]> git.proxmox.com Git - qemu.git/blob - cpus.c
565abb4d5b515dc65c873dd9f482f76729d2f99b
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39
40 #ifndef _WIN32
41 #include "compatfd.h"
42 #endif
43
44 #ifdef CONFIG_LINUX
45
46 #include <sys/prctl.h>
47
48 #ifndef PR_MCE_KILL
49 #define PR_MCE_KILL 33
50 #endif
51
52 #ifndef PR_MCE_KILL_SET
53 #define PR_MCE_KILL_SET 1
54 #endif
55
56 #ifndef PR_MCE_KILL_EARLY
57 #define PR_MCE_KILL_EARLY 1
58 #endif
59
60 #endif /* CONFIG_LINUX */
61
62 static CPUArchState *next_cpu;
63
64 static bool cpu_thread_is_idle(CPUArchState *env)
65 {
66 if (env->stop || env->queued_work_first) {
67 return false;
68 }
69 if (env->stopped || !runstate_is_running()) {
70 return true;
71 }
72 if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73 return false;
74 }
75 return true;
76 }
77
78 static bool all_cpu_threads_idle(void)
79 {
80 CPUArchState *env;
81
82 for (env = first_cpu; env != NULL; env = env->next_cpu) {
83 if (!cpu_thread_is_idle(env)) {
84 return false;
85 }
86 }
87 return true;
88 }
89
90 /***********************************************************/
91 /* guest cycle counter */
92
93 /* Conversion factor from emulated instructions to virtual clock ticks. */
94 static int icount_time_shift;
95 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
96 #define MAX_ICOUNT_SHIFT 10
97 /* Compensate for varying guest execution speed. */
98 static int64_t qemu_icount_bias;
99 static QEMUTimer *icount_rt_timer;
100 static QEMUTimer *icount_vm_timer;
101 static QEMUTimer *icount_warp_timer;
102 static int64_t vm_clock_warp_start;
103 static int64_t qemu_icount;
104
105 typedef struct TimersState {
106 int64_t cpu_ticks_prev;
107 int64_t cpu_ticks_offset;
108 int64_t cpu_clock_offset;
109 int32_t cpu_ticks_enabled;
110 int64_t dummy;
111 } TimersState;
112
113 TimersState timers_state;
114
115 /* Return the virtual CPU time, based on the instruction counter. */
116 int64_t cpu_get_icount(void)
117 {
118 int64_t icount;
119 CPUArchState *env = cpu_single_env;
120
121 icount = qemu_icount;
122 if (env) {
123 if (!can_do_io(env)) {
124 fprintf(stderr, "Bad clock read\n");
125 }
126 icount -= (env->icount_decr.u16.low + env->icount_extra);
127 }
128 return qemu_icount_bias + (icount << icount_time_shift);
129 }
130
131 /* return the host CPU cycle counter and handle stop/restart */
132 int64_t cpu_get_ticks(void)
133 {
134 if (use_icount) {
135 return cpu_get_icount();
136 }
137 if (!timers_state.cpu_ticks_enabled) {
138 return timers_state.cpu_ticks_offset;
139 } else {
140 int64_t ticks;
141 ticks = cpu_get_real_ticks();
142 if (timers_state.cpu_ticks_prev > ticks) {
143 /* Note: non increasing ticks may happen if the host uses
144 software suspend */
145 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
146 }
147 timers_state.cpu_ticks_prev = ticks;
148 return ticks + timers_state.cpu_ticks_offset;
149 }
150 }
151
152 /* return the host CPU monotonic timer and handle stop/restart */
153 int64_t cpu_get_clock(void)
154 {
155 int64_t ti;
156 if (!timers_state.cpu_ticks_enabled) {
157 return timers_state.cpu_clock_offset;
158 } else {
159 ti = get_clock();
160 return ti + timers_state.cpu_clock_offset;
161 }
162 }
163
164 /* enable cpu_get_ticks() */
165 void cpu_enable_ticks(void)
166 {
167 if (!timers_state.cpu_ticks_enabled) {
168 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169 timers_state.cpu_clock_offset -= get_clock();
170 timers_state.cpu_ticks_enabled = 1;
171 }
172 }
173
174 /* disable cpu_get_ticks() : the clock is stopped. You must not call
175 cpu_get_ticks() after that. */
176 void cpu_disable_ticks(void)
177 {
178 if (timers_state.cpu_ticks_enabled) {
179 timers_state.cpu_ticks_offset = cpu_get_ticks();
180 timers_state.cpu_clock_offset = cpu_get_clock();
181 timers_state.cpu_ticks_enabled = 0;
182 }
183 }
184
185 /* Correlation between real and virtual time is always going to be
186 fairly approximate, so ignore small variation.
187 When the guest is idle real and virtual time will be aligned in
188 the IO wait loop. */
189 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
190
191 static void icount_adjust(void)
192 {
193 int64_t cur_time;
194 int64_t cur_icount;
195 int64_t delta;
196 static int64_t last_delta;
197 /* If the VM is not running, then do nothing. */
198 if (!runstate_is_running()) {
199 return;
200 }
201 cur_time = cpu_get_clock();
202 cur_icount = qemu_get_clock_ns(vm_clock);
203 delta = cur_icount - cur_time;
204 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
205 if (delta > 0
206 && last_delta + ICOUNT_WOBBLE < delta * 2
207 && icount_time_shift > 0) {
208 /* The guest is getting too far ahead. Slow time down. */
209 icount_time_shift--;
210 }
211 if (delta < 0
212 && last_delta - ICOUNT_WOBBLE > delta * 2
213 && icount_time_shift < MAX_ICOUNT_SHIFT) {
214 /* The guest is getting too far behind. Speed time up. */
215 icount_time_shift++;
216 }
217 last_delta = delta;
218 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
219 }
220
221 static void icount_adjust_rt(void *opaque)
222 {
223 qemu_mod_timer(icount_rt_timer,
224 qemu_get_clock_ms(rt_clock) + 1000);
225 icount_adjust();
226 }
227
228 static void icount_adjust_vm(void *opaque)
229 {
230 qemu_mod_timer(icount_vm_timer,
231 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232 icount_adjust();
233 }
234
235 static int64_t qemu_icount_round(int64_t count)
236 {
237 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
238 }
239
240 static void icount_warp_rt(void *opaque)
241 {
242 if (vm_clock_warp_start == -1) {
243 return;
244 }
245
246 if (runstate_is_running()) {
247 int64_t clock = qemu_get_clock_ns(rt_clock);
248 int64_t warp_delta = clock - vm_clock_warp_start;
249 if (use_icount == 1) {
250 qemu_icount_bias += warp_delta;
251 } else {
252 /*
253 * In adaptive mode, do not let the vm_clock run too
254 * far ahead of real time.
255 */
256 int64_t cur_time = cpu_get_clock();
257 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258 int64_t delta = cur_time - cur_icount;
259 qemu_icount_bias += MIN(warp_delta, delta);
260 }
261 if (qemu_clock_expired(vm_clock)) {
262 qemu_notify_event();
263 }
264 }
265 vm_clock_warp_start = -1;
266 }
267
268 void qtest_clock_warp(int64_t dest)
269 {
270 int64_t clock = qemu_get_clock_ns(vm_clock);
271 assert(qtest_enabled());
272 while (clock < dest) {
273 int64_t deadline = qemu_clock_deadline(vm_clock);
274 int64_t warp = MIN(dest - clock, deadline);
275 qemu_icount_bias += warp;
276 qemu_run_timers(vm_clock);
277 clock = qemu_get_clock_ns(vm_clock);
278 }
279 qemu_notify_event();
280 }
281
282 void qemu_clock_warp(QEMUClock *clock)
283 {
284 int64_t deadline;
285
286 /*
287 * There are too many global variables to make the "warp" behavior
288 * applicable to other clocks. But a clock argument removes the
289 * need for if statements all over the place.
290 */
291 if (clock != vm_clock || !use_icount) {
292 return;
293 }
294
295 /*
296 * If the CPUs have been sleeping, advance the vm_clock timer now. This
297 * ensures that the deadline for the timer is computed correctly below.
298 * This also makes sure that the insn counter is synchronized before the
299 * CPU starts running, in case the CPU is woken by an event other than
300 * the earliest vm_clock timer.
301 */
302 icount_warp_rt(NULL);
303 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304 qemu_del_timer(icount_warp_timer);
305 return;
306 }
307
308 if (qtest_enabled()) {
309 /* When testing, qtest commands advance icount. */
310 return;
311 }
312
313 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314 deadline = qemu_clock_deadline(vm_clock);
315 if (deadline > 0) {
316 /*
317 * Ensure the vm_clock proceeds even when the virtual CPU goes to
318 * sleep. Otherwise, the CPU might be waiting for a future timer
319 * interrupt to wake it up, but the interrupt never comes because
320 * the vCPU isn't running any insns and thus doesn't advance the
321 * vm_clock.
322 *
323 * An extreme solution for this problem would be to never let VCPUs
324 * sleep in icount mode if there is a pending vm_clock timer; rather
325 * time could just advance to the next vm_clock event. Instead, we
326 * do stop VCPUs and only advance vm_clock after some "real" time,
327 * (related to the time left until the next event) has passed. This
328 * rt_clock timer will do this. This avoids that the warps are too
329 * visible externally---for example, you will not be sending network
330 * packets continuously instead of every 100ms.
331 */
332 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333 } else {
334 qemu_notify_event();
335 }
336 }
337
338 static const VMStateDescription vmstate_timers = {
339 .name = "timer",
340 .version_id = 2,
341 .minimum_version_id = 1,
342 .minimum_version_id_old = 1,
343 .fields = (VMStateField[]) {
344 VMSTATE_INT64(cpu_ticks_offset, TimersState),
345 VMSTATE_INT64(dummy, TimersState),
346 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347 VMSTATE_END_OF_LIST()
348 }
349 };
350
351 void configure_icount(const char *option)
352 {
353 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354 if (!option) {
355 return;
356 }
357
358 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359 if (strcmp(option, "auto") != 0) {
360 icount_time_shift = strtol(option, NULL, 0);
361 use_icount = 1;
362 return;
363 }
364
365 use_icount = 2;
366
367 /* 125MIPS seems a reasonable initial guess at the guest speed.
368 It will be corrected fairly quickly anyway. */
369 icount_time_shift = 3;
370
371 /* Have both realtime and virtual time triggers for speed adjustment.
372 The realtime trigger catches emulated time passing too slowly,
373 the virtual time trigger catches emulated time passing too fast.
374 Realtime triggers occur even when idle, so use them less frequently
375 than VM triggers. */
376 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377 qemu_mod_timer(icount_rt_timer,
378 qemu_get_clock_ms(rt_clock) + 1000);
379 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380 qemu_mod_timer(icount_vm_timer,
381 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
382 }
383
384 /***********************************************************/
385 void hw_error(const char *fmt, ...)
386 {
387 va_list ap;
388 CPUArchState *env;
389
390 va_start(ap, fmt);
391 fprintf(stderr, "qemu: hardware error: ");
392 vfprintf(stderr, fmt, ap);
393 fprintf(stderr, "\n");
394 for(env = first_cpu; env != NULL; env = env->next_cpu) {
395 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396 #ifdef TARGET_I386
397 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398 #else
399 cpu_dump_state(env, stderr, fprintf, 0);
400 #endif
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 int cpu_is_stopped(CPUArchState *env)
434 {
435 return !runstate_is_running() || env->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static int cpu_can_run(CPUArchState *env)
452 {
453 if (env->stop) {
454 return 0;
455 }
456 if (env->stopped || !runstate_is_running()) {
457 return 0;
458 }
459 return 1;
460 }
461
462 static void cpu_handle_guest_debug(CPUArchState *env)
463 {
464 gdb_set_stop_cpu(env);
465 qemu_system_debug_request();
466 env->stopped = 1;
467 }
468
469 static void cpu_signal(int sig)
470 {
471 if (cpu_single_env) {
472 cpu_exit(cpu_single_env);
473 }
474 exit_request = 1;
475 }
476
477 #ifdef CONFIG_LINUX
478 static void sigbus_reraise(void)
479 {
480 sigset_t set;
481 struct sigaction action;
482
483 memset(&action, 0, sizeof(action));
484 action.sa_handler = SIG_DFL;
485 if (!sigaction(SIGBUS, &action, NULL)) {
486 raise(SIGBUS);
487 sigemptyset(&set);
488 sigaddset(&set, SIGBUS);
489 sigprocmask(SIG_UNBLOCK, &set, NULL);
490 }
491 perror("Failed to re-raise SIGBUS!\n");
492 abort();
493 }
494
495 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496 void *ctx)
497 {
498 if (kvm_on_sigbus(siginfo->ssi_code,
499 (void *)(intptr_t)siginfo->ssi_addr)) {
500 sigbus_reraise();
501 }
502 }
503
504 static void qemu_init_sigbus(void)
505 {
506 struct sigaction action;
507
508 memset(&action, 0, sizeof(action));
509 action.sa_flags = SA_SIGINFO;
510 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511 sigaction(SIGBUS, &action, NULL);
512
513 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514 }
515
516 static void qemu_kvm_eat_signals(CPUArchState *env)
517 {
518 struct timespec ts = { 0, 0 };
519 siginfo_t siginfo;
520 sigset_t waitset;
521 sigset_t chkset;
522 int r;
523
524 sigemptyset(&waitset);
525 sigaddset(&waitset, SIG_IPI);
526 sigaddset(&waitset, SIGBUS);
527
528 do {
529 r = sigtimedwait(&waitset, &siginfo, &ts);
530 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531 perror("sigtimedwait");
532 exit(1);
533 }
534
535 switch (r) {
536 case SIGBUS:
537 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538 sigbus_reraise();
539 }
540 break;
541 default:
542 break;
543 }
544
545 r = sigpending(&chkset);
546 if (r == -1) {
547 perror("sigpending");
548 exit(1);
549 }
550 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551 }
552
553 #else /* !CONFIG_LINUX */
554
555 static void qemu_init_sigbus(void)
556 {
557 }
558
559 static void qemu_kvm_eat_signals(CPUArchState *env)
560 {
561 }
562 #endif /* !CONFIG_LINUX */
563
564 #ifndef _WIN32
565 static void dummy_signal(int sig)
566 {
567 }
568
569 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
570 {
571 int r;
572 sigset_t set;
573 struct sigaction sigact;
574
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = dummy_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
578
579 pthread_sigmask(SIG_BLOCK, NULL, &set);
580 sigdelset(&set, SIG_IPI);
581 sigdelset(&set, SIGBUS);
582 r = kvm_set_signal_mask(env, &set);
583 if (r) {
584 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585 exit(1);
586 }
587 }
588
589 static void qemu_tcg_init_cpu_signals(void)
590 {
591 sigset_t set;
592 struct sigaction sigact;
593
594 memset(&sigact, 0, sizeof(sigact));
595 sigact.sa_handler = cpu_signal;
596 sigaction(SIG_IPI, &sigact, NULL);
597
598 sigemptyset(&set);
599 sigaddset(&set, SIG_IPI);
600 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601 }
602
603 #else /* _WIN32 */
604 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
605 {
606 abort();
607 }
608
609 static void qemu_tcg_init_cpu_signals(void)
610 {
611 }
612 #endif /* _WIN32 */
613
614 QemuMutex qemu_global_mutex;
615 static QemuCond qemu_io_proceeded_cond;
616 static bool iothread_requesting_mutex;
617
618 static QemuThread io_thread;
619
620 static QemuThread *tcg_cpu_thread;
621 static QemuCond *tcg_halt_cond;
622
623 /* cpu creation */
624 static QemuCond qemu_cpu_cond;
625 /* system init */
626 static QemuCond qemu_pause_cond;
627 static QemuCond qemu_work_cond;
628
629 void qemu_init_cpu_loop(void)
630 {
631 qemu_init_sigbus();
632 qemu_cond_init(&qemu_cpu_cond);
633 qemu_cond_init(&qemu_pause_cond);
634 qemu_cond_init(&qemu_work_cond);
635 qemu_cond_init(&qemu_io_proceeded_cond);
636 qemu_mutex_init(&qemu_global_mutex);
637
638 qemu_thread_get_self(&io_thread);
639 }
640
641 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
642 {
643 struct qemu_work_item wi;
644
645 if (qemu_cpu_is_self(env)) {
646 func(data);
647 return;
648 }
649
650 wi.func = func;
651 wi.data = data;
652 if (!env->queued_work_first) {
653 env->queued_work_first = &wi;
654 } else {
655 env->queued_work_last->next = &wi;
656 }
657 env->queued_work_last = &wi;
658 wi.next = NULL;
659 wi.done = false;
660
661 qemu_cpu_kick(env);
662 while (!wi.done) {
663 CPUArchState *self_env = cpu_single_env;
664
665 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666 cpu_single_env = self_env;
667 }
668 }
669
670 static void flush_queued_work(CPUArchState *env)
671 {
672 struct qemu_work_item *wi;
673
674 if (!env->queued_work_first) {
675 return;
676 }
677
678 while ((wi = env->queued_work_first)) {
679 env->queued_work_first = wi->next;
680 wi->func(wi->data);
681 wi->done = true;
682 }
683 env->queued_work_last = NULL;
684 qemu_cond_broadcast(&qemu_work_cond);
685 }
686
687 static void qemu_wait_io_event_common(CPUArchState *env)
688 {
689 if (env->stop) {
690 env->stop = 0;
691 env->stopped = 1;
692 qemu_cond_signal(&qemu_pause_cond);
693 }
694 flush_queued_work(env);
695 env->thread_kicked = false;
696 }
697
698 static void qemu_tcg_wait_io_event(void)
699 {
700 CPUArchState *env;
701
702 while (all_cpu_threads_idle()) {
703 /* Start accounting real time to the virtual clock if the CPUs
704 are idle. */
705 qemu_clock_warp(vm_clock);
706 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707 }
708
709 while (iothread_requesting_mutex) {
710 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711 }
712
713 for (env = first_cpu; env != NULL; env = env->next_cpu) {
714 qemu_wait_io_event_common(env);
715 }
716 }
717
718 static void qemu_kvm_wait_io_event(CPUArchState *env)
719 {
720 while (cpu_thread_is_idle(env)) {
721 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722 }
723
724 qemu_kvm_eat_signals(env);
725 qemu_wait_io_event_common(env);
726 }
727
728 static void *qemu_kvm_cpu_thread_fn(void *arg)
729 {
730 CPUArchState *env = arg;
731 CPUState *cpu = ENV_GET_CPU(env);
732 int r;
733
734 qemu_mutex_lock(&qemu_global_mutex);
735 qemu_thread_get_self(cpu->thread);
736 env->thread_id = qemu_get_thread_id();
737 cpu_single_env = env;
738
739 r = kvm_init_vcpu(env);
740 if (r < 0) {
741 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
742 exit(1);
743 }
744
745 qemu_kvm_init_cpu_signals(env);
746
747 /* signal CPU creation */
748 env->created = 1;
749 qemu_cond_signal(&qemu_cpu_cond);
750
751 while (1) {
752 if (cpu_can_run(env)) {
753 r = kvm_cpu_exec(env);
754 if (r == EXCP_DEBUG) {
755 cpu_handle_guest_debug(env);
756 }
757 }
758 qemu_kvm_wait_io_event(env);
759 }
760
761 return NULL;
762 }
763
764 static void *qemu_dummy_cpu_thread_fn(void *arg)
765 {
766 #ifdef _WIN32
767 fprintf(stderr, "qtest is not supported under Windows\n");
768 exit(1);
769 #else
770 CPUArchState *env = arg;
771 CPUState *cpu = ENV_GET_CPU(env);
772 sigset_t waitset;
773 int r;
774
775 qemu_mutex_lock_iothread();
776 qemu_thread_get_self(cpu->thread);
777 env->thread_id = qemu_get_thread_id();
778
779 sigemptyset(&waitset);
780 sigaddset(&waitset, SIG_IPI);
781
782 /* signal CPU creation */
783 env->created = 1;
784 qemu_cond_signal(&qemu_cpu_cond);
785
786 cpu_single_env = env;
787 while (1) {
788 cpu_single_env = NULL;
789 qemu_mutex_unlock_iothread();
790 do {
791 int sig;
792 r = sigwait(&waitset, &sig);
793 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
794 if (r == -1) {
795 perror("sigwait");
796 exit(1);
797 }
798 qemu_mutex_lock_iothread();
799 cpu_single_env = env;
800 qemu_wait_io_event_common(env);
801 }
802
803 return NULL;
804 #endif
805 }
806
807 static void tcg_exec_all(void);
808
809 static void *qemu_tcg_cpu_thread_fn(void *arg)
810 {
811 CPUArchState *env = arg;
812 CPUState *cpu = ENV_GET_CPU(env);
813
814 qemu_tcg_init_cpu_signals();
815 qemu_thread_get_self(cpu->thread);
816
817 /* signal CPU creation */
818 qemu_mutex_lock(&qemu_global_mutex);
819 for (env = first_cpu; env != NULL; env = env->next_cpu) {
820 env->thread_id = qemu_get_thread_id();
821 env->created = 1;
822 }
823 qemu_cond_signal(&qemu_cpu_cond);
824
825 /* wait for initial kick-off after machine start */
826 while (first_cpu->stopped) {
827 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
828
829 /* process any pending work */
830 for (env = first_cpu; env != NULL; env = env->next_cpu) {
831 qemu_wait_io_event_common(env);
832 }
833 }
834
835 while (1) {
836 tcg_exec_all();
837 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
838 qemu_notify_event();
839 }
840 qemu_tcg_wait_io_event();
841 }
842
843 return NULL;
844 }
845
846 static void qemu_cpu_kick_thread(CPUArchState *env)
847 {
848 CPUState *cpu = ENV_GET_CPU(env);
849 #ifndef _WIN32
850 int err;
851
852 err = pthread_kill(cpu->thread->thread, SIG_IPI);
853 if (err) {
854 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
855 exit(1);
856 }
857 #else /* _WIN32 */
858 if (!qemu_cpu_is_self(env)) {
859 SuspendThread(cpu->hThread);
860 cpu_signal(0);
861 ResumeThread(cpu->hThread);
862 }
863 #endif
864 }
865
866 void qemu_cpu_kick(void *_env)
867 {
868 CPUArchState *env = _env;
869
870 qemu_cond_broadcast(env->halt_cond);
871 if (!tcg_enabled() && !env->thread_kicked) {
872 qemu_cpu_kick_thread(env);
873 env->thread_kicked = true;
874 }
875 }
876
877 void qemu_cpu_kick_self(void)
878 {
879 #ifndef _WIN32
880 assert(cpu_single_env);
881
882 if (!cpu_single_env->thread_kicked) {
883 qemu_cpu_kick_thread(cpu_single_env);
884 cpu_single_env->thread_kicked = true;
885 }
886 #else
887 abort();
888 #endif
889 }
890
891 int qemu_cpu_is_self(void *_env)
892 {
893 CPUArchState *env = _env;
894 CPUState *cpu = ENV_GET_CPU(env);
895
896 return qemu_thread_is_self(cpu->thread);
897 }
898
899 void qemu_mutex_lock_iothread(void)
900 {
901 if (!tcg_enabled()) {
902 qemu_mutex_lock(&qemu_global_mutex);
903 } else {
904 iothread_requesting_mutex = true;
905 if (qemu_mutex_trylock(&qemu_global_mutex)) {
906 qemu_cpu_kick_thread(first_cpu);
907 qemu_mutex_lock(&qemu_global_mutex);
908 }
909 iothread_requesting_mutex = false;
910 qemu_cond_broadcast(&qemu_io_proceeded_cond);
911 }
912 }
913
914 void qemu_mutex_unlock_iothread(void)
915 {
916 qemu_mutex_unlock(&qemu_global_mutex);
917 }
918
919 static int all_vcpus_paused(void)
920 {
921 CPUArchState *penv = first_cpu;
922
923 while (penv) {
924 if (!penv->stopped) {
925 return 0;
926 }
927 penv = penv->next_cpu;
928 }
929
930 return 1;
931 }
932
933 void pause_all_vcpus(void)
934 {
935 CPUArchState *penv = first_cpu;
936
937 qemu_clock_enable(vm_clock, false);
938 while (penv) {
939 penv->stop = 1;
940 qemu_cpu_kick(penv);
941 penv = penv->next_cpu;
942 }
943
944 if (!qemu_thread_is_self(&io_thread)) {
945 cpu_stop_current();
946 if (!kvm_enabled()) {
947 while (penv) {
948 penv->stop = 0;
949 penv->stopped = 1;
950 penv = penv->next_cpu;
951 }
952 return;
953 }
954 }
955
956 while (!all_vcpus_paused()) {
957 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
958 penv = first_cpu;
959 while (penv) {
960 qemu_cpu_kick(penv);
961 penv = penv->next_cpu;
962 }
963 }
964 }
965
966 void resume_all_vcpus(void)
967 {
968 CPUArchState *penv = first_cpu;
969
970 qemu_clock_enable(vm_clock, true);
971 while (penv) {
972 penv->stop = 0;
973 penv->stopped = 0;
974 qemu_cpu_kick(penv);
975 penv = penv->next_cpu;
976 }
977 }
978
979 static void qemu_tcg_init_vcpu(void *_env)
980 {
981 CPUArchState *env = _env;
982 CPUState *cpu = ENV_GET_CPU(env);
983
984 /* share a single thread for all cpus with TCG */
985 if (!tcg_cpu_thread) {
986 cpu->thread = g_malloc0(sizeof(QemuThread));
987 env->halt_cond = g_malloc0(sizeof(QemuCond));
988 qemu_cond_init(env->halt_cond);
989 tcg_halt_cond = env->halt_cond;
990 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
991 QEMU_THREAD_JOINABLE);
992 #ifdef _WIN32
993 cpu->hThread = qemu_thread_get_handle(cpu->thread);
994 #endif
995 while (env->created == 0) {
996 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
997 }
998 tcg_cpu_thread = cpu->thread;
999 } else {
1000 cpu->thread = tcg_cpu_thread;
1001 env->halt_cond = tcg_halt_cond;
1002 }
1003 }
1004
1005 static void qemu_kvm_start_vcpu(CPUArchState *env)
1006 {
1007 CPUState *cpu = ENV_GET_CPU(env);
1008
1009 cpu->thread = g_malloc0(sizeof(QemuThread));
1010 env->halt_cond = g_malloc0(sizeof(QemuCond));
1011 qemu_cond_init(env->halt_cond);
1012 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1013 QEMU_THREAD_JOINABLE);
1014 while (env->created == 0) {
1015 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1016 }
1017 }
1018
1019 static void qemu_dummy_start_vcpu(CPUArchState *env)
1020 {
1021 CPUState *cpu = ENV_GET_CPU(env);
1022
1023 cpu->thread = g_malloc0(sizeof(QemuThread));
1024 env->halt_cond = g_malloc0(sizeof(QemuCond));
1025 qemu_cond_init(env->halt_cond);
1026 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1027 QEMU_THREAD_JOINABLE);
1028 while (env->created == 0) {
1029 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1030 }
1031 }
1032
1033 void qemu_init_vcpu(void *_env)
1034 {
1035 CPUArchState *env = _env;
1036
1037 env->nr_cores = smp_cores;
1038 env->nr_threads = smp_threads;
1039 env->stopped = 1;
1040 if (kvm_enabled()) {
1041 qemu_kvm_start_vcpu(env);
1042 } else if (tcg_enabled()) {
1043 qemu_tcg_init_vcpu(env);
1044 } else {
1045 qemu_dummy_start_vcpu(env);
1046 }
1047 }
1048
1049 void cpu_stop_current(void)
1050 {
1051 if (cpu_single_env) {
1052 cpu_single_env->stop = 0;
1053 cpu_single_env->stopped = 1;
1054 cpu_exit(cpu_single_env);
1055 qemu_cond_signal(&qemu_pause_cond);
1056 }
1057 }
1058
1059 void vm_stop(RunState state)
1060 {
1061 if (!qemu_thread_is_self(&io_thread)) {
1062 qemu_system_vmstop_request(state);
1063 /*
1064 * FIXME: should not return to device code in case
1065 * vm_stop() has been requested.
1066 */
1067 cpu_stop_current();
1068 return;
1069 }
1070 do_vm_stop(state);
1071 }
1072
1073 /* does a state transition even if the VM is already stopped,
1074 current state is forgotten forever */
1075 void vm_stop_force_state(RunState state)
1076 {
1077 if (runstate_is_running()) {
1078 vm_stop(state);
1079 } else {
1080 runstate_set(state);
1081 }
1082 }
1083
1084 static int tcg_cpu_exec(CPUArchState *env)
1085 {
1086 int ret;
1087 #ifdef CONFIG_PROFILER
1088 int64_t ti;
1089 #endif
1090
1091 #ifdef CONFIG_PROFILER
1092 ti = profile_getclock();
1093 #endif
1094 if (use_icount) {
1095 int64_t count;
1096 int decr;
1097 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1098 env->icount_decr.u16.low = 0;
1099 env->icount_extra = 0;
1100 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1101 qemu_icount += count;
1102 decr = (count > 0xffff) ? 0xffff : count;
1103 count -= decr;
1104 env->icount_decr.u16.low = decr;
1105 env->icount_extra = count;
1106 }
1107 ret = cpu_exec(env);
1108 #ifdef CONFIG_PROFILER
1109 qemu_time += profile_getclock() - ti;
1110 #endif
1111 if (use_icount) {
1112 /* Fold pending instructions back into the
1113 instruction counter, and clear the interrupt flag. */
1114 qemu_icount -= (env->icount_decr.u16.low
1115 + env->icount_extra);
1116 env->icount_decr.u32 = 0;
1117 env->icount_extra = 0;
1118 }
1119 return ret;
1120 }
1121
1122 static void tcg_exec_all(void)
1123 {
1124 int r;
1125
1126 /* Account partial waits to the vm_clock. */
1127 qemu_clock_warp(vm_clock);
1128
1129 if (next_cpu == NULL) {
1130 next_cpu = first_cpu;
1131 }
1132 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1133 CPUArchState *env = next_cpu;
1134
1135 qemu_clock_enable(vm_clock,
1136 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1137
1138 if (cpu_can_run(env)) {
1139 r = tcg_cpu_exec(env);
1140 if (r == EXCP_DEBUG) {
1141 cpu_handle_guest_debug(env);
1142 break;
1143 }
1144 } else if (env->stop || env->stopped) {
1145 break;
1146 }
1147 }
1148 exit_request = 0;
1149 }
1150
1151 void set_numa_modes(void)
1152 {
1153 CPUArchState *env;
1154 int i;
1155
1156 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1157 for (i = 0; i < nb_numa_nodes; i++) {
1158 if (node_cpumask[i] & (1 << env->cpu_index)) {
1159 env->numa_node = i;
1160 }
1161 }
1162 }
1163 }
1164
1165 void set_cpu_log(const char *optarg)
1166 {
1167 int mask;
1168 const CPULogItem *item;
1169
1170 mask = cpu_str_to_log_mask(optarg);
1171 if (!mask) {
1172 printf("Log items (comma separated):\n");
1173 for (item = cpu_log_items; item->mask != 0; item++) {
1174 printf("%-10s %s\n", item->name, item->help);
1175 }
1176 exit(1);
1177 }
1178 cpu_set_log(mask);
1179 }
1180
1181 void set_cpu_log_filename(const char *optarg)
1182 {
1183 cpu_set_log_filename(optarg);
1184 }
1185
1186 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1187 {
1188 /* XXX: implement xxx_cpu_list for targets that still miss it */
1189 #if defined(cpu_list_id)
1190 cpu_list_id(f, cpu_fprintf, optarg);
1191 #elif defined(cpu_list)
1192 cpu_list(f, cpu_fprintf); /* deprecated */
1193 #endif
1194 }
1195
1196 CpuInfoList *qmp_query_cpus(Error **errp)
1197 {
1198 CpuInfoList *head = NULL, *cur_item = NULL;
1199 CPUArchState *env;
1200
1201 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1202 CpuInfoList *info;
1203
1204 cpu_synchronize_state(env);
1205
1206 info = g_malloc0(sizeof(*info));
1207 info->value = g_malloc0(sizeof(*info->value));
1208 info->value->CPU = env->cpu_index;
1209 info->value->current = (env == first_cpu);
1210 info->value->halted = env->halted;
1211 info->value->thread_id = env->thread_id;
1212 #if defined(TARGET_I386)
1213 info->value->has_pc = true;
1214 info->value->pc = env->eip + env->segs[R_CS].base;
1215 #elif defined(TARGET_PPC)
1216 info->value->has_nip = true;
1217 info->value->nip = env->nip;
1218 #elif defined(TARGET_SPARC)
1219 info->value->has_pc = true;
1220 info->value->pc = env->pc;
1221 info->value->has_npc = true;
1222 info->value->npc = env->npc;
1223 #elif defined(TARGET_MIPS)
1224 info->value->has_PC = true;
1225 info->value->PC = env->active_tc.PC;
1226 #endif
1227
1228 /* XXX: waiting for the qapi to support GSList */
1229 if (!cur_item) {
1230 head = cur_item = info;
1231 } else {
1232 cur_item->next = info;
1233 cur_item = info;
1234 }
1235 }
1236
1237 return head;
1238 }
1239
1240 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1241 bool has_cpu, int64_t cpu_index, Error **errp)
1242 {
1243 FILE *f;
1244 uint32_t l;
1245 CPUArchState *env;
1246 uint8_t buf[1024];
1247
1248 if (!has_cpu) {
1249 cpu_index = 0;
1250 }
1251
1252 for (env = first_cpu; env; env = env->next_cpu) {
1253 if (cpu_index == env->cpu_index) {
1254 break;
1255 }
1256 }
1257
1258 if (env == NULL) {
1259 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1260 "a CPU number");
1261 return;
1262 }
1263
1264 f = fopen(filename, "wb");
1265 if (!f) {
1266 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1267 return;
1268 }
1269
1270 while (size != 0) {
1271 l = sizeof(buf);
1272 if (l > size)
1273 l = size;
1274 cpu_memory_rw_debug(env, addr, buf, l, 0);
1275 if (fwrite(buf, 1, l, f) != l) {
1276 error_set(errp, QERR_IO_ERROR);
1277 goto exit;
1278 }
1279 addr += l;
1280 size -= l;
1281 }
1282
1283 exit:
1284 fclose(f);
1285 }
1286
1287 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1288 Error **errp)
1289 {
1290 FILE *f;
1291 uint32_t l;
1292 uint8_t buf[1024];
1293
1294 f = fopen(filename, "wb");
1295 if (!f) {
1296 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1297 return;
1298 }
1299
1300 while (size != 0) {
1301 l = sizeof(buf);
1302 if (l > size)
1303 l = size;
1304 cpu_physical_memory_rw(addr, buf, l, 0);
1305 if (fwrite(buf, 1, l, f) != l) {
1306 error_set(errp, QERR_IO_ERROR);
1307 goto exit;
1308 }
1309 addr += l;
1310 size -= l;
1311 }
1312
1313 exit:
1314 fclose(f);
1315 }
1316
1317 void qmp_inject_nmi(Error **errp)
1318 {
1319 #if defined(TARGET_I386)
1320 CPUArchState *env;
1321
1322 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1323 if (!env->apic_state) {
1324 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1325 } else {
1326 apic_deliver_nmi(env->apic_state);
1327 }
1328 }
1329 #else
1330 error_set(errp, QERR_UNSUPPORTED);
1331 #endif
1332 }