]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
target/arm: Implement the LDGM, STGM, STZGM instructions
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "qemu/config-file.h"
28 #include "qemu/cutils.h"
29 #include "migration/vmstate.h"
30 #include "monitor/monitor.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-commands-misc.h"
33 #include "qapi/qapi-events-run-state.h"
34 #include "qapi/qmp/qerror.h"
35 #include "qemu/error-report.h"
36 #include "qemu/qemu-print.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/block-backend.h"
39 #include "exec/gdbstub.h"
40 #include "sysemu/dma.h"
41 #include "sysemu/hw_accel.h"
42 #include "sysemu/kvm.h"
43 #include "sysemu/hax.h"
44 #include "sysemu/hvf.h"
45 #include "sysemu/whpx.h"
46 #include "exec/exec-all.h"
47
48 #include "qemu/thread.h"
49 #include "qemu/plugin.h"
50 #include "sysemu/cpus.h"
51 #include "sysemu/qtest.h"
52 #include "qemu/main-loop.h"
53 #include "qemu/option.h"
54 #include "qemu/bitmap.h"
55 #include "qemu/seqlock.h"
56 #include "qemu/guest-random.h"
57 #include "tcg/tcg.h"
58 #include "hw/nmi.h"
59 #include "sysemu/replay.h"
60 #include "sysemu/runstate.h"
61 #include "hw/boards.h"
62 #include "hw/hw.h"
63
64 #ifdef CONFIG_LINUX
65
66 #include <sys/prctl.h>
67
68 #ifndef PR_MCE_KILL
69 #define PR_MCE_KILL 33
70 #endif
71
72 #ifndef PR_MCE_KILL_SET
73 #define PR_MCE_KILL_SET 1
74 #endif
75
76 #ifndef PR_MCE_KILL_EARLY
77 #define PR_MCE_KILL_EARLY 1
78 #endif
79
80 #endif /* CONFIG_LINUX */
81
82 static QemuMutex qemu_global_mutex;
83
84 int64_t max_delay;
85 int64_t max_advance;
86
87 /* vcpu throttling controls */
88 static QEMUTimer *throttle_timer;
89 static unsigned int throttle_percentage;
90
91 #define CPU_THROTTLE_PCT_MIN 1
92 #define CPU_THROTTLE_PCT_MAX 99
93 #define CPU_THROTTLE_TIMESLICE_NS 10000000
94
95 bool cpu_is_stopped(CPUState *cpu)
96 {
97 return cpu->stopped || !runstate_is_running();
98 }
99
100 static inline bool cpu_work_list_empty(CPUState *cpu)
101 {
102 bool ret;
103
104 qemu_mutex_lock(&cpu->work_mutex);
105 ret = QSIMPLEQ_EMPTY(&cpu->work_list);
106 qemu_mutex_unlock(&cpu->work_mutex);
107 return ret;
108 }
109
110 static bool cpu_thread_is_idle(CPUState *cpu)
111 {
112 if (cpu->stop || !cpu_work_list_empty(cpu)) {
113 return false;
114 }
115 if (cpu_is_stopped(cpu)) {
116 return true;
117 }
118 if (!cpu->halted || cpu_has_work(cpu) ||
119 kvm_halt_in_kernel()) {
120 return false;
121 }
122 return true;
123 }
124
125 static bool all_cpu_threads_idle(void)
126 {
127 CPUState *cpu;
128
129 CPU_FOREACH(cpu) {
130 if (!cpu_thread_is_idle(cpu)) {
131 return false;
132 }
133 }
134 return true;
135 }
136
137 /***********************************************************/
138 /* guest cycle counter */
139
140 /* Protected by TimersState seqlock */
141
142 static bool icount_sleep = true;
143 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
144 #define MAX_ICOUNT_SHIFT 10
145
146 typedef struct TimersState {
147 /* Protected by BQL. */
148 int64_t cpu_ticks_prev;
149 int64_t cpu_ticks_offset;
150
151 /* Protect fields that can be respectively read outside the
152 * BQL, and written from multiple threads.
153 */
154 QemuSeqLock vm_clock_seqlock;
155 QemuSpin vm_clock_lock;
156
157 int16_t cpu_ticks_enabled;
158
159 /* Conversion factor from emulated instructions to virtual clock ticks. */
160 int16_t icount_time_shift;
161
162 /* Compensate for varying guest execution speed. */
163 int64_t qemu_icount_bias;
164
165 int64_t vm_clock_warp_start;
166 int64_t cpu_clock_offset;
167
168 /* Only written by TCG thread */
169 int64_t qemu_icount;
170
171 /* for adjusting icount */
172 QEMUTimer *icount_rt_timer;
173 QEMUTimer *icount_vm_timer;
174 QEMUTimer *icount_warp_timer;
175 } TimersState;
176
177 static TimersState timers_state;
178 bool mttcg_enabled;
179
180
181 /* The current number of executed instructions is based on what we
182 * originally budgeted minus the current state of the decrementing
183 * icount counters in extra/u16.low.
184 */
185 static int64_t cpu_get_icount_executed(CPUState *cpu)
186 {
187 return (cpu->icount_budget -
188 (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
189 }
190
191 /*
192 * Update the global shared timer_state.qemu_icount to take into
193 * account executed instructions. This is done by the TCG vCPU
194 * thread so the main-loop can see time has moved forward.
195 */
196 static void cpu_update_icount_locked(CPUState *cpu)
197 {
198 int64_t executed = cpu_get_icount_executed(cpu);
199 cpu->icount_budget -= executed;
200
201 atomic_set_i64(&timers_state.qemu_icount,
202 timers_state.qemu_icount + executed);
203 }
204
205 /*
206 * Update the global shared timer_state.qemu_icount to take into
207 * account executed instructions. This is done by the TCG vCPU
208 * thread so the main-loop can see time has moved forward.
209 */
210 void cpu_update_icount(CPUState *cpu)
211 {
212 seqlock_write_lock(&timers_state.vm_clock_seqlock,
213 &timers_state.vm_clock_lock);
214 cpu_update_icount_locked(cpu);
215 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
216 &timers_state.vm_clock_lock);
217 }
218
219 static int64_t cpu_get_icount_raw_locked(void)
220 {
221 CPUState *cpu = current_cpu;
222
223 if (cpu && cpu->running) {
224 if (!cpu->can_do_io) {
225 error_report("Bad icount read");
226 exit(1);
227 }
228 /* Take into account what has run */
229 cpu_update_icount_locked(cpu);
230 }
231 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
232 return atomic_read_i64(&timers_state.qemu_icount);
233 }
234
235 static int64_t cpu_get_icount_locked(void)
236 {
237 int64_t icount = cpu_get_icount_raw_locked();
238 return atomic_read_i64(&timers_state.qemu_icount_bias) +
239 cpu_icount_to_ns(icount);
240 }
241
242 int64_t cpu_get_icount_raw(void)
243 {
244 int64_t icount;
245 unsigned start;
246
247 do {
248 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
249 icount = cpu_get_icount_raw_locked();
250 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
251
252 return icount;
253 }
254
255 /* Return the virtual CPU time, based on the instruction counter. */
256 int64_t cpu_get_icount(void)
257 {
258 int64_t icount;
259 unsigned start;
260
261 do {
262 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
263 icount = cpu_get_icount_locked();
264 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
265
266 return icount;
267 }
268
269 int64_t cpu_icount_to_ns(int64_t icount)
270 {
271 return icount << atomic_read(&timers_state.icount_time_shift);
272 }
273
274 static int64_t cpu_get_ticks_locked(void)
275 {
276 int64_t ticks = timers_state.cpu_ticks_offset;
277 if (timers_state.cpu_ticks_enabled) {
278 ticks += cpu_get_host_ticks();
279 }
280
281 if (timers_state.cpu_ticks_prev > ticks) {
282 /* Non increasing ticks may happen if the host uses software suspend. */
283 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
284 ticks = timers_state.cpu_ticks_prev;
285 }
286
287 timers_state.cpu_ticks_prev = ticks;
288 return ticks;
289 }
290
291 /* return the time elapsed in VM between vm_start and vm_stop. Unless
292 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
293 * counter.
294 */
295 int64_t cpu_get_ticks(void)
296 {
297 int64_t ticks;
298
299 if (use_icount) {
300 return cpu_get_icount();
301 }
302
303 qemu_spin_lock(&timers_state.vm_clock_lock);
304 ticks = cpu_get_ticks_locked();
305 qemu_spin_unlock(&timers_state.vm_clock_lock);
306 return ticks;
307 }
308
309 static int64_t cpu_get_clock_locked(void)
310 {
311 int64_t time;
312
313 time = timers_state.cpu_clock_offset;
314 if (timers_state.cpu_ticks_enabled) {
315 time += get_clock();
316 }
317
318 return time;
319 }
320
321 /* Return the monotonic time elapsed in VM, i.e.,
322 * the time between vm_start and vm_stop
323 */
324 int64_t cpu_get_clock(void)
325 {
326 int64_t ti;
327 unsigned start;
328
329 do {
330 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
331 ti = cpu_get_clock_locked();
332 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
333
334 return ti;
335 }
336
337 /* enable cpu_get_ticks()
338 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
339 */
340 void cpu_enable_ticks(void)
341 {
342 seqlock_write_lock(&timers_state.vm_clock_seqlock,
343 &timers_state.vm_clock_lock);
344 if (!timers_state.cpu_ticks_enabled) {
345 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
346 timers_state.cpu_clock_offset -= get_clock();
347 timers_state.cpu_ticks_enabled = 1;
348 }
349 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
350 &timers_state.vm_clock_lock);
351 }
352
353 /* disable cpu_get_ticks() : the clock is stopped. You must not call
354 * cpu_get_ticks() after that.
355 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
356 */
357 void cpu_disable_ticks(void)
358 {
359 seqlock_write_lock(&timers_state.vm_clock_seqlock,
360 &timers_state.vm_clock_lock);
361 if (timers_state.cpu_ticks_enabled) {
362 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
363 timers_state.cpu_clock_offset = cpu_get_clock_locked();
364 timers_state.cpu_ticks_enabled = 0;
365 }
366 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
367 &timers_state.vm_clock_lock);
368 }
369
370 /* Correlation between real and virtual time is always going to be
371 fairly approximate, so ignore small variation.
372 When the guest is idle real and virtual time will be aligned in
373 the IO wait loop. */
374 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
375
376 static void icount_adjust(void)
377 {
378 int64_t cur_time;
379 int64_t cur_icount;
380 int64_t delta;
381
382 /* Protected by TimersState mutex. */
383 static int64_t last_delta;
384
385 /* If the VM is not running, then do nothing. */
386 if (!runstate_is_running()) {
387 return;
388 }
389
390 seqlock_write_lock(&timers_state.vm_clock_seqlock,
391 &timers_state.vm_clock_lock);
392 cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
393 cpu_get_clock_locked());
394 cur_icount = cpu_get_icount_locked();
395
396 delta = cur_icount - cur_time;
397 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
398 if (delta > 0
399 && last_delta + ICOUNT_WOBBLE < delta * 2
400 && timers_state.icount_time_shift > 0) {
401 /* The guest is getting too far ahead. Slow time down. */
402 atomic_set(&timers_state.icount_time_shift,
403 timers_state.icount_time_shift - 1);
404 }
405 if (delta < 0
406 && last_delta - ICOUNT_WOBBLE > delta * 2
407 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
408 /* The guest is getting too far behind. Speed time up. */
409 atomic_set(&timers_state.icount_time_shift,
410 timers_state.icount_time_shift + 1);
411 }
412 last_delta = delta;
413 atomic_set_i64(&timers_state.qemu_icount_bias,
414 cur_icount - (timers_state.qemu_icount
415 << timers_state.icount_time_shift));
416 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
417 &timers_state.vm_clock_lock);
418 }
419
420 static void icount_adjust_rt(void *opaque)
421 {
422 timer_mod(timers_state.icount_rt_timer,
423 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
424 icount_adjust();
425 }
426
427 static void icount_adjust_vm(void *opaque)
428 {
429 timer_mod(timers_state.icount_vm_timer,
430 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
431 NANOSECONDS_PER_SECOND / 10);
432 icount_adjust();
433 }
434
435 static int64_t qemu_icount_round(int64_t count)
436 {
437 int shift = atomic_read(&timers_state.icount_time_shift);
438 return (count + (1 << shift) - 1) >> shift;
439 }
440
441 static void icount_warp_rt(void)
442 {
443 unsigned seq;
444 int64_t warp_start;
445
446 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
447 * changes from -1 to another value, so the race here is okay.
448 */
449 do {
450 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
451 warp_start = timers_state.vm_clock_warp_start;
452 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
453
454 if (warp_start == -1) {
455 return;
456 }
457
458 seqlock_write_lock(&timers_state.vm_clock_seqlock,
459 &timers_state.vm_clock_lock);
460 if (runstate_is_running()) {
461 int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
462 cpu_get_clock_locked());
463 int64_t warp_delta;
464
465 warp_delta = clock - timers_state.vm_clock_warp_start;
466 if (use_icount == 2) {
467 /*
468 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
469 * far ahead of real time.
470 */
471 int64_t cur_icount = cpu_get_icount_locked();
472 int64_t delta = clock - cur_icount;
473 warp_delta = MIN(warp_delta, delta);
474 }
475 atomic_set_i64(&timers_state.qemu_icount_bias,
476 timers_state.qemu_icount_bias + warp_delta);
477 }
478 timers_state.vm_clock_warp_start = -1;
479 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
480 &timers_state.vm_clock_lock);
481
482 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
483 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
484 }
485 }
486
487 static void icount_timer_cb(void *opaque)
488 {
489 /* No need for a checkpoint because the timer already synchronizes
490 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
491 */
492 icount_warp_rt();
493 }
494
495 void qtest_clock_warp(int64_t dest)
496 {
497 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
498 AioContext *aio_context;
499 assert(qtest_enabled());
500 aio_context = qemu_get_aio_context();
501 while (clock < dest) {
502 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
503 QEMU_TIMER_ATTR_ALL);
504 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
505
506 seqlock_write_lock(&timers_state.vm_clock_seqlock,
507 &timers_state.vm_clock_lock);
508 atomic_set_i64(&timers_state.qemu_icount_bias,
509 timers_state.qemu_icount_bias + warp);
510 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
511 &timers_state.vm_clock_lock);
512
513 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
514 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
515 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
516 }
517 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
518 }
519
520 void qemu_start_warp_timer(void)
521 {
522 int64_t clock;
523 int64_t deadline;
524
525 if (!use_icount) {
526 return;
527 }
528
529 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
530 * do not fire, so computing the deadline does not make sense.
531 */
532 if (!runstate_is_running()) {
533 return;
534 }
535
536 if (replay_mode != REPLAY_MODE_PLAY) {
537 if (!all_cpu_threads_idle()) {
538 return;
539 }
540
541 if (qtest_enabled()) {
542 /* When testing, qtest commands advance icount. */
543 return;
544 }
545
546 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
547 } else {
548 /* warp clock deterministically in record/replay mode */
549 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
550 /* vCPU is sleeping and warp can't be started.
551 It is probably a race condition: notification sent
552 to vCPU was processed in advance and vCPU went to sleep.
553 Therefore we have to wake it up for doing someting. */
554 if (replay_has_checkpoint()) {
555 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
556 }
557 return;
558 }
559 }
560
561 /* We want to use the earliest deadline from ALL vm_clocks */
562 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
563 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
564 ~QEMU_TIMER_ATTR_EXTERNAL);
565 if (deadline < 0) {
566 static bool notified;
567 if (!icount_sleep && !notified) {
568 warn_report("icount sleep disabled and no active timers");
569 notified = true;
570 }
571 return;
572 }
573
574 if (deadline > 0) {
575 /*
576 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
577 * sleep. Otherwise, the CPU might be waiting for a future timer
578 * interrupt to wake it up, but the interrupt never comes because
579 * the vCPU isn't running any insns and thus doesn't advance the
580 * QEMU_CLOCK_VIRTUAL.
581 */
582 if (!icount_sleep) {
583 /*
584 * We never let VCPUs sleep in no sleep icount mode.
585 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
586 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
587 * It is useful when we want a deterministic execution time,
588 * isolated from host latencies.
589 */
590 seqlock_write_lock(&timers_state.vm_clock_seqlock,
591 &timers_state.vm_clock_lock);
592 atomic_set_i64(&timers_state.qemu_icount_bias,
593 timers_state.qemu_icount_bias + deadline);
594 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
595 &timers_state.vm_clock_lock);
596 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
597 } else {
598 /*
599 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
600 * "real" time, (related to the time left until the next event) has
601 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
602 * This avoids that the warps are visible externally; for example,
603 * you will not be sending network packets continuously instead of
604 * every 100ms.
605 */
606 seqlock_write_lock(&timers_state.vm_clock_seqlock,
607 &timers_state.vm_clock_lock);
608 if (timers_state.vm_clock_warp_start == -1
609 || timers_state.vm_clock_warp_start > clock) {
610 timers_state.vm_clock_warp_start = clock;
611 }
612 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
613 &timers_state.vm_clock_lock);
614 timer_mod_anticipate(timers_state.icount_warp_timer,
615 clock + deadline);
616 }
617 } else if (deadline == 0) {
618 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
619 }
620 }
621
622 static void qemu_account_warp_timer(void)
623 {
624 if (!use_icount || !icount_sleep) {
625 return;
626 }
627
628 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
629 * do not fire, so computing the deadline does not make sense.
630 */
631 if (!runstate_is_running()) {
632 return;
633 }
634
635 /* warp clock deterministically in record/replay mode */
636 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
637 return;
638 }
639
640 timer_del(timers_state.icount_warp_timer);
641 icount_warp_rt();
642 }
643
644 static bool icount_state_needed(void *opaque)
645 {
646 return use_icount;
647 }
648
649 static bool warp_timer_state_needed(void *opaque)
650 {
651 TimersState *s = opaque;
652 return s->icount_warp_timer != NULL;
653 }
654
655 static bool adjust_timers_state_needed(void *opaque)
656 {
657 TimersState *s = opaque;
658 return s->icount_rt_timer != NULL;
659 }
660
661 static bool shift_state_needed(void *opaque)
662 {
663 return use_icount == 2;
664 }
665
666 /*
667 * Subsection for warp timer migration is optional, because may not be created
668 */
669 static const VMStateDescription icount_vmstate_warp_timer = {
670 .name = "timer/icount/warp_timer",
671 .version_id = 1,
672 .minimum_version_id = 1,
673 .needed = warp_timer_state_needed,
674 .fields = (VMStateField[]) {
675 VMSTATE_INT64(vm_clock_warp_start, TimersState),
676 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
677 VMSTATE_END_OF_LIST()
678 }
679 };
680
681 static const VMStateDescription icount_vmstate_adjust_timers = {
682 .name = "timer/icount/timers",
683 .version_id = 1,
684 .minimum_version_id = 1,
685 .needed = adjust_timers_state_needed,
686 .fields = (VMStateField[]) {
687 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
688 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
689 VMSTATE_END_OF_LIST()
690 }
691 };
692
693 static const VMStateDescription icount_vmstate_shift = {
694 .name = "timer/icount/shift",
695 .version_id = 1,
696 .minimum_version_id = 1,
697 .needed = shift_state_needed,
698 .fields = (VMStateField[]) {
699 VMSTATE_INT16(icount_time_shift, TimersState),
700 VMSTATE_END_OF_LIST()
701 }
702 };
703
704 /*
705 * This is a subsection for icount migration.
706 */
707 static const VMStateDescription icount_vmstate_timers = {
708 .name = "timer/icount",
709 .version_id = 1,
710 .minimum_version_id = 1,
711 .needed = icount_state_needed,
712 .fields = (VMStateField[]) {
713 VMSTATE_INT64(qemu_icount_bias, TimersState),
714 VMSTATE_INT64(qemu_icount, TimersState),
715 VMSTATE_END_OF_LIST()
716 },
717 .subsections = (const VMStateDescription*[]) {
718 &icount_vmstate_warp_timer,
719 &icount_vmstate_adjust_timers,
720 &icount_vmstate_shift,
721 NULL
722 }
723 };
724
725 static const VMStateDescription vmstate_timers = {
726 .name = "timer",
727 .version_id = 2,
728 .minimum_version_id = 1,
729 .fields = (VMStateField[]) {
730 VMSTATE_INT64(cpu_ticks_offset, TimersState),
731 VMSTATE_UNUSED(8),
732 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
733 VMSTATE_END_OF_LIST()
734 },
735 .subsections = (const VMStateDescription*[]) {
736 &icount_vmstate_timers,
737 NULL
738 }
739 };
740
741 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
742 {
743 double pct;
744 double throttle_ratio;
745 int64_t sleeptime_ns, endtime_ns;
746
747 if (!cpu_throttle_get_percentage()) {
748 return;
749 }
750
751 pct = (double)cpu_throttle_get_percentage()/100;
752 throttle_ratio = pct / (1 - pct);
753 /* Add 1ns to fix double's rounding error (like 0.9999999...) */
754 sleeptime_ns = (int64_t)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS + 1);
755 endtime_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + sleeptime_ns;
756 while (sleeptime_ns > 0 && !cpu->stop) {
757 if (sleeptime_ns > SCALE_MS) {
758 qemu_cond_timedwait(cpu->halt_cond, &qemu_global_mutex,
759 sleeptime_ns / SCALE_MS);
760 } else {
761 qemu_mutex_unlock_iothread();
762 g_usleep(sleeptime_ns / SCALE_US);
763 qemu_mutex_lock_iothread();
764 }
765 sleeptime_ns = endtime_ns - qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
766 }
767 atomic_set(&cpu->throttle_thread_scheduled, 0);
768 }
769
770 static void cpu_throttle_timer_tick(void *opaque)
771 {
772 CPUState *cpu;
773 double pct;
774
775 /* Stop the timer if needed */
776 if (!cpu_throttle_get_percentage()) {
777 return;
778 }
779 CPU_FOREACH(cpu) {
780 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
781 async_run_on_cpu(cpu, cpu_throttle_thread,
782 RUN_ON_CPU_NULL);
783 }
784 }
785
786 pct = (double)cpu_throttle_get_percentage()/100;
787 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
788 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
789 }
790
791 void cpu_throttle_set(int new_throttle_pct)
792 {
793 /* Ensure throttle percentage is within valid range */
794 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
795 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
796
797 atomic_set(&throttle_percentage, new_throttle_pct);
798
799 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
800 CPU_THROTTLE_TIMESLICE_NS);
801 }
802
803 void cpu_throttle_stop(void)
804 {
805 atomic_set(&throttle_percentage, 0);
806 }
807
808 bool cpu_throttle_active(void)
809 {
810 return (cpu_throttle_get_percentage() != 0);
811 }
812
813 int cpu_throttle_get_percentage(void)
814 {
815 return atomic_read(&throttle_percentage);
816 }
817
818 void cpu_ticks_init(void)
819 {
820 seqlock_init(&timers_state.vm_clock_seqlock);
821 qemu_spin_init(&timers_state.vm_clock_lock);
822 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
823 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
824 cpu_throttle_timer_tick, NULL);
825 }
826
827 void configure_icount(QemuOpts *opts, Error **errp)
828 {
829 const char *option = qemu_opt_get(opts, "shift");
830 bool sleep = qemu_opt_get_bool(opts, "sleep", true);
831 bool align = qemu_opt_get_bool(opts, "align", false);
832 long time_shift = -1;
833
834 if (!option) {
835 if (qemu_opt_get(opts, "align") != NULL) {
836 error_setg(errp, "Please specify shift option when using align");
837 }
838 return;
839 }
840
841 if (align && !sleep) {
842 error_setg(errp, "align=on and sleep=off are incompatible");
843 return;
844 }
845
846 if (strcmp(option, "auto") != 0) {
847 if (qemu_strtol(option, NULL, 0, &time_shift) < 0
848 || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
849 error_setg(errp, "icount: Invalid shift value");
850 return;
851 }
852 } else if (icount_align_option) {
853 error_setg(errp, "shift=auto and align=on are incompatible");
854 return;
855 } else if (!icount_sleep) {
856 error_setg(errp, "shift=auto and sleep=off are incompatible");
857 return;
858 }
859
860 icount_sleep = sleep;
861 if (icount_sleep) {
862 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
863 icount_timer_cb, NULL);
864 }
865
866 icount_align_option = align;
867
868 if (time_shift >= 0) {
869 timers_state.icount_time_shift = time_shift;
870 use_icount = 1;
871 return;
872 }
873
874 use_icount = 2;
875
876 /* 125MIPS seems a reasonable initial guess at the guest speed.
877 It will be corrected fairly quickly anyway. */
878 timers_state.icount_time_shift = 3;
879
880 /* Have both realtime and virtual time triggers for speed adjustment.
881 The realtime trigger catches emulated time passing too slowly,
882 the virtual time trigger catches emulated time passing too fast.
883 Realtime triggers occur even when idle, so use them less frequently
884 than VM triggers. */
885 timers_state.vm_clock_warp_start = -1;
886 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
887 icount_adjust_rt, NULL);
888 timer_mod(timers_state.icount_rt_timer,
889 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
890 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
891 icount_adjust_vm, NULL);
892 timer_mod(timers_state.icount_vm_timer,
893 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
894 NANOSECONDS_PER_SECOND / 10);
895 }
896
897 /***********************************************************/
898 /* TCG vCPU kick timer
899 *
900 * The kick timer is responsible for moving single threaded vCPU
901 * emulation on to the next vCPU. If more than one vCPU is running a
902 * timer event with force a cpu->exit so the next vCPU can get
903 * scheduled.
904 *
905 * The timer is removed if all vCPUs are idle and restarted again once
906 * idleness is complete.
907 */
908
909 static QEMUTimer *tcg_kick_vcpu_timer;
910 static CPUState *tcg_current_rr_cpu;
911
912 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
913
914 static inline int64_t qemu_tcg_next_kick(void)
915 {
916 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
917 }
918
919 /* Kick the currently round-robin scheduled vCPU to next */
920 static void qemu_cpu_kick_rr_next_cpu(void)
921 {
922 CPUState *cpu;
923 do {
924 cpu = atomic_mb_read(&tcg_current_rr_cpu);
925 if (cpu) {
926 cpu_exit(cpu);
927 }
928 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
929 }
930
931 /* Kick all RR vCPUs */
932 static void qemu_cpu_kick_rr_cpus(void)
933 {
934 CPUState *cpu;
935
936 CPU_FOREACH(cpu) {
937 cpu_exit(cpu);
938 };
939 }
940
941 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
942 {
943 }
944
945 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
946 {
947 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
948 qemu_notify_event();
949 return;
950 }
951
952 if (qemu_in_vcpu_thread()) {
953 /* A CPU is currently running; kick it back out to the
954 * tcg_cpu_exec() loop so it will recalculate its
955 * icount deadline immediately.
956 */
957 qemu_cpu_kick(current_cpu);
958 } else if (first_cpu) {
959 /* qemu_cpu_kick is not enough to kick a halted CPU out of
960 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
961 * causes cpu_thread_is_idle to return false. This way,
962 * handle_icount_deadline can run.
963 * If we have no CPUs at all for some reason, we don't
964 * need to do anything.
965 */
966 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
967 }
968 }
969
970 static void kick_tcg_thread(void *opaque)
971 {
972 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
973 qemu_cpu_kick_rr_next_cpu();
974 }
975
976 static void start_tcg_kick_timer(void)
977 {
978 assert(!mttcg_enabled);
979 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
980 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
981 kick_tcg_thread, NULL);
982 }
983 if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
984 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
985 }
986 }
987
988 static void stop_tcg_kick_timer(void)
989 {
990 assert(!mttcg_enabled);
991 if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
992 timer_del(tcg_kick_vcpu_timer);
993 }
994 }
995
996 /***********************************************************/
997 void hw_error(const char *fmt, ...)
998 {
999 va_list ap;
1000 CPUState *cpu;
1001
1002 va_start(ap, fmt);
1003 fprintf(stderr, "qemu: hardware error: ");
1004 vfprintf(stderr, fmt, ap);
1005 fprintf(stderr, "\n");
1006 CPU_FOREACH(cpu) {
1007 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
1008 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
1009 }
1010 va_end(ap);
1011 abort();
1012 }
1013
1014 void cpu_synchronize_all_states(void)
1015 {
1016 CPUState *cpu;
1017
1018 CPU_FOREACH(cpu) {
1019 cpu_synchronize_state(cpu);
1020 /* TODO: move to cpu_synchronize_state() */
1021 if (hvf_enabled()) {
1022 hvf_cpu_synchronize_state(cpu);
1023 }
1024 }
1025 }
1026
1027 void cpu_synchronize_all_post_reset(void)
1028 {
1029 CPUState *cpu;
1030
1031 CPU_FOREACH(cpu) {
1032 cpu_synchronize_post_reset(cpu);
1033 /* TODO: move to cpu_synchronize_post_reset() */
1034 if (hvf_enabled()) {
1035 hvf_cpu_synchronize_post_reset(cpu);
1036 }
1037 }
1038 }
1039
1040 void cpu_synchronize_all_post_init(void)
1041 {
1042 CPUState *cpu;
1043
1044 CPU_FOREACH(cpu) {
1045 cpu_synchronize_post_init(cpu);
1046 /* TODO: move to cpu_synchronize_post_init() */
1047 if (hvf_enabled()) {
1048 hvf_cpu_synchronize_post_init(cpu);
1049 }
1050 }
1051 }
1052
1053 void cpu_synchronize_all_pre_loadvm(void)
1054 {
1055 CPUState *cpu;
1056
1057 CPU_FOREACH(cpu) {
1058 cpu_synchronize_pre_loadvm(cpu);
1059 }
1060 }
1061
1062 static int do_vm_stop(RunState state, bool send_stop)
1063 {
1064 int ret = 0;
1065
1066 if (runstate_is_running()) {
1067 runstate_set(state);
1068 cpu_disable_ticks();
1069 pause_all_vcpus();
1070 vm_state_notify(0, state);
1071 if (send_stop) {
1072 qapi_event_send_stop();
1073 }
1074 }
1075
1076 bdrv_drain_all();
1077 ret = bdrv_flush_all();
1078
1079 return ret;
1080 }
1081
1082 /* Special vm_stop() variant for terminating the process. Historically clients
1083 * did not expect a QMP STOP event and so we need to retain compatibility.
1084 */
1085 int vm_shutdown(void)
1086 {
1087 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1088 }
1089
1090 static bool cpu_can_run(CPUState *cpu)
1091 {
1092 if (cpu->stop) {
1093 return false;
1094 }
1095 if (cpu_is_stopped(cpu)) {
1096 return false;
1097 }
1098 return true;
1099 }
1100
1101 static void cpu_handle_guest_debug(CPUState *cpu)
1102 {
1103 gdb_set_stop_cpu(cpu);
1104 qemu_system_debug_request();
1105 cpu->stopped = true;
1106 }
1107
1108 #ifdef CONFIG_LINUX
1109 static void sigbus_reraise(void)
1110 {
1111 sigset_t set;
1112 struct sigaction action;
1113
1114 memset(&action, 0, sizeof(action));
1115 action.sa_handler = SIG_DFL;
1116 if (!sigaction(SIGBUS, &action, NULL)) {
1117 raise(SIGBUS);
1118 sigemptyset(&set);
1119 sigaddset(&set, SIGBUS);
1120 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1121 }
1122 perror("Failed to re-raise SIGBUS!\n");
1123 abort();
1124 }
1125
1126 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1127 {
1128 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1129 sigbus_reraise();
1130 }
1131
1132 if (current_cpu) {
1133 /* Called asynchronously in VCPU thread. */
1134 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1135 sigbus_reraise();
1136 }
1137 } else {
1138 /* Called synchronously (via signalfd) in main thread. */
1139 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1140 sigbus_reraise();
1141 }
1142 }
1143 }
1144
1145 static void qemu_init_sigbus(void)
1146 {
1147 struct sigaction action;
1148
1149 memset(&action, 0, sizeof(action));
1150 action.sa_flags = SA_SIGINFO;
1151 action.sa_sigaction = sigbus_handler;
1152 sigaction(SIGBUS, &action, NULL);
1153
1154 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1155 }
1156 #else /* !CONFIG_LINUX */
1157 static void qemu_init_sigbus(void)
1158 {
1159 }
1160 #endif /* !CONFIG_LINUX */
1161
1162 static QemuThread io_thread;
1163
1164 /* cpu creation */
1165 static QemuCond qemu_cpu_cond;
1166 /* system init */
1167 static QemuCond qemu_pause_cond;
1168
1169 void qemu_init_cpu_loop(void)
1170 {
1171 qemu_init_sigbus();
1172 qemu_cond_init(&qemu_cpu_cond);
1173 qemu_cond_init(&qemu_pause_cond);
1174 qemu_mutex_init(&qemu_global_mutex);
1175
1176 qemu_thread_get_self(&io_thread);
1177 }
1178
1179 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1180 {
1181 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1182 }
1183
1184 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1185 {
1186 if (kvm_destroy_vcpu(cpu) < 0) {
1187 error_report("kvm_destroy_vcpu failed");
1188 exit(EXIT_FAILURE);
1189 }
1190 }
1191
1192 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1193 {
1194 }
1195
1196 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1197 {
1198 g_assert(qemu_cpu_is_self(cpu));
1199 cpu->stop = false;
1200 cpu->stopped = true;
1201 if (exit) {
1202 cpu_exit(cpu);
1203 }
1204 qemu_cond_broadcast(&qemu_pause_cond);
1205 }
1206
1207 static void qemu_wait_io_event_common(CPUState *cpu)
1208 {
1209 atomic_mb_set(&cpu->thread_kicked, false);
1210 if (cpu->stop) {
1211 qemu_cpu_stop(cpu, false);
1212 }
1213 process_queued_cpu_work(cpu);
1214 }
1215
1216 static void qemu_tcg_rr_wait_io_event(void)
1217 {
1218 CPUState *cpu;
1219
1220 while (all_cpu_threads_idle()) {
1221 stop_tcg_kick_timer();
1222 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1223 }
1224
1225 start_tcg_kick_timer();
1226
1227 CPU_FOREACH(cpu) {
1228 qemu_wait_io_event_common(cpu);
1229 }
1230 }
1231
1232 static void qemu_wait_io_event(CPUState *cpu)
1233 {
1234 bool slept = false;
1235
1236 while (cpu_thread_is_idle(cpu)) {
1237 if (!slept) {
1238 slept = true;
1239 qemu_plugin_vcpu_idle_cb(cpu);
1240 }
1241 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1242 }
1243 if (slept) {
1244 qemu_plugin_vcpu_resume_cb(cpu);
1245 }
1246
1247 #ifdef _WIN32
1248 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1249 if (!tcg_enabled()) {
1250 SleepEx(0, TRUE);
1251 }
1252 #endif
1253 qemu_wait_io_event_common(cpu);
1254 }
1255
1256 static void *qemu_kvm_cpu_thread_fn(void *arg)
1257 {
1258 CPUState *cpu = arg;
1259 int r;
1260
1261 rcu_register_thread();
1262
1263 qemu_mutex_lock_iothread();
1264 qemu_thread_get_self(cpu->thread);
1265 cpu->thread_id = qemu_get_thread_id();
1266 cpu->can_do_io = 1;
1267 current_cpu = cpu;
1268
1269 r = kvm_init_vcpu(cpu);
1270 if (r < 0) {
1271 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1272 exit(1);
1273 }
1274
1275 kvm_init_cpu_signals(cpu);
1276
1277 /* signal CPU creation */
1278 cpu->created = true;
1279 qemu_cond_signal(&qemu_cpu_cond);
1280 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1281
1282 do {
1283 if (cpu_can_run(cpu)) {
1284 r = kvm_cpu_exec(cpu);
1285 if (r == EXCP_DEBUG) {
1286 cpu_handle_guest_debug(cpu);
1287 }
1288 }
1289 qemu_wait_io_event(cpu);
1290 } while (!cpu->unplug || cpu_can_run(cpu));
1291
1292 qemu_kvm_destroy_vcpu(cpu);
1293 cpu->created = false;
1294 qemu_cond_signal(&qemu_cpu_cond);
1295 qemu_mutex_unlock_iothread();
1296 rcu_unregister_thread();
1297 return NULL;
1298 }
1299
1300 static void *qemu_dummy_cpu_thread_fn(void *arg)
1301 {
1302 #ifdef _WIN32
1303 error_report("qtest is not supported under Windows");
1304 exit(1);
1305 #else
1306 CPUState *cpu = arg;
1307 sigset_t waitset;
1308 int r;
1309
1310 rcu_register_thread();
1311
1312 qemu_mutex_lock_iothread();
1313 qemu_thread_get_self(cpu->thread);
1314 cpu->thread_id = qemu_get_thread_id();
1315 cpu->can_do_io = 1;
1316 current_cpu = cpu;
1317
1318 sigemptyset(&waitset);
1319 sigaddset(&waitset, SIG_IPI);
1320
1321 /* signal CPU creation */
1322 cpu->created = true;
1323 qemu_cond_signal(&qemu_cpu_cond);
1324 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1325
1326 do {
1327 qemu_mutex_unlock_iothread();
1328 do {
1329 int sig;
1330 r = sigwait(&waitset, &sig);
1331 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1332 if (r == -1) {
1333 perror("sigwait");
1334 exit(1);
1335 }
1336 qemu_mutex_lock_iothread();
1337 qemu_wait_io_event(cpu);
1338 } while (!cpu->unplug);
1339
1340 qemu_mutex_unlock_iothread();
1341 rcu_unregister_thread();
1342 return NULL;
1343 #endif
1344 }
1345
1346 static int64_t tcg_get_icount_limit(void)
1347 {
1348 int64_t deadline;
1349
1350 if (replay_mode != REPLAY_MODE_PLAY) {
1351 /*
1352 * Include all the timers, because they may need an attention.
1353 * Too long CPU execution may create unnecessary delay in UI.
1354 */
1355 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
1356 QEMU_TIMER_ATTR_ALL);
1357 /* Check realtime timers, because they help with input processing */
1358 deadline = qemu_soonest_timeout(deadline,
1359 qemu_clock_deadline_ns_all(QEMU_CLOCK_REALTIME,
1360 QEMU_TIMER_ATTR_ALL));
1361
1362 /* Maintain prior (possibly buggy) behaviour where if no deadline
1363 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1364 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1365 * nanoseconds.
1366 */
1367 if ((deadline < 0) || (deadline > INT32_MAX)) {
1368 deadline = INT32_MAX;
1369 }
1370
1371 return qemu_icount_round(deadline);
1372 } else {
1373 return replay_get_instructions();
1374 }
1375 }
1376
1377 static void handle_icount_deadline(void)
1378 {
1379 assert(qemu_in_vcpu_thread());
1380 if (use_icount) {
1381 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
1382 QEMU_TIMER_ATTR_ALL);
1383
1384 if (deadline == 0) {
1385 /* Wake up other AioContexts. */
1386 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1387 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1388 }
1389 }
1390 }
1391
1392 static void prepare_icount_for_run(CPUState *cpu)
1393 {
1394 if (use_icount) {
1395 int insns_left;
1396
1397 /* These should always be cleared by process_icount_data after
1398 * each vCPU execution. However u16.high can be raised
1399 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1400 */
1401 g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0);
1402 g_assert(cpu->icount_extra == 0);
1403
1404 cpu->icount_budget = tcg_get_icount_limit();
1405 insns_left = MIN(0xffff, cpu->icount_budget);
1406 cpu_neg(cpu)->icount_decr.u16.low = insns_left;
1407 cpu->icount_extra = cpu->icount_budget - insns_left;
1408
1409 replay_mutex_lock();
1410 }
1411 }
1412
1413 static void process_icount_data(CPUState *cpu)
1414 {
1415 if (use_icount) {
1416 /* Account for executed instructions */
1417 cpu_update_icount(cpu);
1418
1419 /* Reset the counters */
1420 cpu_neg(cpu)->icount_decr.u16.low = 0;
1421 cpu->icount_extra = 0;
1422 cpu->icount_budget = 0;
1423
1424 replay_account_executed_instructions();
1425
1426 replay_mutex_unlock();
1427 }
1428 }
1429
1430
1431 static int tcg_cpu_exec(CPUState *cpu)
1432 {
1433 int ret;
1434 #ifdef CONFIG_PROFILER
1435 int64_t ti;
1436 #endif
1437
1438 assert(tcg_enabled());
1439 #ifdef CONFIG_PROFILER
1440 ti = profile_getclock();
1441 #endif
1442 cpu_exec_start(cpu);
1443 ret = cpu_exec(cpu);
1444 cpu_exec_end(cpu);
1445 #ifdef CONFIG_PROFILER
1446 atomic_set(&tcg_ctx->prof.cpu_exec_time,
1447 tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
1448 #endif
1449 return ret;
1450 }
1451
1452 /* Destroy any remaining vCPUs which have been unplugged and have
1453 * finished running
1454 */
1455 static void deal_with_unplugged_cpus(void)
1456 {
1457 CPUState *cpu;
1458
1459 CPU_FOREACH(cpu) {
1460 if (cpu->unplug && !cpu_can_run(cpu)) {
1461 qemu_tcg_destroy_vcpu(cpu);
1462 cpu->created = false;
1463 qemu_cond_signal(&qemu_cpu_cond);
1464 break;
1465 }
1466 }
1467 }
1468
1469 /* Single-threaded TCG
1470 *
1471 * In the single-threaded case each vCPU is simulated in turn. If
1472 * there is more than a single vCPU we create a simple timer to kick
1473 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1474 * This is done explicitly rather than relying on side-effects
1475 * elsewhere.
1476 */
1477
1478 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1479 {
1480 CPUState *cpu = arg;
1481
1482 assert(tcg_enabled());
1483 rcu_register_thread();
1484 tcg_register_thread();
1485
1486 qemu_mutex_lock_iothread();
1487 qemu_thread_get_self(cpu->thread);
1488
1489 cpu->thread_id = qemu_get_thread_id();
1490 cpu->created = true;
1491 cpu->can_do_io = 1;
1492 qemu_cond_signal(&qemu_cpu_cond);
1493 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1494
1495 /* wait for initial kick-off after machine start */
1496 while (first_cpu->stopped) {
1497 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1498
1499 /* process any pending work */
1500 CPU_FOREACH(cpu) {
1501 current_cpu = cpu;
1502 qemu_wait_io_event_common(cpu);
1503 }
1504 }
1505
1506 start_tcg_kick_timer();
1507
1508 cpu = first_cpu;
1509
1510 /* process any pending work */
1511 cpu->exit_request = 1;
1512
1513 while (1) {
1514 qemu_mutex_unlock_iothread();
1515 replay_mutex_lock();
1516 qemu_mutex_lock_iothread();
1517 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1518 qemu_account_warp_timer();
1519
1520 /* Run the timers here. This is much more efficient than
1521 * waking up the I/O thread and waiting for completion.
1522 */
1523 handle_icount_deadline();
1524
1525 replay_mutex_unlock();
1526
1527 if (!cpu) {
1528 cpu = first_cpu;
1529 }
1530
1531 while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
1532
1533 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1534 current_cpu = cpu;
1535
1536 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1537 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1538
1539 if (cpu_can_run(cpu)) {
1540 int r;
1541
1542 qemu_mutex_unlock_iothread();
1543 prepare_icount_for_run(cpu);
1544
1545 r = tcg_cpu_exec(cpu);
1546
1547 process_icount_data(cpu);
1548 qemu_mutex_lock_iothread();
1549
1550 if (r == EXCP_DEBUG) {
1551 cpu_handle_guest_debug(cpu);
1552 break;
1553 } else if (r == EXCP_ATOMIC) {
1554 qemu_mutex_unlock_iothread();
1555 cpu_exec_step_atomic(cpu);
1556 qemu_mutex_lock_iothread();
1557 break;
1558 }
1559 } else if (cpu->stop) {
1560 if (cpu->unplug) {
1561 cpu = CPU_NEXT(cpu);
1562 }
1563 break;
1564 }
1565
1566 cpu = CPU_NEXT(cpu);
1567 } /* while (cpu && !cpu->exit_request).. */
1568
1569 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1570 atomic_set(&tcg_current_rr_cpu, NULL);
1571
1572 if (cpu && cpu->exit_request) {
1573 atomic_mb_set(&cpu->exit_request, 0);
1574 }
1575
1576 if (use_icount && all_cpu_threads_idle()) {
1577 /*
1578 * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
1579 * in the main_loop, wake it up in order to start the warp timer.
1580 */
1581 qemu_notify_event();
1582 }
1583
1584 qemu_tcg_rr_wait_io_event();
1585 deal_with_unplugged_cpus();
1586 }
1587
1588 rcu_unregister_thread();
1589 return NULL;
1590 }
1591
1592 static void *qemu_hax_cpu_thread_fn(void *arg)
1593 {
1594 CPUState *cpu = arg;
1595 int r;
1596
1597 rcu_register_thread();
1598 qemu_mutex_lock_iothread();
1599 qemu_thread_get_self(cpu->thread);
1600
1601 cpu->thread_id = qemu_get_thread_id();
1602 cpu->created = true;
1603 current_cpu = cpu;
1604
1605 hax_init_vcpu(cpu);
1606 qemu_cond_signal(&qemu_cpu_cond);
1607 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1608
1609 do {
1610 if (cpu_can_run(cpu)) {
1611 r = hax_smp_cpu_exec(cpu);
1612 if (r == EXCP_DEBUG) {
1613 cpu_handle_guest_debug(cpu);
1614 }
1615 }
1616
1617 qemu_wait_io_event(cpu);
1618 } while (!cpu->unplug || cpu_can_run(cpu));
1619 rcu_unregister_thread();
1620 return NULL;
1621 }
1622
1623 /* The HVF-specific vCPU thread function. This one should only run when the host
1624 * CPU supports the VMX "unrestricted guest" feature. */
1625 static void *qemu_hvf_cpu_thread_fn(void *arg)
1626 {
1627 CPUState *cpu = arg;
1628
1629 int r;
1630
1631 assert(hvf_enabled());
1632
1633 rcu_register_thread();
1634
1635 qemu_mutex_lock_iothread();
1636 qemu_thread_get_self(cpu->thread);
1637
1638 cpu->thread_id = qemu_get_thread_id();
1639 cpu->can_do_io = 1;
1640 current_cpu = cpu;
1641
1642 hvf_init_vcpu(cpu);
1643
1644 /* signal CPU creation */
1645 cpu->created = true;
1646 qemu_cond_signal(&qemu_cpu_cond);
1647 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1648
1649 do {
1650 if (cpu_can_run(cpu)) {
1651 r = hvf_vcpu_exec(cpu);
1652 if (r == EXCP_DEBUG) {
1653 cpu_handle_guest_debug(cpu);
1654 }
1655 }
1656 qemu_wait_io_event(cpu);
1657 } while (!cpu->unplug || cpu_can_run(cpu));
1658
1659 hvf_vcpu_destroy(cpu);
1660 cpu->created = false;
1661 qemu_cond_signal(&qemu_cpu_cond);
1662 qemu_mutex_unlock_iothread();
1663 rcu_unregister_thread();
1664 return NULL;
1665 }
1666
1667 static void *qemu_whpx_cpu_thread_fn(void *arg)
1668 {
1669 CPUState *cpu = arg;
1670 int r;
1671
1672 rcu_register_thread();
1673
1674 qemu_mutex_lock_iothread();
1675 qemu_thread_get_self(cpu->thread);
1676 cpu->thread_id = qemu_get_thread_id();
1677 current_cpu = cpu;
1678
1679 r = whpx_init_vcpu(cpu);
1680 if (r < 0) {
1681 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1682 exit(1);
1683 }
1684
1685 /* signal CPU creation */
1686 cpu->created = true;
1687 qemu_cond_signal(&qemu_cpu_cond);
1688 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1689
1690 do {
1691 if (cpu_can_run(cpu)) {
1692 r = whpx_vcpu_exec(cpu);
1693 if (r == EXCP_DEBUG) {
1694 cpu_handle_guest_debug(cpu);
1695 }
1696 }
1697 while (cpu_thread_is_idle(cpu)) {
1698 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1699 }
1700 qemu_wait_io_event_common(cpu);
1701 } while (!cpu->unplug || cpu_can_run(cpu));
1702
1703 whpx_destroy_vcpu(cpu);
1704 cpu->created = false;
1705 qemu_cond_signal(&qemu_cpu_cond);
1706 qemu_mutex_unlock_iothread();
1707 rcu_unregister_thread();
1708 return NULL;
1709 }
1710
1711 #ifdef _WIN32
1712 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1713 {
1714 }
1715 #endif
1716
1717 /* Multi-threaded TCG
1718 *
1719 * In the multi-threaded case each vCPU has its own thread. The TLS
1720 * variable current_cpu can be used deep in the code to find the
1721 * current CPUState for a given thread.
1722 */
1723
1724 static void *qemu_tcg_cpu_thread_fn(void *arg)
1725 {
1726 CPUState *cpu = arg;
1727
1728 assert(tcg_enabled());
1729 g_assert(!use_icount);
1730
1731 rcu_register_thread();
1732 tcg_register_thread();
1733
1734 qemu_mutex_lock_iothread();
1735 qemu_thread_get_self(cpu->thread);
1736
1737 cpu->thread_id = qemu_get_thread_id();
1738 cpu->created = true;
1739 cpu->can_do_io = 1;
1740 current_cpu = cpu;
1741 qemu_cond_signal(&qemu_cpu_cond);
1742 qemu_guest_random_seed_thread_part2(cpu->random_seed);
1743
1744 /* process any pending work */
1745 cpu->exit_request = 1;
1746
1747 do {
1748 if (cpu_can_run(cpu)) {
1749 int r;
1750 qemu_mutex_unlock_iothread();
1751 r = tcg_cpu_exec(cpu);
1752 qemu_mutex_lock_iothread();
1753 switch (r) {
1754 case EXCP_DEBUG:
1755 cpu_handle_guest_debug(cpu);
1756 break;
1757 case EXCP_HALTED:
1758 /* during start-up the vCPU is reset and the thread is
1759 * kicked several times. If we don't ensure we go back
1760 * to sleep in the halted state we won't cleanly
1761 * start-up when the vCPU is enabled.
1762 *
1763 * cpu->halted should ensure we sleep in wait_io_event
1764 */
1765 g_assert(cpu->halted);
1766 break;
1767 case EXCP_ATOMIC:
1768 qemu_mutex_unlock_iothread();
1769 cpu_exec_step_atomic(cpu);
1770 qemu_mutex_lock_iothread();
1771 default:
1772 /* Ignore everything else? */
1773 break;
1774 }
1775 }
1776
1777 atomic_mb_set(&cpu->exit_request, 0);
1778 qemu_wait_io_event(cpu);
1779 } while (!cpu->unplug || cpu_can_run(cpu));
1780
1781 qemu_tcg_destroy_vcpu(cpu);
1782 cpu->created = false;
1783 qemu_cond_signal(&qemu_cpu_cond);
1784 qemu_mutex_unlock_iothread();
1785 rcu_unregister_thread();
1786 return NULL;
1787 }
1788
1789 static void qemu_cpu_kick_thread(CPUState *cpu)
1790 {
1791 #ifndef _WIN32
1792 int err;
1793
1794 if (cpu->thread_kicked) {
1795 return;
1796 }
1797 cpu->thread_kicked = true;
1798 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1799 if (err && err != ESRCH) {
1800 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1801 exit(1);
1802 }
1803 #else /* _WIN32 */
1804 if (!qemu_cpu_is_self(cpu)) {
1805 if (whpx_enabled()) {
1806 whpx_vcpu_kick(cpu);
1807 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1808 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1809 __func__, GetLastError());
1810 exit(1);
1811 }
1812 }
1813 #endif
1814 }
1815
1816 void qemu_cpu_kick(CPUState *cpu)
1817 {
1818 qemu_cond_broadcast(cpu->halt_cond);
1819 if (tcg_enabled()) {
1820 if (qemu_tcg_mttcg_enabled()) {
1821 cpu_exit(cpu);
1822 } else {
1823 qemu_cpu_kick_rr_cpus();
1824 }
1825 } else {
1826 if (hax_enabled()) {
1827 /*
1828 * FIXME: race condition with the exit_request check in
1829 * hax_vcpu_hax_exec
1830 */
1831 cpu->exit_request = 1;
1832 }
1833 qemu_cpu_kick_thread(cpu);
1834 }
1835 }
1836
1837 void qemu_cpu_kick_self(void)
1838 {
1839 assert(current_cpu);
1840 qemu_cpu_kick_thread(current_cpu);
1841 }
1842
1843 bool qemu_cpu_is_self(CPUState *cpu)
1844 {
1845 return qemu_thread_is_self(cpu->thread);
1846 }
1847
1848 bool qemu_in_vcpu_thread(void)
1849 {
1850 return current_cpu && qemu_cpu_is_self(current_cpu);
1851 }
1852
1853 static __thread bool iothread_locked = false;
1854
1855 bool qemu_mutex_iothread_locked(void)
1856 {
1857 return iothread_locked;
1858 }
1859
1860 /*
1861 * The BQL is taken from so many places that it is worth profiling the
1862 * callers directly, instead of funneling them all through a single function.
1863 */
1864 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1865 {
1866 QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1867
1868 g_assert(!qemu_mutex_iothread_locked());
1869 bql_lock(&qemu_global_mutex, file, line);
1870 iothread_locked = true;
1871 }
1872
1873 void qemu_mutex_unlock_iothread(void)
1874 {
1875 g_assert(qemu_mutex_iothread_locked());
1876 iothread_locked = false;
1877 qemu_mutex_unlock(&qemu_global_mutex);
1878 }
1879
1880 void qemu_cond_wait_iothread(QemuCond *cond)
1881 {
1882 qemu_cond_wait(cond, &qemu_global_mutex);
1883 }
1884
1885 static bool all_vcpus_paused(void)
1886 {
1887 CPUState *cpu;
1888
1889 CPU_FOREACH(cpu) {
1890 if (!cpu->stopped) {
1891 return false;
1892 }
1893 }
1894
1895 return true;
1896 }
1897
1898 void pause_all_vcpus(void)
1899 {
1900 CPUState *cpu;
1901
1902 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1903 CPU_FOREACH(cpu) {
1904 if (qemu_cpu_is_self(cpu)) {
1905 qemu_cpu_stop(cpu, true);
1906 } else {
1907 cpu->stop = true;
1908 qemu_cpu_kick(cpu);
1909 }
1910 }
1911
1912 /* We need to drop the replay_lock so any vCPU threads woken up
1913 * can finish their replay tasks
1914 */
1915 replay_mutex_unlock();
1916
1917 while (!all_vcpus_paused()) {
1918 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1919 CPU_FOREACH(cpu) {
1920 qemu_cpu_kick(cpu);
1921 }
1922 }
1923
1924 qemu_mutex_unlock_iothread();
1925 replay_mutex_lock();
1926 qemu_mutex_lock_iothread();
1927 }
1928
1929 void cpu_resume(CPUState *cpu)
1930 {
1931 cpu->stop = false;
1932 cpu->stopped = false;
1933 qemu_cpu_kick(cpu);
1934 }
1935
1936 void resume_all_vcpus(void)
1937 {
1938 CPUState *cpu;
1939
1940 if (!runstate_is_running()) {
1941 return;
1942 }
1943
1944 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1945 CPU_FOREACH(cpu) {
1946 cpu_resume(cpu);
1947 }
1948 }
1949
1950 void cpu_remove_sync(CPUState *cpu)
1951 {
1952 cpu->stop = true;
1953 cpu->unplug = true;
1954 qemu_cpu_kick(cpu);
1955 qemu_mutex_unlock_iothread();
1956 qemu_thread_join(cpu->thread);
1957 qemu_mutex_lock_iothread();
1958 }
1959
1960 /* For temporary buffers for forming a name */
1961 #define VCPU_THREAD_NAME_SIZE 16
1962
1963 static void qemu_tcg_init_vcpu(CPUState *cpu)
1964 {
1965 char thread_name[VCPU_THREAD_NAME_SIZE];
1966 static QemuCond *single_tcg_halt_cond;
1967 static QemuThread *single_tcg_cpu_thread;
1968 static int tcg_region_inited;
1969
1970 assert(tcg_enabled());
1971 /*
1972 * Initialize TCG regions--once. Now is a good time, because:
1973 * (1) TCG's init context, prologue and target globals have been set up.
1974 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1975 * -accel flag is processed, so the check doesn't work then).
1976 */
1977 if (!tcg_region_inited) {
1978 tcg_region_inited = 1;
1979 tcg_region_init();
1980 }
1981
1982 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1983 cpu->thread = g_malloc0(sizeof(QemuThread));
1984 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1985 qemu_cond_init(cpu->halt_cond);
1986
1987 if (qemu_tcg_mttcg_enabled()) {
1988 /* create a thread per vCPU with TCG (MTTCG) */
1989 parallel_cpus = true;
1990 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1991 cpu->cpu_index);
1992
1993 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1994 cpu, QEMU_THREAD_JOINABLE);
1995
1996 } else {
1997 /* share a single thread for all cpus with TCG */
1998 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1999 qemu_thread_create(cpu->thread, thread_name,
2000 qemu_tcg_rr_cpu_thread_fn,
2001 cpu, QEMU_THREAD_JOINABLE);
2002
2003 single_tcg_halt_cond = cpu->halt_cond;
2004 single_tcg_cpu_thread = cpu->thread;
2005 }
2006 #ifdef _WIN32
2007 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2008 #endif
2009 } else {
2010 /* For non-MTTCG cases we share the thread */
2011 cpu->thread = single_tcg_cpu_thread;
2012 cpu->halt_cond = single_tcg_halt_cond;
2013 cpu->thread_id = first_cpu->thread_id;
2014 cpu->can_do_io = 1;
2015 cpu->created = true;
2016 }
2017 }
2018
2019 static void qemu_hax_start_vcpu(CPUState *cpu)
2020 {
2021 char thread_name[VCPU_THREAD_NAME_SIZE];
2022
2023 cpu->thread = g_malloc0(sizeof(QemuThread));
2024 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2025 qemu_cond_init(cpu->halt_cond);
2026
2027 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
2028 cpu->cpu_index);
2029 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
2030 cpu, QEMU_THREAD_JOINABLE);
2031 #ifdef _WIN32
2032 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2033 #endif
2034 }
2035
2036 static void qemu_kvm_start_vcpu(CPUState *cpu)
2037 {
2038 char thread_name[VCPU_THREAD_NAME_SIZE];
2039
2040 cpu->thread = g_malloc0(sizeof(QemuThread));
2041 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2042 qemu_cond_init(cpu->halt_cond);
2043 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
2044 cpu->cpu_index);
2045 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
2046 cpu, QEMU_THREAD_JOINABLE);
2047 }
2048
2049 static void qemu_hvf_start_vcpu(CPUState *cpu)
2050 {
2051 char thread_name[VCPU_THREAD_NAME_SIZE];
2052
2053 /* HVF currently does not support TCG, and only runs in
2054 * unrestricted-guest mode. */
2055 assert(hvf_enabled());
2056
2057 cpu->thread = g_malloc0(sizeof(QemuThread));
2058 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2059 qemu_cond_init(cpu->halt_cond);
2060
2061 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2062 cpu->cpu_index);
2063 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2064 cpu, QEMU_THREAD_JOINABLE);
2065 }
2066
2067 static void qemu_whpx_start_vcpu(CPUState *cpu)
2068 {
2069 char thread_name[VCPU_THREAD_NAME_SIZE];
2070
2071 cpu->thread = g_malloc0(sizeof(QemuThread));
2072 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2073 qemu_cond_init(cpu->halt_cond);
2074 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2075 cpu->cpu_index);
2076 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2077 cpu, QEMU_THREAD_JOINABLE);
2078 #ifdef _WIN32
2079 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2080 #endif
2081 }
2082
2083 static void qemu_dummy_start_vcpu(CPUState *cpu)
2084 {
2085 char thread_name[VCPU_THREAD_NAME_SIZE];
2086
2087 cpu->thread = g_malloc0(sizeof(QemuThread));
2088 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2089 qemu_cond_init(cpu->halt_cond);
2090 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2091 cpu->cpu_index);
2092 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2093 QEMU_THREAD_JOINABLE);
2094 }
2095
2096 void qemu_init_vcpu(CPUState *cpu)
2097 {
2098 MachineState *ms = MACHINE(qdev_get_machine());
2099
2100 cpu->nr_cores = ms->smp.cores;
2101 cpu->nr_threads = ms->smp.threads;
2102 cpu->stopped = true;
2103 cpu->random_seed = qemu_guest_random_seed_thread_part1();
2104
2105 if (!cpu->as) {
2106 /* If the target cpu hasn't set up any address spaces itself,
2107 * give it the default one.
2108 */
2109 cpu->num_ases = 1;
2110 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2111 }
2112
2113 if (kvm_enabled()) {
2114 qemu_kvm_start_vcpu(cpu);
2115 } else if (hax_enabled()) {
2116 qemu_hax_start_vcpu(cpu);
2117 } else if (hvf_enabled()) {
2118 qemu_hvf_start_vcpu(cpu);
2119 } else if (tcg_enabled()) {
2120 qemu_tcg_init_vcpu(cpu);
2121 } else if (whpx_enabled()) {
2122 qemu_whpx_start_vcpu(cpu);
2123 } else {
2124 qemu_dummy_start_vcpu(cpu);
2125 }
2126
2127 while (!cpu->created) {
2128 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2129 }
2130 }
2131
2132 void cpu_stop_current(void)
2133 {
2134 if (current_cpu) {
2135 current_cpu->stop = true;
2136 cpu_exit(current_cpu);
2137 }
2138 }
2139
2140 int vm_stop(RunState state)
2141 {
2142 if (qemu_in_vcpu_thread()) {
2143 qemu_system_vmstop_request_prepare();
2144 qemu_system_vmstop_request(state);
2145 /*
2146 * FIXME: should not return to device code in case
2147 * vm_stop() has been requested.
2148 */
2149 cpu_stop_current();
2150 return 0;
2151 }
2152
2153 return do_vm_stop(state, true);
2154 }
2155
2156 /**
2157 * Prepare for (re)starting the VM.
2158 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2159 * running or in case of an error condition), 0 otherwise.
2160 */
2161 int vm_prepare_start(void)
2162 {
2163 RunState requested;
2164
2165 qemu_vmstop_requested(&requested);
2166 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2167 return -1;
2168 }
2169
2170 /* Ensure that a STOP/RESUME pair of events is emitted if a
2171 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2172 * example, according to documentation is always followed by
2173 * the STOP event.
2174 */
2175 if (runstate_is_running()) {
2176 qapi_event_send_stop();
2177 qapi_event_send_resume();
2178 return -1;
2179 }
2180
2181 /* We are sending this now, but the CPUs will be resumed shortly later */
2182 qapi_event_send_resume();
2183
2184 cpu_enable_ticks();
2185 runstate_set(RUN_STATE_RUNNING);
2186 vm_state_notify(1, RUN_STATE_RUNNING);
2187 return 0;
2188 }
2189
2190 void vm_start(void)
2191 {
2192 if (!vm_prepare_start()) {
2193 resume_all_vcpus();
2194 }
2195 }
2196
2197 /* does a state transition even if the VM is already stopped,
2198 current state is forgotten forever */
2199 int vm_stop_force_state(RunState state)
2200 {
2201 if (runstate_is_running()) {
2202 return vm_stop(state);
2203 } else {
2204 runstate_set(state);
2205
2206 bdrv_drain_all();
2207 /* Make sure to return an error if the flush in a previous vm_stop()
2208 * failed. */
2209 return bdrv_flush_all();
2210 }
2211 }
2212
2213 void list_cpus(const char *optarg)
2214 {
2215 /* XXX: implement xxx_cpu_list for targets that still miss it */
2216 #if defined(cpu_list)
2217 cpu_list();
2218 #endif
2219 }
2220
2221 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2222 bool has_cpu, int64_t cpu_index, Error **errp)
2223 {
2224 FILE *f;
2225 uint32_t l;
2226 CPUState *cpu;
2227 uint8_t buf[1024];
2228 int64_t orig_addr = addr, orig_size = size;
2229
2230 if (!has_cpu) {
2231 cpu_index = 0;
2232 }
2233
2234 cpu = qemu_get_cpu(cpu_index);
2235 if (cpu == NULL) {
2236 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2237 "a CPU number");
2238 return;
2239 }
2240
2241 f = fopen(filename, "wb");
2242 if (!f) {
2243 error_setg_file_open(errp, errno, filename);
2244 return;
2245 }
2246
2247 while (size != 0) {
2248 l = sizeof(buf);
2249 if (l > size)
2250 l = size;
2251 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2252 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2253 " specified", orig_addr, orig_size);
2254 goto exit;
2255 }
2256 if (fwrite(buf, 1, l, f) != l) {
2257 error_setg(errp, QERR_IO_ERROR);
2258 goto exit;
2259 }
2260 addr += l;
2261 size -= l;
2262 }
2263
2264 exit:
2265 fclose(f);
2266 }
2267
2268 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2269 Error **errp)
2270 {
2271 FILE *f;
2272 uint32_t l;
2273 uint8_t buf[1024];
2274
2275 f = fopen(filename, "wb");
2276 if (!f) {
2277 error_setg_file_open(errp, errno, filename);
2278 return;
2279 }
2280
2281 while (size != 0) {
2282 l = sizeof(buf);
2283 if (l > size)
2284 l = size;
2285 cpu_physical_memory_read(addr, buf, l);
2286 if (fwrite(buf, 1, l, f) != l) {
2287 error_setg(errp, QERR_IO_ERROR);
2288 goto exit;
2289 }
2290 addr += l;
2291 size -= l;
2292 }
2293
2294 exit:
2295 fclose(f);
2296 }
2297
2298 void qmp_inject_nmi(Error **errp)
2299 {
2300 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2301 }
2302
2303 void dump_drift_info(void)
2304 {
2305 if (!use_icount) {
2306 return;
2307 }
2308
2309 qemu_printf("Host - Guest clock %"PRIi64" ms\n",
2310 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2311 if (icount_align_option) {
2312 qemu_printf("Max guest delay %"PRIi64" ms\n",
2313 -max_delay / SCALE_MS);
2314 qemu_printf("Max guest advance %"PRIi64" ms\n",
2315 max_advance / SCALE_MS);
2316 } else {
2317 qemu_printf("Max guest delay NA\n");
2318 qemu_printf("Max guest advance NA\n");
2319 }
2320 }