101 return true;
102 }
103
104 static bool all_cpu_threads_idle(void)
105 {
106 CPUState *cpu;
107
108 CPU_FOREACH(cpu) {
109 if (!cpu_thread_is_idle(cpu)) {
110 return false;
111 }
112 }
113 return true;
114 }
115
116 /***********************************************************/
117 /* guest cycle counter */
118
119 /* Protected by TimersState seqlock */
120
121 static bool icount_sleep = true;
122 static int64_t vm_clock_warp_start = -1;
123 /* Conversion factor from emulated instructions to virtual clock ticks. */
124 static int icount_time_shift;
125 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
126 #define MAX_ICOUNT_SHIFT 10
127
128 static QEMUTimer *icount_rt_timer;
129 static QEMUTimer *icount_vm_timer;
130 static QEMUTimer *icount_warp_timer;
131
132 typedef struct TimersState {
133 /* Protected by BQL. */
134 int64_t cpu_ticks_prev;
135 int64_t cpu_ticks_offset;
136
137 /* cpu_clock_offset can be read out of BQL, so protect it with
138 * this lock.
139 */
140 QemuSeqLock vm_clock_seqlock;
141 int64_t cpu_clock_offset;
142 int32_t cpu_ticks_enabled;
143 int64_t dummy;
144
145 /* Compensate for varying guest execution speed. */
146 int64_t qemu_icount_bias;
147 /* Only written by TCG thread */
148 int64_t qemu_icount;
149 } TimersState;
150
151 static TimersState timers_state;
152
153 int64_t cpu_get_icount_raw(void)
154 {
155 int64_t icount;
156 CPUState *cpu = current_cpu;
157
158 icount = timers_state.qemu_icount;
159 if (cpu) {
160 if (!cpu->can_do_io) {
161 fprintf(stderr, "Bad icount read\n");
162 exit(1);
163 }
164 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
165 }
166 return icount;
167 }
168
169 /* Return the virtual CPU time, based on the instruction counter. */
170 static int64_t cpu_get_icount_locked(void)
171 {
172 int64_t icount = cpu_get_icount_raw();
173 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
174 }
175
176 int64_t cpu_get_icount(void)
177 {
178 int64_t icount;
179 unsigned start;
180
181 do {
182 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
183 icount = cpu_get_icount_locked();
184 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
185
186 return icount;
187 }
188
189 int64_t cpu_icount_to_ns(int64_t icount)
190 {
191 return icount << icount_time_shift;
192 }
193
194 /* return the host CPU cycle counter and handle stop/restart */
195 /* Caller must hold the BQL */
196 int64_t cpu_get_ticks(void)
197 {
198 int64_t ticks;
199
200 if (use_icount) {
201 return cpu_get_icount();
202 }
203
204 ticks = timers_state.cpu_ticks_offset;
205 if (timers_state.cpu_ticks_enabled) {
206 ticks += cpu_get_host_ticks();
207 }
208
209 if (timers_state.cpu_ticks_prev > ticks) {
210 /* Note: non increasing ticks may happen if the host uses
211 software suspend */
212 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
213 ticks = timers_state.cpu_ticks_prev;
214 }
215
216 timers_state.cpu_ticks_prev = ticks;
217 return ticks;
218 }
219
220 static int64_t cpu_get_clock_locked(void)
221 {
222 int64_t ticks;
223
224 ticks = timers_state.cpu_clock_offset;
225 if (timers_state.cpu_ticks_enabled) {
226 ticks += get_clock();
227 }
228
229 return ticks;
230 }
231
232 /* return the host CPU monotonic timer and handle stop/restart */
233 int64_t cpu_get_clock(void)
234 {
235 int64_t ti;
236 unsigned start;
237
238 do {
239 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
240 ti = cpu_get_clock_locked();
241 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
242
243 return ti;
244 }
245
246 /* enable cpu_get_ticks()
247 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
248 */
249 void cpu_enable_ticks(void)
250 {
251 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
252 seqlock_write_lock(&timers_state.vm_clock_seqlock);
253 if (!timers_state.cpu_ticks_enabled) {
254 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
255 timers_state.cpu_clock_offset -= get_clock();
256 timers_state.cpu_ticks_enabled = 1;
257 }
258 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
259 }
260
261 /* disable cpu_get_ticks() : the clock is stopped. You must not call
262 * cpu_get_ticks() after that.
263 * Caller must hold BQL which server as mutex for vm_clock_seqlock.
264 */
265 void cpu_disable_ticks(void)
266 {
267 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
268 seqlock_write_lock(&timers_state.vm_clock_seqlock);
269 if (timers_state.cpu_ticks_enabled) {
270 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
271 timers_state.cpu_clock_offset = cpu_get_clock_locked();
272 timers_state.cpu_ticks_enabled = 0;
273 }
274 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
275 }
276
277 /* Correlation between real and virtual time is always going to be
278 fairly approximate, so ignore small variation.
279 When the guest is idle real and virtual time will be aligned in
280 the IO wait loop. */
281 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
282
283 static void icount_adjust(void)
284 {
285 int64_t cur_time;
286 int64_t cur_icount;
287 int64_t delta;
288
289 /* Protected by TimersState mutex. */
290 static int64_t last_delta;
291
292 /* If the VM is not running, then do nothing. */
293 if (!runstate_is_running()) {
294 return;
295 }
296
297 seqlock_write_lock(&timers_state.vm_clock_seqlock);
298 cur_time = cpu_get_clock_locked();
299 cur_icount = cpu_get_icount_locked();
300
301 delta = cur_icount - cur_time;
302 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
303 if (delta > 0
304 && last_delta + ICOUNT_WOBBLE < delta * 2
305 && icount_time_shift > 0) {
306 /* The guest is getting too far ahead. Slow time down. */
307 icount_time_shift--;
308 }
309 if (delta < 0
310 && last_delta - ICOUNT_WOBBLE > delta * 2
311 && icount_time_shift < MAX_ICOUNT_SHIFT) {
312 /* The guest is getting too far behind. Speed time up. */
313 icount_time_shift++;
314 }
315 last_delta = delta;
316 timers_state.qemu_icount_bias = cur_icount
317 - (timers_state.qemu_icount << icount_time_shift);
318 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
319 }
320
321 static void icount_adjust_rt(void *opaque)
322 {
323 timer_mod(icount_rt_timer,
324 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
325 icount_adjust();
326 }
327
328 static void icount_adjust_vm(void *opaque)
329 {
330 timer_mod(icount_vm_timer,
331 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
332 NANOSECONDS_PER_SECOND / 10);
333 icount_adjust();
334 }
335
336 static int64_t qemu_icount_round(int64_t count)
337 {
338 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
339 }
340
341 static void icount_warp_rt(void)
342 {
343 unsigned seq;
344 int64_t warp_start;
345
346 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
347 * changes from -1 to another value, so the race here is okay.
348 */
349 do {
350 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
351 warp_start = vm_clock_warp_start;
352 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
353
354 if (warp_start == -1) {
355 return;
356 }
357
358 seqlock_write_lock(&timers_state.vm_clock_seqlock);
359 if (runstate_is_running()) {
360 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
361 cpu_get_clock_locked());
362 int64_t warp_delta;
363
364 warp_delta = clock - vm_clock_warp_start;
365 if (use_icount == 2) {
366 /*
367 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
368 * far ahead of real time.
369 */
370 int64_t cur_icount = cpu_get_icount_locked();
371 int64_t delta = clock - cur_icount;
372 warp_delta = MIN(warp_delta, delta);
373 }
374 timers_state.qemu_icount_bias += warp_delta;
375 }
376 vm_clock_warp_start = -1;
377 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
378
379 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
380 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
381 }
382 }
383
384 static void icount_timer_cb(void *opaque)
385 {
386 /* No need for a checkpoint because the timer already synchronizes
387 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
388 */
389 icount_warp_rt();
390 }
391
392 void qtest_clock_warp(int64_t dest)
393 {
394 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
395 AioContext *aio_context;
396 assert(qtest_enabled());
397 aio_context = qemu_get_aio_context();
398 while (clock < dest) {
399 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
400 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
401
402 seqlock_write_lock(&timers_state.vm_clock_seqlock);
403 timers_state.qemu_icount_bias += warp;
404 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
405
406 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
407 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
408 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
409 }
410 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
411 }
412
413 void qemu_start_warp_timer(void)
414 {
415 int64_t clock;
416 int64_t deadline;
417
418 if (!use_icount) {
419 return;
420 }
421
422 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
423 * do not fire, so computing the deadline does not make sense.
424 */
425 if (!runstate_is_running()) {
426 return;
427 }
428
429 /* warp clock deterministically in record/replay mode */
430 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
431 return;
432 }
433
434 if (!all_cpu_threads_idle()) {
435 return;
436 }
437
438 if (qtest_enabled()) {
439 /* When testing, qtest commands advance icount. */
440 return;
441 }
442
443 /* We want to use the earliest deadline from ALL vm_clocks */
444 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
445 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
446 if (deadline < 0) {
447 static bool notified;
448 if (!icount_sleep && !notified) {
449 error_report("WARNING: icount sleep disabled and no active timers");
450 notified = true;
451 }
452 return;
453 }
454
455 if (deadline > 0) {
456 /*
457 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
458 * sleep. Otherwise, the CPU might be waiting for a future timer
459 * interrupt to wake it up, but the interrupt never comes because
460 * the vCPU isn't running any insns and thus doesn't advance the
461 * QEMU_CLOCK_VIRTUAL.
462 */
463 if (!icount_sleep) {
464 /*
465 * We never let VCPUs sleep in no sleep icount mode.
466 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
467 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
468 * It is useful when we want a deterministic execution time,
469 * isolated from host latencies.
470 */
471 seqlock_write_lock(&timers_state.vm_clock_seqlock);
472 timers_state.qemu_icount_bias += deadline;
473 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
474 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
475 } else {
476 /*
477 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
478 * "real" time, (related to the time left until the next event) has
479 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
480 * This avoids that the warps are visible externally; for example,
481 * you will not be sending network packets continuously instead of
482 * every 100ms.
483 */
484 seqlock_write_lock(&timers_state.vm_clock_seqlock);
485 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
486 vm_clock_warp_start = clock;
487 }
488 seqlock_write_unlock(&timers_state.vm_clock_seqlock);
489 timer_mod_anticipate(icount_warp_timer, clock + deadline);
490 }
491 } else if (deadline == 0) {
492 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
493 }
494 }
495
496 static void qemu_account_warp_timer(void)
497 {
498 if (!use_icount || !icount_sleep) {
499 return;
500 }
501
502 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
503 * do not fire, so computing the deadline does not make sense.
504 */
505 if (!runstate_is_running()) {
506 return;
507 }
508
509 /* warp clock deterministically in record/replay mode */
510 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
511 return;
512 }
513
514 timer_del(icount_warp_timer);
515 icount_warp_rt();
516 }
517
518 static bool icount_state_needed(void *opaque)
519 {
520 return use_icount;
521 }
522
523 /*
524 * This is a subsection for icount migration.
525 */
526 static const VMStateDescription icount_vmstate_timers = {
527 .name = "timer/icount",
528 .version_id = 1,
529 .minimum_version_id = 1,
530 .needed = icount_state_needed,
531 .fields = (VMStateField[]) {
532 VMSTATE_INT64(qemu_icount_bias, TimersState),
533 VMSTATE_INT64(qemu_icount, TimersState),
534 VMSTATE_END_OF_LIST()
535 }
536 };
537
538 static const VMStateDescription vmstate_timers = {
539 .name = "timer",
540 .version_id = 2,
541 .minimum_version_id = 1,
542 .fields = (VMStateField[]) {
543 VMSTATE_INT64(cpu_ticks_offset, TimersState),
544 VMSTATE_INT64(dummy, TimersState),
545 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
546 VMSTATE_END_OF_LIST()
547 },
548 .subsections = (const VMStateDescription*[]) {
549 &icount_vmstate_timers,
550 NULL
551 }
552 };
553
554 static void cpu_throttle_thread(void *opaque)
555 {
556 CPUState *cpu = opaque;
557 double pct;
558 double throttle_ratio;
559 long sleeptime_ns;
560
561 if (!cpu_throttle_get_percentage()) {
562 return;
563 }
564
565 pct = (double)cpu_throttle_get_percentage()/100;
566 throttle_ratio = pct / (1 - pct);
567 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
568
569 qemu_mutex_unlock_iothread();
570 atomic_set(&cpu->throttle_thread_scheduled, 0);
571 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
572 qemu_mutex_lock_iothread();
573 }
574
575 static void cpu_throttle_timer_tick(void *opaque)
576 {
577 CPUState *cpu;
578 double pct;
579
580 /* Stop the timer if needed */
581 if (!cpu_throttle_get_percentage()) {
582 return;
583 }
584 CPU_FOREACH(cpu) {
585 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
586 async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
587 }
588 }
589
590 pct = (double)cpu_throttle_get_percentage()/100;
591 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
592 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
593 }
594
595 void cpu_throttle_set(int new_throttle_pct)
596 {
597 /* Ensure throttle percentage is within valid range */
598 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
599 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
600
601 atomic_set(&throttle_percentage, new_throttle_pct);
602
603 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
604 CPU_THROTTLE_TIMESLICE_NS);
605 }
606
607 void cpu_throttle_stop(void)
608 {
609 atomic_set(&throttle_percentage, 0);
610 }
611
612 bool cpu_throttle_active(void)
613 {
614 return (cpu_throttle_get_percentage() != 0);
615 }
616
617 int cpu_throttle_get_percentage(void)
618 {
619 return atomic_read(&throttle_percentage);
620 }
621
622 void cpu_ticks_init(void)
623 {
624 seqlock_init(&timers_state.vm_clock_seqlock, NULL);
625 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
626 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
627 cpu_throttle_timer_tick, NULL);
628 }
629
630 void configure_icount(QemuOpts *opts, Error **errp)
631 {
632 const char *option;
633 char *rem_str = NULL;
634
635 option = qemu_opt_get(opts, "shift");
636 if (!option) {
637 if (qemu_opt_get(opts, "align") != NULL) {
638 error_setg(errp, "Please specify shift option when using align");
639 }
640 return;
641 }
642
643 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
644 if (icount_sleep) {
645 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
646 icount_timer_cb, NULL);
647 }
648
649 icount_align_option = qemu_opt_get_bool(opts, "align", false);
650
651 if (icount_align_option && !icount_sleep) {
652 error_setg(errp, "align=on and sleep=off are incompatible");
653 }
654 if (strcmp(option, "auto") != 0) {
655 errno = 0;
656 icount_time_shift = strtol(option, &rem_str, 0);
657 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
658 error_setg(errp, "icount: Invalid shift value");
659 }
660 use_icount = 1;
661 return;
662 } else if (icount_align_option) {
663 error_setg(errp, "shift=auto and align=on are incompatible");
664 } else if (!icount_sleep) {
665 error_setg(errp, "shift=auto and sleep=off are incompatible");
666 }
667
668 use_icount = 2;
669
670 /* 125MIPS seems a reasonable initial guess at the guest speed.
671 It will be corrected fairly quickly anyway. */
672 icount_time_shift = 3;
673
674 /* Have both realtime and virtual time triggers for speed adjustment.
675 The realtime trigger catches emulated time passing too slowly,
676 the virtual time trigger catches emulated time passing too fast.
677 Realtime triggers occur even when idle, so use them less frequently
678 than VM triggers. */
679 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
680 icount_adjust_rt, NULL);
681 timer_mod(icount_rt_timer,
682 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
683 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
684 icount_adjust_vm, NULL);
685 timer_mod(icount_vm_timer,
686 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
687 NANOSECONDS_PER_SECOND / 10);
688 }
689
690 /***********************************************************/
691 void hw_error(const char *fmt, ...)
692 {
693 va_list ap;
694 CPUState *cpu;
695
696 va_start(ap, fmt);
697 fprintf(stderr, "qemu: hardware error: ");
698 vfprintf(stderr, fmt, ap);
699 fprintf(stderr, "\n");
700 CPU_FOREACH(cpu) {
701 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
702 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
703 }
704 va_end(ap);
705 abort();
706 }
707
708 void cpu_synchronize_all_states(void)
709 {
710 CPUState *cpu;
711
712 CPU_FOREACH(cpu) {
713 cpu_synchronize_state(cpu);
714 }
715 }
716
717 void cpu_synchronize_all_post_reset(void)
718 {
719 CPUState *cpu;
720
721 CPU_FOREACH(cpu) {
722 cpu_synchronize_post_reset(cpu);
723 }
724 }
725
726 void cpu_synchronize_all_post_init(void)
727 {
728 CPUState *cpu;
729
730 CPU_FOREACH(cpu) {
731 cpu_synchronize_post_init(cpu);
732 }
733 }
734
735 static int do_vm_stop(RunState state)
736 {
737 int ret = 0;
738
739 if (runstate_is_running()) {
740 cpu_disable_ticks();
741 pause_all_vcpus();
742 runstate_set(state);
743 vm_state_notify(0, state);
744 qapi_event_send_stop(&error_abort);
745 }
746
747 bdrv_drain_all();
748 ret = blk_flush_all();
749
750 return ret;
751 }
752
753 static bool cpu_can_run(CPUState *cpu)
754 {
755 if (cpu->stop) {
756 return false;
757 }
758 if (cpu_is_stopped(cpu)) {
759 return false;
760 }
761 return true;
762 }
763
764 static void cpu_handle_guest_debug(CPUState *cpu)
765 {
766 gdb_set_stop_cpu(cpu);
767 qemu_system_debug_request();
768 cpu->stopped = true;
769 }
770
771 #ifdef CONFIG_LINUX
772 static void sigbus_reraise(void)
773 {
774 sigset_t set;
775 struct sigaction action;
776
777 memset(&action, 0, sizeof(action));
778 action.sa_handler = SIG_DFL;
779 if (!sigaction(SIGBUS, &action, NULL)) {
780 raise(SIGBUS);
781 sigemptyset(&set);
782 sigaddset(&set, SIGBUS);
783 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
784 }
785 perror("Failed to re-raise SIGBUS!\n");
786 abort();
787 }
788
789 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
790 void *ctx)
791 {
792 if (kvm_on_sigbus(siginfo->ssi_code,
793 (void *)(intptr_t)siginfo->ssi_addr)) {
794 sigbus_reraise();
795 }
796 }
797
798 static void qemu_init_sigbus(void)
799 {
800 struct sigaction action;
801
802 memset(&action, 0, sizeof(action));
803 action.sa_flags = SA_SIGINFO;
804 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
805 sigaction(SIGBUS, &action, NULL);
806
807 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
808 }
809
810 static void qemu_kvm_eat_signals(CPUState *cpu)
811 {
812 struct timespec ts = { 0, 0 };
813 siginfo_t siginfo;
814 sigset_t waitset;
815 sigset_t chkset;
816 int r;
817
818 sigemptyset(&waitset);
819 sigaddset(&waitset, SIG_IPI);
820 sigaddset(&waitset, SIGBUS);
821
822 do {
823 r = sigtimedwait(&waitset, &siginfo, &ts);
824 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
825 perror("sigtimedwait");
826 exit(1);
827 }
828
829 switch (r) {
830 case SIGBUS:
831 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
832 sigbus_reraise();
833 }
834 break;
835 default:
836 break;
837 }
838
839 r = sigpending(&chkset);
840 if (r == -1) {
841 perror("sigpending");
842 exit(1);
843 }
844 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
845 }
846
847 #else /* !CONFIG_LINUX */
848
849 static void qemu_init_sigbus(void)
850 {
851 }
852
853 static void qemu_kvm_eat_signals(CPUState *cpu)
854 {
855 }
856 #endif /* !CONFIG_LINUX */
857
858 #ifndef _WIN32
859 static void dummy_signal(int sig)
860 {
861 }
862
863 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
864 {
865 int r;
866 sigset_t set;
867 struct sigaction sigact;
868
869 memset(&sigact, 0, sizeof(sigact));
870 sigact.sa_handler = dummy_signal;
871 sigaction(SIG_IPI, &sigact, NULL);
872
873 pthread_sigmask(SIG_BLOCK, NULL, &set);
874 sigdelset(&set, SIG_IPI);
875 sigdelset(&set, SIGBUS);
876 r = kvm_set_signal_mask(cpu, &set);
877 if (r) {
878 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
879 exit(1);
880 }
881 }
882
883 #else /* _WIN32 */
884 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
885 {
886 abort();
887 }
888 #endif /* _WIN32 */
889
890 static QemuMutex qemu_global_mutex;
891 static QemuCond qemu_io_proceeded_cond;
892 static unsigned iothread_requesting_mutex;
893
894 static QemuThread io_thread;
895
896 /* cpu creation */
897 static QemuCond qemu_cpu_cond;
898 /* system init */
899 static QemuCond qemu_pause_cond;
900 static QemuCond qemu_work_cond;
901
902 void qemu_init_cpu_loop(void)
903 {
904 qemu_init_sigbus();
905 qemu_cond_init(&qemu_cpu_cond);
906 qemu_cond_init(&qemu_pause_cond);
907 qemu_cond_init(&qemu_work_cond);
908 qemu_cond_init(&qemu_io_proceeded_cond);
909 qemu_mutex_init(&qemu_global_mutex);
910
911 qemu_thread_get_self(&io_thread);
912 }
913
914 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
915 {
916 struct qemu_work_item wi;
917
918 if (qemu_cpu_is_self(cpu)) {
919 func(data);
920 return;
921 }
922
923 wi.func = func;
924 wi.data = data;
925 wi.free = false;
926
927 qemu_mutex_lock(&cpu->work_mutex);
928 if (cpu->queued_work_first == NULL) {
929 cpu->queued_work_first = &wi;
930 } else {
931 cpu->queued_work_last->next = &wi;
932 }
933 cpu->queued_work_last = &wi;
934 wi.next = NULL;
935 wi.done = false;
936 qemu_mutex_unlock(&cpu->work_mutex);
937
938 qemu_cpu_kick(cpu);
939 while (!atomic_mb_read(&wi.done)) {
940 CPUState *self_cpu = current_cpu;
941
942 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
943 current_cpu = self_cpu;
944 }
945 }
946
947 void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
948 {
949 struct qemu_work_item *wi;
950
951 if (qemu_cpu_is_self(cpu)) {
952 func(data);
953 return;
954 }
955
956 wi = g_malloc0(sizeof(struct qemu_work_item));
957 wi->func = func;
958 wi->data = data;
959 wi->free = true;
960
961 qemu_mutex_lock(&cpu->work_mutex);
962 if (cpu->queued_work_first == NULL) {
963 cpu->queued_work_first = wi;
964 } else {
965 cpu->queued_work_last->next = wi;
966 }
967 cpu->queued_work_last = wi;
968 wi->next = NULL;
969 wi->done = false;
970 qemu_mutex_unlock(&cpu->work_mutex);
971
972 qemu_cpu_kick(cpu);
973 }
974
975 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
976 {
977 if (kvm_destroy_vcpu(cpu) < 0) {
978 error_report("kvm_destroy_vcpu failed");
979 exit(EXIT_FAILURE);
980 }
981 }
982
983 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
984 {
985 }
986
987 static void flush_queued_work(CPUState *cpu)
988 {
989 struct qemu_work_item *wi;
990
991 if (cpu->queued_work_first == NULL) {
992 return;
993 }
994
995 qemu_mutex_lock(&cpu->work_mutex);
996 while (cpu->queued_work_first != NULL) {
997 wi = cpu->queued_work_first;
998 cpu->queued_work_first = wi->next;
999 if (!cpu->queued_work_first) {
1000 cpu->queued_work_last = NULL;
1001 }
1002 qemu_mutex_unlock(&cpu->work_mutex);
1003 wi->func(wi->data);
1004 qemu_mutex_lock(&cpu->work_mutex);
1005 if (wi->free) {
1006 g_free(wi);
1007 } else {
1008 atomic_mb_set(&wi->done, true);
1009 }
1010 }
1011 qemu_mutex_unlock(&cpu->work_mutex);
1012 qemu_cond_broadcast(&qemu_work_cond);
1013 }
1014
1015 static void qemu_wait_io_event_common(CPUState *cpu)
1016 {
1017 if (cpu->stop) {
1018 cpu->stop = false;
1019 cpu->stopped = true;
1020 qemu_cond_broadcast(&qemu_pause_cond);
1021 }
1022 flush_queued_work(cpu);
1023 cpu->thread_kicked = false;
1024 }
1025
1026 static void qemu_tcg_wait_io_event(CPUState *cpu)
1027 {
1028 while (all_cpu_threads_idle()) {
1029 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1030 }
1031
1032 while (iothread_requesting_mutex) {
1033 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
1034 }
1035
1036 CPU_FOREACH(cpu) {
1037 qemu_wait_io_event_common(cpu);
1038 }
1039 }
1040
1041 static void qemu_kvm_wait_io_event(CPUState *cpu)
1042 {
1043 while (cpu_thread_is_idle(cpu)) {
1044 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1045 }
1046
1047 qemu_kvm_eat_signals(cpu);
1048 qemu_wait_io_event_common(cpu);
1049 }
1050
1051 static void *qemu_kvm_cpu_thread_fn(void *arg)
1052 {
1053 CPUState *cpu = arg;
1054 int r;
1055
1056 rcu_register_thread();
1057
1058 qemu_mutex_lock_iothread();
1059 qemu_thread_get_self(cpu->thread);
1060 cpu->thread_id = qemu_get_thread_id();
1061 cpu->can_do_io = 1;
1062 current_cpu = cpu;
1063
1064 r = kvm_init_vcpu(cpu);
1065 if (r < 0) {
1066 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1067 exit(1);
1068 }
1069
1070 qemu_kvm_init_cpu_signals(cpu);
1071
1072 /* signal CPU creation */
1073 cpu->created = true;
1074 qemu_cond_signal(&qemu_cpu_cond);
1075
1076 do {
1077 if (cpu_can_run(cpu)) {
1078 r = kvm_cpu_exec(cpu);
1079 if (r == EXCP_DEBUG) {
1080 cpu_handle_guest_debug(cpu);
1081 }
1082 }
1083 qemu_kvm_wait_io_event(cpu);
1084 } while (!cpu->unplug || cpu_can_run(cpu));
1085
1086 qemu_kvm_destroy_vcpu(cpu);
1087 qemu_mutex_unlock_iothread();
1088 return NULL;
1089 }
1090
1091 static void *qemu_dummy_cpu_thread_fn(void *arg)
1092 {
1093 #ifdef _WIN32
1094 fprintf(stderr, "qtest is not supported under Windows\n");
1095 exit(1);
1096 #else
1097 CPUState *cpu = arg;
1098 sigset_t waitset;
1099 int r;
1100
1101 rcu_register_thread();
1102
1103 qemu_mutex_lock_iothread();
1104 qemu_thread_get_self(cpu->thread);
1105 cpu->thread_id = qemu_get_thread_id();
1106 cpu->can_do_io = 1;
1107
1108 sigemptyset(&waitset);
1109 sigaddset(&waitset, SIG_IPI);
1110
1111 /* signal CPU creation */
1112 cpu->created = true;
1113 qemu_cond_signal(&qemu_cpu_cond);
1114
1115 current_cpu = cpu;
1116 while (1) {
1117 current_cpu = NULL;
1118 qemu_mutex_unlock_iothread();
1119 do {
1120 int sig;
1121 r = sigwait(&waitset, &sig);
1122 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1123 if (r == -1) {
1124 perror("sigwait");
1125 exit(1);
1126 }
1127 qemu_mutex_lock_iothread();
1128 current_cpu = cpu;
1129 qemu_wait_io_event_common(cpu);
1130 }
1131
1132 return NULL;
1133 #endif
1134 }
1135
1136 static void tcg_exec_all(void);
1137
1138 static void *qemu_tcg_cpu_thread_fn(void *arg)
1139 {
1140 CPUState *cpu = arg;
1141 CPUState *remove_cpu = NULL;
1142
1143 rcu_register_thread();
1144
1145 qemu_mutex_lock_iothread();
1146 qemu_thread_get_self(cpu->thread);
1147
1148 CPU_FOREACH(cpu) {
1149 cpu->thread_id = qemu_get_thread_id();
1150 cpu->created = true;
1151 cpu->can_do_io = 1;
1152 }
1153 qemu_cond_signal(&qemu_cpu_cond);
1154
1155 /* wait for initial kick-off after machine start */
1156 while (first_cpu->stopped) {
1157 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1158
1159 /* process any pending work */
1160 CPU_FOREACH(cpu) {
1161 qemu_wait_io_event_common(cpu);
1162 }
1163 }
1164
1165 /* process any pending work */
1166 atomic_mb_set(&exit_request, 1);
1167
1168 while (1) {
1169 tcg_exec_all();
1170
1171 if (use_icount) {
1172 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1173
1174 if (deadline == 0) {
1175 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1176 }
1177 }
1178 qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
1179 CPU_FOREACH(cpu) {
1180 if (cpu->unplug && !cpu_can_run(cpu)) {
1181 remove_cpu = cpu;
1182 break;
1183 }
1184 }
1185 if (remove_cpu) {
1186 qemu_tcg_destroy_vcpu(remove_cpu);
1187 remove_cpu = NULL;
1188 }
1189 }
1190
1191 return NULL;
1192 }
1193
1194 static void qemu_cpu_kick_thread(CPUState *cpu)
1195 {
1196 #ifndef _WIN32
1197 int err;
1198
1199 if (cpu->thread_kicked) {
1200 return;
1201 }
1202 cpu->thread_kicked = true;
1203 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1204 if (err) {
1205 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1206 exit(1);
1207 }
1208 #else /* _WIN32 */
1209 abort();
1210 #endif
1211 }
1212
1213 static void qemu_cpu_kick_no_halt(void)
1214 {
1215 CPUState *cpu;
1216 /* Ensure whatever caused the exit has reached the CPU threads before
1217 * writing exit_request.
1218 */
1219 atomic_mb_set(&exit_request, 1);
1220 cpu = atomic_mb_read(&tcg_current_cpu);
1221 if (cpu) {
1222 cpu_exit(cpu);
1223 }
1224 }
1225
1226 void qemu_cpu_kick(CPUState *cpu)
1227 {
1228 qemu_cond_broadcast(cpu->halt_cond);
1229 if (tcg_enabled()) {
1230 qemu_cpu_kick_no_halt();
1231 } else {
1232 qemu_cpu_kick_thread(cpu);
1233 }
1234 }
1235
1236 void qemu_cpu_kick_self(void)
1237 {
1238 assert(current_cpu);
1239 qemu_cpu_kick_thread(current_cpu);
1240 }
1241
1242 bool qemu_cpu_is_self(CPUState *cpu)
1243 {
1244 return qemu_thread_is_self(cpu->thread);
1245 }
1246
1247 bool qemu_in_vcpu_thread(void)
1248 {
1249 return current_cpu && qemu_cpu_is_self(current_cpu);
1250 }
1251
1252 static __thread bool iothread_locked = false;
1253
1254 bool qemu_mutex_iothread_locked(void)
1255 {
1256 return iothread_locked;
1257 }
1258
1259 void qemu_mutex_lock_iothread(void)
1260 {
1261 atomic_inc(&iothread_requesting_mutex);
1262 /* In the simple case there is no need to bump the VCPU thread out of
1263 * TCG code execution.
1264 */
1265 if (!tcg_enabled() || qemu_in_vcpu_thread() ||
1266 !first_cpu || !first_cpu->created) {
1267 qemu_mutex_lock(&qemu_global_mutex);
1268 atomic_dec(&iothread_requesting_mutex);
1269 } else {
1270 if (qemu_mutex_trylock(&qemu_global_mutex)) {
1271 qemu_cpu_kick_no_halt();
1272 qemu_mutex_lock(&qemu_global_mutex);
1273 }
1274 atomic_dec(&iothread_requesting_mutex);
1275 qemu_cond_broadcast(&qemu_io_proceeded_cond);
1276 }
1277 iothread_locked = true;
1278 }
1279
1280 void qemu_mutex_unlock_iothread(void)
1281 {
1282 iothread_locked = false;
1283 qemu_mutex_unlock(&qemu_global_mutex);
1284 }
1285
1286 static int all_vcpus_paused(void)
1287 {
1288 CPUState *cpu;
1289
1290 CPU_FOREACH(cpu) {
1291 if (!cpu->stopped) {
1292 return 0;
1293 }
1294 }
1295
1296 return 1;
1297 }
1298
1299 void pause_all_vcpus(void)
1300 {
1301 CPUState *cpu;
1302
1303 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1304 CPU_FOREACH(cpu) {
1305 cpu->stop = true;
1306 qemu_cpu_kick(cpu);
1307 }
1308
1309 if (qemu_in_vcpu_thread()) {
1310 cpu_stop_current();
1311 if (!kvm_enabled()) {
1312 CPU_FOREACH(cpu) {
1313 cpu->stop = false;
1314 cpu->stopped = true;
1315 }
1316 return;
1317 }
1318 }
1319
1320 while (!all_vcpus_paused()) {
1321 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1322 CPU_FOREACH(cpu) {
1323 qemu_cpu_kick(cpu);
1324 }
1325 }
1326 }
1327
1328 void cpu_resume(CPUState *cpu)
1329 {
1330 cpu->stop = false;
1331 cpu->stopped = false;
1332 qemu_cpu_kick(cpu);
1333 }
1334
1335 void resume_all_vcpus(void)
1336 {
1337 CPUState *cpu;
1338
1339 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1340 CPU_FOREACH(cpu) {
1341 cpu_resume(cpu);
1342 }
1343 }
1344
1345 void cpu_remove(CPUState *cpu)
1346 {
1347 cpu->stop = true;
1348 cpu->unplug = true;
1349 qemu_cpu_kick(cpu);
1350 }
1351
1352 /* For temporary buffers for forming a name */
1353 #define VCPU_THREAD_NAME_SIZE 16
1354
1355 static void qemu_tcg_init_vcpu(CPUState *cpu)
1356 {
1357 char thread_name[VCPU_THREAD_NAME_SIZE];
1358 static QemuCond *tcg_halt_cond;
1359 static QemuThread *tcg_cpu_thread;
1360
1361 /* share a single thread for all cpus with TCG */
1362 if (!tcg_cpu_thread) {
1363 cpu->thread = g_malloc0(sizeof(QemuThread));
1364 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1365 qemu_cond_init(cpu->halt_cond);
1366 tcg_halt_cond = cpu->halt_cond;
1367 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1368 cpu->cpu_index);
1369 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1370 cpu, QEMU_THREAD_JOINABLE);
1371 #ifdef _WIN32
1372 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1373 #endif
1374 while (!cpu->created) {
1375 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1376 }
1377 tcg_cpu_thread = cpu->thread;
1378 } else {
1379 cpu->thread = tcg_cpu_thread;
1380 cpu->halt_cond = tcg_halt_cond;
1381 }
1382 }
1383
1384 static void qemu_kvm_start_vcpu(CPUState *cpu)
1385 {
1386 char thread_name[VCPU_THREAD_NAME_SIZE];
1387
1388 cpu->thread = g_malloc0(sizeof(QemuThread));
1389 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1390 qemu_cond_init(cpu->halt_cond);
1391 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1392 cpu->cpu_index);
1393 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1394 cpu, QEMU_THREAD_JOINABLE);
1395 while (!cpu->created) {
1396 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1397 }
1398 }
1399
1400 static void qemu_dummy_start_vcpu(CPUState *cpu)
1401 {
1402 char thread_name[VCPU_THREAD_NAME_SIZE];
1403
1404 cpu->thread = g_malloc0(sizeof(QemuThread));
1405 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1406 qemu_cond_init(cpu->halt_cond);
1407 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1408 cpu->cpu_index);
1409 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1410 QEMU_THREAD_JOINABLE);
1411 while (!cpu->created) {
1412 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1413 }
1414 }
1415
1416 void qemu_init_vcpu(CPUState *cpu)
1417 {
1418 cpu->nr_cores = smp_cores;
1419 cpu->nr_threads = smp_threads;
1420 cpu->stopped = true;
1421
1422 if (!cpu->as) {
1423 /* If the target cpu hasn't set up any address spaces itself,
1424 * give it the default one.
1425 */
1426 AddressSpace *as = address_space_init_shareable(cpu->memory,
1427 "cpu-memory");
1428 cpu->num_ases = 1;
1429 cpu_address_space_init(cpu, as, 0);
1430 }
1431
1432 if (kvm_enabled()) {
1433 qemu_kvm_start_vcpu(cpu);
1434 } else if (tcg_enabled()) {
1435 qemu_tcg_init_vcpu(cpu);
1436 } else {
1437 qemu_dummy_start_vcpu(cpu);
1438 }
1439 }
1440
1441 void cpu_stop_current(void)
1442 {
1443 if (current_cpu) {
1444 current_cpu->stop = false;
1445 current_cpu->stopped = true;
1446 cpu_exit(current_cpu);
1447 qemu_cond_broadcast(&qemu_pause_cond);
1448 }
1449 }
1450
1451 int vm_stop(RunState state)
1452 {
1453 if (qemu_in_vcpu_thread()) {
1454 qemu_system_vmstop_request_prepare();
1455 qemu_system_vmstop_request(state);
1456 /*
1457 * FIXME: should not return to device code in case
1458 * vm_stop() has been requested.
1459 */
1460 cpu_stop_current();
1461 return 0;
1462 }
1463
1464 return do_vm_stop(state);
1465 }
1466
1467 /* does a state transition even if the VM is already stopped,
1468 current state is forgotten forever */
1469 int vm_stop_force_state(RunState state)
1470 {
1471 if (runstate_is_running()) {
1472 return vm_stop(state);
1473 } else {
1474 runstate_set(state);
1475
1476 bdrv_drain_all();
1477 /* Make sure to return an error if the flush in a previous vm_stop()
1478 * failed. */
1479 return blk_flush_all();
1480 }
1481 }
1482
1483 static int64_t tcg_get_icount_limit(void)
1484 {
1485 int64_t deadline;
1486
1487 if (replay_mode != REPLAY_MODE_PLAY) {
1488 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1489
1490 /* Maintain prior (possibly buggy) behaviour where if no deadline
1491 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1492 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1493 * nanoseconds.
1494 */
1495 if ((deadline < 0) || (deadline > INT32_MAX)) {
1496 deadline = INT32_MAX;
1497 }
1498
1499 return qemu_icount_round(deadline);
1500 } else {
1501 return replay_get_instructions();
1502 }
1503 }
1504
1505 static int tcg_cpu_exec(CPUState *cpu)
1506 {
1507 int ret;
1508 #ifdef CONFIG_PROFILER
1509 int64_t ti;
1510 #endif
1511
1512 #ifdef CONFIG_PROFILER
1513 ti = profile_getclock();
1514 #endif
1515 if (use_icount) {
1516 int64_t count;
1517 int decr;
1518 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1519 + cpu->icount_extra);
1520 cpu->icount_decr.u16.low = 0;
1521 cpu->icount_extra = 0;
1522 count = tcg_get_icount_limit();
1523 timers_state.qemu_icount += count;
1524 decr = (count > 0xffff) ? 0xffff : count;
1525 count -= decr;
1526 cpu->icount_decr.u16.low = decr;
1527 cpu->icount_extra = count;
1528 }
1529 ret = cpu_exec(cpu);
1530 #ifdef CONFIG_PROFILER
1531 tcg_time += profile_getclock() - ti;
1532 #endif
1533 if (use_icount) {
1534 /* Fold pending instructions back into the
1535 instruction counter, and clear the interrupt flag. */
1536 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1537 + cpu->icount_extra);
1538 cpu->icount_decr.u32 = 0;
1539 cpu->icount_extra = 0;
1540 replay_account_executed_instructions();
1541 }
1542 return ret;
1543 }
1544
1545 static void tcg_exec_all(void)
1546 {
1547 int r;
1548
1549 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1550 qemu_account_warp_timer();
1551
1552 if (next_cpu == NULL) {
1553 next_cpu = first_cpu;
1554 }
1555 for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
1556 CPUState *cpu = next_cpu;
1557
1558 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1559 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1560
1561 if (cpu_can_run(cpu)) {
1562 r = tcg_cpu_exec(cpu);
1563 if (r == EXCP_DEBUG) {
1564 cpu_handle_guest_debug(cpu);
1565 break;
1566 }
1567 } else if (cpu->stop || cpu->stopped) {
1568 if (cpu->unplug) {
1569 next_cpu = CPU_NEXT(cpu);
1570 }
1571 break;
1572 }
1573 }
1574
1575 /* Pairs with smp_wmb in qemu_cpu_kick. */
1576 atomic_mb_set(&exit_request, 0);
1577 }
1578
1579 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1580 {
1581 /* XXX: implement xxx_cpu_list for targets that still miss it */
1582 #if defined(cpu_list)
1583 cpu_list(f, cpu_fprintf);
1584 #endif
1585 }
1586
1587 CpuInfoList *qmp_query_cpus(Error **errp)
1588 {
1589 CpuInfoList *head = NULL, *cur_item = NULL;
1590 CPUState *cpu;
1591
1592 CPU_FOREACH(cpu) {
1593 CpuInfoList *info;
1594 #if defined(TARGET_I386)
1595 X86CPU *x86_cpu = X86_CPU(cpu);
1596 CPUX86State *env = &x86_cpu->env;
1597 #elif defined(TARGET_PPC)
1598 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1599 CPUPPCState *env = &ppc_cpu->env;
1600 #elif defined(TARGET_SPARC)
1601 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1602 CPUSPARCState *env = &sparc_cpu->env;
1603 #elif defined(TARGET_MIPS)
1604 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1605 CPUMIPSState *env = &mips_cpu->env;
1606 #elif defined(TARGET_TRICORE)
1607 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1608 CPUTriCoreState *env = &tricore_cpu->env;
1609 #endif
1610
1611 cpu_synchronize_state(cpu);
1612
1613 info = g_malloc0(sizeof(*info));
1614 info->value = g_malloc0(sizeof(*info->value));
1615 info->value->CPU = cpu->cpu_index;
1616 info->value->current = (cpu == first_cpu);
1617 info->value->halted = cpu->halted;
1618 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1619 info->value->thread_id = cpu->thread_id;
1620 #if defined(TARGET_I386)
1621 info->value->arch = CPU_INFO_ARCH_X86;
1622 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1623 #elif defined(TARGET_PPC)
1624 info->value->arch = CPU_INFO_ARCH_PPC;
1625 info->value->u.ppc.nip = env->nip;
1626 #elif defined(TARGET_SPARC)
1627 info->value->arch = CPU_INFO_ARCH_SPARC;
1628 info->value->u.q_sparc.pc = env->pc;
1629 info->value->u.q_sparc.npc = env->npc;
1630 #elif defined(TARGET_MIPS)
1631 info->value->arch = CPU_INFO_ARCH_MIPS;
1632 info->value->u.q_mips.PC = env->active_tc.PC;
1633 #elif defined(TARGET_TRICORE)
1634 info->value->arch = CPU_INFO_ARCH_TRICORE;
1635 info->value->u.tricore.PC = env->PC;
1636 #else
1637 info->value->arch = CPU_INFO_ARCH_OTHER;
1638 #endif
1639
1640 /* XXX: waiting for the qapi to support GSList */
1641 if (!cur_item) {
1642 head = cur_item = info;
1643 } else {
1644 cur_item->next = info;
1645 cur_item = info;
1646 }
1647 }
1648
1649 return head;
1650 }
1651
1652 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1653 bool has_cpu, int64_t cpu_index, Error **errp)
1654 {
1655 FILE *f;
1656 uint32_t l;
1657 CPUState *cpu;
1658 uint8_t buf[1024];
1659 int64_t orig_addr = addr, orig_size = size;
1660
1661 if (!has_cpu) {
1662 cpu_index = 0;
1663 }
1664
1665 cpu = qemu_get_cpu(cpu_index);
1666 if (cpu == NULL) {
1667 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1668 "a CPU number");
1669 return;
1670 }
1671
1672 f = fopen(filename, "wb");
1673 if (!f) {
1674 error_setg_file_open(errp, errno, filename);
1675 return;
1676 }
1677
1678 while (size != 0) {
1679 l = sizeof(buf);
1680 if (l > size)
1681 l = size;
1682 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1683 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1684 " specified", orig_addr, orig_size);
1685 goto exit;
1686 }
1687 if (fwrite(buf, 1, l, f) != l) {
1688 error_setg(errp, QERR_IO_ERROR);
1689 goto exit;
1690 }
1691 addr += l;
1692 size -= l;
1693 }
1694
1695 exit:
1696 fclose(f);
1697 }
1698
1699 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1700 Error **errp)
1701 {
1702 FILE *f;
1703 uint32_t l;
1704 uint8_t buf[1024];
1705
1706 f = fopen(filename, "wb");
1707 if (!f) {
1708 error_setg_file_open(errp, errno, filename);
1709 return;
1710 }
1711
1712 while (size != 0) {
1713 l = sizeof(buf);
1714 if (l > size)
1715 l = size;
1716 cpu_physical_memory_read(addr, buf, l);
1717 if (fwrite(buf, 1, l, f) != l) {
1718 error_setg(errp, QERR_IO_ERROR);
1719 goto exit;
1720 }
1721 addr += l;
1722 size -= l;
1723 }
1724
1725 exit:
1726 fclose(f);
1727 }
1728
1729 void qmp_inject_nmi(Error **errp)
1730 {
1731 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1732 }
1733
1734 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1735 {
1736 if (!use_icount) {
1737 return;
1738 }
1739
1740 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1741 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1742 if (icount_align_option) {
1743 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1744 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1745 } else {
1746 cpu_fprintf(f, "Max guest delay NA\n");
1747 cpu_fprintf(f, "Max guest advance NA\n");
1748 }
1749 }