]> git.proxmox.com Git - qemu.git/blob - cpus.c
b802d38885e5f1954047322680ab1d70b9f24569
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
40
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUArchState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUArchState *env)
66 {
67 CPUState *cpu = ENV_GET_CPU(env);
68
69 if (cpu->stop || env->queued_work_first) {
70 return false;
71 }
72 if (cpu->stopped || !runstate_is_running()) {
73 return true;
74 }
75 if (!env->halted || qemu_cpu_has_work(env) ||
76 kvm_async_interrupts_enabled()) {
77 return false;
78 }
79 return true;
80 }
81
82 static bool all_cpu_threads_idle(void)
83 {
84 CPUArchState *env;
85
86 for (env = first_cpu; env != NULL; env = env->next_cpu) {
87 if (!cpu_thread_is_idle(env)) {
88 return false;
89 }
90 }
91 return true;
92 }
93
94 /***********************************************************/
95 /* guest cycle counter */
96
97 /* Conversion factor from emulated instructions to virtual clock ticks. */
98 static int icount_time_shift;
99 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
100 #define MAX_ICOUNT_SHIFT 10
101 /* Compensate for varying guest execution speed. */
102 static int64_t qemu_icount_bias;
103 static QEMUTimer *icount_rt_timer;
104 static QEMUTimer *icount_vm_timer;
105 static QEMUTimer *icount_warp_timer;
106 static int64_t vm_clock_warp_start;
107 static int64_t qemu_icount;
108
109 typedef struct TimersState {
110 int64_t cpu_ticks_prev;
111 int64_t cpu_ticks_offset;
112 int64_t cpu_clock_offset;
113 int32_t cpu_ticks_enabled;
114 int64_t dummy;
115 } TimersState;
116
117 TimersState timers_state;
118
119 /* Return the virtual CPU time, based on the instruction counter. */
120 int64_t cpu_get_icount(void)
121 {
122 int64_t icount;
123 CPUArchState *env = cpu_single_env;
124
125 icount = qemu_icount;
126 if (env) {
127 if (!can_do_io(env)) {
128 fprintf(stderr, "Bad clock read\n");
129 }
130 icount -= (env->icount_decr.u16.low + env->icount_extra);
131 }
132 return qemu_icount_bias + (icount << icount_time_shift);
133 }
134
135 /* return the host CPU cycle counter and handle stop/restart */
136 int64_t cpu_get_ticks(void)
137 {
138 if (use_icount) {
139 return cpu_get_icount();
140 }
141 if (!timers_state.cpu_ticks_enabled) {
142 return timers_state.cpu_ticks_offset;
143 } else {
144 int64_t ticks;
145 ticks = cpu_get_real_ticks();
146 if (timers_state.cpu_ticks_prev > ticks) {
147 /* Note: non increasing ticks may happen if the host uses
148 software suspend */
149 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
150 }
151 timers_state.cpu_ticks_prev = ticks;
152 return ticks + timers_state.cpu_ticks_offset;
153 }
154 }
155
156 /* return the host CPU monotonic timer and handle stop/restart */
157 int64_t cpu_get_clock(void)
158 {
159 int64_t ti;
160 if (!timers_state.cpu_ticks_enabled) {
161 return timers_state.cpu_clock_offset;
162 } else {
163 ti = get_clock();
164 return ti + timers_state.cpu_clock_offset;
165 }
166 }
167
168 /* enable cpu_get_ticks() */
169 void cpu_enable_ticks(void)
170 {
171 if (!timers_state.cpu_ticks_enabled) {
172 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
173 timers_state.cpu_clock_offset -= get_clock();
174 timers_state.cpu_ticks_enabled = 1;
175 }
176 }
177
178 /* disable cpu_get_ticks() : the clock is stopped. You must not call
179 cpu_get_ticks() after that. */
180 void cpu_disable_ticks(void)
181 {
182 if (timers_state.cpu_ticks_enabled) {
183 timers_state.cpu_ticks_offset = cpu_get_ticks();
184 timers_state.cpu_clock_offset = cpu_get_clock();
185 timers_state.cpu_ticks_enabled = 0;
186 }
187 }
188
189 /* Correlation between real and virtual time is always going to be
190 fairly approximate, so ignore small variation.
191 When the guest is idle real and virtual time will be aligned in
192 the IO wait loop. */
193 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
194
195 static void icount_adjust(void)
196 {
197 int64_t cur_time;
198 int64_t cur_icount;
199 int64_t delta;
200 static int64_t last_delta;
201 /* If the VM is not running, then do nothing. */
202 if (!runstate_is_running()) {
203 return;
204 }
205 cur_time = cpu_get_clock();
206 cur_icount = qemu_get_clock_ns(vm_clock);
207 delta = cur_icount - cur_time;
208 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
209 if (delta > 0
210 && last_delta + ICOUNT_WOBBLE < delta * 2
211 && icount_time_shift > 0) {
212 /* The guest is getting too far ahead. Slow time down. */
213 icount_time_shift--;
214 }
215 if (delta < 0
216 && last_delta - ICOUNT_WOBBLE > delta * 2
217 && icount_time_shift < MAX_ICOUNT_SHIFT) {
218 /* The guest is getting too far behind. Speed time up. */
219 icount_time_shift++;
220 }
221 last_delta = delta;
222 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
223 }
224
225 static void icount_adjust_rt(void *opaque)
226 {
227 qemu_mod_timer(icount_rt_timer,
228 qemu_get_clock_ms(rt_clock) + 1000);
229 icount_adjust();
230 }
231
232 static void icount_adjust_vm(void *opaque)
233 {
234 qemu_mod_timer(icount_vm_timer,
235 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
236 icount_adjust();
237 }
238
239 static int64_t qemu_icount_round(int64_t count)
240 {
241 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
242 }
243
244 static void icount_warp_rt(void *opaque)
245 {
246 if (vm_clock_warp_start == -1) {
247 return;
248 }
249
250 if (runstate_is_running()) {
251 int64_t clock = qemu_get_clock_ns(rt_clock);
252 int64_t warp_delta = clock - vm_clock_warp_start;
253 if (use_icount == 1) {
254 qemu_icount_bias += warp_delta;
255 } else {
256 /*
257 * In adaptive mode, do not let the vm_clock run too
258 * far ahead of real time.
259 */
260 int64_t cur_time = cpu_get_clock();
261 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
262 int64_t delta = cur_time - cur_icount;
263 qemu_icount_bias += MIN(warp_delta, delta);
264 }
265 if (qemu_clock_expired(vm_clock)) {
266 qemu_notify_event();
267 }
268 }
269 vm_clock_warp_start = -1;
270 }
271
272 void qtest_clock_warp(int64_t dest)
273 {
274 int64_t clock = qemu_get_clock_ns(vm_clock);
275 assert(qtest_enabled());
276 while (clock < dest) {
277 int64_t deadline = qemu_clock_deadline(vm_clock);
278 int64_t warp = MIN(dest - clock, deadline);
279 qemu_icount_bias += warp;
280 qemu_run_timers(vm_clock);
281 clock = qemu_get_clock_ns(vm_clock);
282 }
283 qemu_notify_event();
284 }
285
286 void qemu_clock_warp(QEMUClock *clock)
287 {
288 int64_t deadline;
289
290 /*
291 * There are too many global variables to make the "warp" behavior
292 * applicable to other clocks. But a clock argument removes the
293 * need for if statements all over the place.
294 */
295 if (clock != vm_clock || !use_icount) {
296 return;
297 }
298
299 /*
300 * If the CPUs have been sleeping, advance the vm_clock timer now. This
301 * ensures that the deadline for the timer is computed correctly below.
302 * This also makes sure that the insn counter is synchronized before the
303 * CPU starts running, in case the CPU is woken by an event other than
304 * the earliest vm_clock timer.
305 */
306 icount_warp_rt(NULL);
307 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
308 qemu_del_timer(icount_warp_timer);
309 return;
310 }
311
312 if (qtest_enabled()) {
313 /* When testing, qtest commands advance icount. */
314 return;
315 }
316
317 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
318 deadline = qemu_clock_deadline(vm_clock);
319 if (deadline > 0) {
320 /*
321 * Ensure the vm_clock proceeds even when the virtual CPU goes to
322 * sleep. Otherwise, the CPU might be waiting for a future timer
323 * interrupt to wake it up, but the interrupt never comes because
324 * the vCPU isn't running any insns and thus doesn't advance the
325 * vm_clock.
326 *
327 * An extreme solution for this problem would be to never let VCPUs
328 * sleep in icount mode if there is a pending vm_clock timer; rather
329 * time could just advance to the next vm_clock event. Instead, we
330 * do stop VCPUs and only advance vm_clock after some "real" time,
331 * (related to the time left until the next event) has passed. This
332 * rt_clock timer will do this. This avoids that the warps are too
333 * visible externally---for example, you will not be sending network
334 * packets continuously instead of every 100ms.
335 */
336 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
337 } else {
338 qemu_notify_event();
339 }
340 }
341
342 static const VMStateDescription vmstate_timers = {
343 .name = "timer",
344 .version_id = 2,
345 .minimum_version_id = 1,
346 .minimum_version_id_old = 1,
347 .fields = (VMStateField[]) {
348 VMSTATE_INT64(cpu_ticks_offset, TimersState),
349 VMSTATE_INT64(dummy, TimersState),
350 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
351 VMSTATE_END_OF_LIST()
352 }
353 };
354
355 void configure_icount(const char *option)
356 {
357 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
358 if (!option) {
359 return;
360 }
361
362 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
363 if (strcmp(option, "auto") != 0) {
364 icount_time_shift = strtol(option, NULL, 0);
365 use_icount = 1;
366 return;
367 }
368
369 use_icount = 2;
370
371 /* 125MIPS seems a reasonable initial guess at the guest speed.
372 It will be corrected fairly quickly anyway. */
373 icount_time_shift = 3;
374
375 /* Have both realtime and virtual time triggers for speed adjustment.
376 The realtime trigger catches emulated time passing too slowly,
377 the virtual time trigger catches emulated time passing too fast.
378 Realtime triggers occur even when idle, so use them less frequently
379 than VM triggers. */
380 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
381 qemu_mod_timer(icount_rt_timer,
382 qemu_get_clock_ms(rt_clock) + 1000);
383 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
384 qemu_mod_timer(icount_vm_timer,
385 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
386 }
387
388 /***********************************************************/
389 void hw_error(const char *fmt, ...)
390 {
391 va_list ap;
392 CPUArchState *env;
393
394 va_start(ap, fmt);
395 fprintf(stderr, "qemu: hardware error: ");
396 vfprintf(stderr, fmt, ap);
397 fprintf(stderr, "\n");
398 for(env = first_cpu; env != NULL; env = env->next_cpu) {
399 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
400 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
401 }
402 va_end(ap);
403 abort();
404 }
405
406 void cpu_synchronize_all_states(void)
407 {
408 CPUArchState *cpu;
409
410 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411 cpu_synchronize_state(cpu);
412 }
413 }
414
415 void cpu_synchronize_all_post_reset(void)
416 {
417 CPUArchState *cpu;
418
419 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420 cpu_synchronize_post_reset(cpu);
421 }
422 }
423
424 void cpu_synchronize_all_post_init(void)
425 {
426 CPUArchState *cpu;
427
428 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429 cpu_synchronize_post_init(cpu);
430 }
431 }
432
433 bool cpu_is_stopped(CPUState *cpu)
434 {
435 return !runstate_is_running() || cpu->stopped;
436 }
437
438 static void do_vm_stop(RunState state)
439 {
440 if (runstate_is_running()) {
441 cpu_disable_ticks();
442 pause_all_vcpus();
443 runstate_set(state);
444 vm_state_notify(0, state);
445 bdrv_drain_all();
446 bdrv_flush_all();
447 monitor_protocol_event(QEVENT_STOP, NULL);
448 }
449 }
450
451 static bool cpu_can_run(CPUState *cpu)
452 {
453 if (cpu->stop) {
454 return false;
455 }
456 if (cpu->stopped || !runstate_is_running()) {
457 return false;
458 }
459 return true;
460 }
461
462 static void cpu_handle_guest_debug(CPUArchState *env)
463 {
464 CPUState *cpu = ENV_GET_CPU(env);
465
466 gdb_set_stop_cpu(env);
467 qemu_system_debug_request();
468 cpu->stopped = true;
469 }
470
471 static void cpu_signal(int sig)
472 {
473 if (cpu_single_env) {
474 cpu_exit(cpu_single_env);
475 }
476 exit_request = 1;
477 }
478
479 #ifdef CONFIG_LINUX
480 static void sigbus_reraise(void)
481 {
482 sigset_t set;
483 struct sigaction action;
484
485 memset(&action, 0, sizeof(action));
486 action.sa_handler = SIG_DFL;
487 if (!sigaction(SIGBUS, &action, NULL)) {
488 raise(SIGBUS);
489 sigemptyset(&set);
490 sigaddset(&set, SIGBUS);
491 sigprocmask(SIG_UNBLOCK, &set, NULL);
492 }
493 perror("Failed to re-raise SIGBUS!\n");
494 abort();
495 }
496
497 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
498 void *ctx)
499 {
500 if (kvm_on_sigbus(siginfo->ssi_code,
501 (void *)(intptr_t)siginfo->ssi_addr)) {
502 sigbus_reraise();
503 }
504 }
505
506 static void qemu_init_sigbus(void)
507 {
508 struct sigaction action;
509
510 memset(&action, 0, sizeof(action));
511 action.sa_flags = SA_SIGINFO;
512 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
513 sigaction(SIGBUS, &action, NULL);
514
515 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
516 }
517
518 static void qemu_kvm_eat_signals(CPUArchState *env)
519 {
520 struct timespec ts = { 0, 0 };
521 siginfo_t siginfo;
522 sigset_t waitset;
523 sigset_t chkset;
524 int r;
525
526 sigemptyset(&waitset);
527 sigaddset(&waitset, SIG_IPI);
528 sigaddset(&waitset, SIGBUS);
529
530 do {
531 r = sigtimedwait(&waitset, &siginfo, &ts);
532 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
533 perror("sigtimedwait");
534 exit(1);
535 }
536
537 switch (r) {
538 case SIGBUS:
539 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
540 sigbus_reraise();
541 }
542 break;
543 default:
544 break;
545 }
546
547 r = sigpending(&chkset);
548 if (r == -1) {
549 perror("sigpending");
550 exit(1);
551 }
552 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
553 }
554
555 #else /* !CONFIG_LINUX */
556
557 static void qemu_init_sigbus(void)
558 {
559 }
560
561 static void qemu_kvm_eat_signals(CPUArchState *env)
562 {
563 }
564 #endif /* !CONFIG_LINUX */
565
566 #ifndef _WIN32
567 static void dummy_signal(int sig)
568 {
569 }
570
571 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
572 {
573 int r;
574 sigset_t set;
575 struct sigaction sigact;
576
577 memset(&sigact, 0, sizeof(sigact));
578 sigact.sa_handler = dummy_signal;
579 sigaction(SIG_IPI, &sigact, NULL);
580
581 pthread_sigmask(SIG_BLOCK, NULL, &set);
582 sigdelset(&set, SIG_IPI);
583 sigdelset(&set, SIGBUS);
584 r = kvm_set_signal_mask(env, &set);
585 if (r) {
586 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
587 exit(1);
588 }
589 }
590
591 static void qemu_tcg_init_cpu_signals(void)
592 {
593 sigset_t set;
594 struct sigaction sigact;
595
596 memset(&sigact, 0, sizeof(sigact));
597 sigact.sa_handler = cpu_signal;
598 sigaction(SIG_IPI, &sigact, NULL);
599
600 sigemptyset(&set);
601 sigaddset(&set, SIG_IPI);
602 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
603 }
604
605 #else /* _WIN32 */
606 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
607 {
608 abort();
609 }
610
611 static void qemu_tcg_init_cpu_signals(void)
612 {
613 }
614 #endif /* _WIN32 */
615
616 static QemuMutex qemu_global_mutex;
617 static QemuCond qemu_io_proceeded_cond;
618 static bool iothread_requesting_mutex;
619
620 static QemuThread io_thread;
621
622 static QemuThread *tcg_cpu_thread;
623 static QemuCond *tcg_halt_cond;
624
625 /* cpu creation */
626 static QemuCond qemu_cpu_cond;
627 /* system init */
628 static QemuCond qemu_pause_cond;
629 static QemuCond qemu_work_cond;
630
631 void qemu_init_cpu_loop(void)
632 {
633 qemu_init_sigbus();
634 qemu_cond_init(&qemu_cpu_cond);
635 qemu_cond_init(&qemu_pause_cond);
636 qemu_cond_init(&qemu_work_cond);
637 qemu_cond_init(&qemu_io_proceeded_cond);
638 qemu_mutex_init(&qemu_global_mutex);
639
640 qemu_thread_get_self(&io_thread);
641 }
642
643 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
644 {
645 CPUState *cpu = ENV_GET_CPU(env);
646 struct qemu_work_item wi;
647
648 if (qemu_cpu_is_self(cpu)) {
649 func(data);
650 return;
651 }
652
653 wi.func = func;
654 wi.data = data;
655 if (!env->queued_work_first) {
656 env->queued_work_first = &wi;
657 } else {
658 env->queued_work_last->next = &wi;
659 }
660 env->queued_work_last = &wi;
661 wi.next = NULL;
662 wi.done = false;
663
664 qemu_cpu_kick(cpu);
665 while (!wi.done) {
666 CPUArchState *self_env = cpu_single_env;
667
668 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
669 cpu_single_env = self_env;
670 }
671 }
672
673 static void flush_queued_work(CPUArchState *env)
674 {
675 struct qemu_work_item *wi;
676
677 if (!env->queued_work_first) {
678 return;
679 }
680
681 while ((wi = env->queued_work_first)) {
682 env->queued_work_first = wi->next;
683 wi->func(wi->data);
684 wi->done = true;
685 }
686 env->queued_work_last = NULL;
687 qemu_cond_broadcast(&qemu_work_cond);
688 }
689
690 static void qemu_wait_io_event_common(CPUArchState *env)
691 {
692 CPUState *cpu = ENV_GET_CPU(env);
693
694 if (cpu->stop) {
695 cpu->stop = false;
696 cpu->stopped = true;
697 qemu_cond_signal(&qemu_pause_cond);
698 }
699 flush_queued_work(env);
700 cpu->thread_kicked = false;
701 }
702
703 static void qemu_tcg_wait_io_event(void)
704 {
705 CPUArchState *env;
706
707 while (all_cpu_threads_idle()) {
708 /* Start accounting real time to the virtual clock if the CPUs
709 are idle. */
710 qemu_clock_warp(vm_clock);
711 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
712 }
713
714 while (iothread_requesting_mutex) {
715 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
716 }
717
718 for (env = first_cpu; env != NULL; env = env->next_cpu) {
719 qemu_wait_io_event_common(env);
720 }
721 }
722
723 static void qemu_kvm_wait_io_event(CPUArchState *env)
724 {
725 CPUState *cpu = ENV_GET_CPU(env);
726
727 while (cpu_thread_is_idle(env)) {
728 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
729 }
730
731 qemu_kvm_eat_signals(env);
732 qemu_wait_io_event_common(env);
733 }
734
735 static void *qemu_kvm_cpu_thread_fn(void *arg)
736 {
737 CPUArchState *env = arg;
738 CPUState *cpu = ENV_GET_CPU(env);
739 int r;
740
741 qemu_mutex_lock(&qemu_global_mutex);
742 qemu_thread_get_self(cpu->thread);
743 env->thread_id = qemu_get_thread_id();
744 cpu_single_env = env;
745
746 r = kvm_init_vcpu(env);
747 if (r < 0) {
748 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
749 exit(1);
750 }
751
752 qemu_kvm_init_cpu_signals(env);
753
754 /* signal CPU creation */
755 cpu->created = true;
756 qemu_cond_signal(&qemu_cpu_cond);
757
758 while (1) {
759 if (cpu_can_run(cpu)) {
760 r = kvm_cpu_exec(env);
761 if (r == EXCP_DEBUG) {
762 cpu_handle_guest_debug(env);
763 }
764 }
765 qemu_kvm_wait_io_event(env);
766 }
767
768 return NULL;
769 }
770
771 static void *qemu_dummy_cpu_thread_fn(void *arg)
772 {
773 #ifdef _WIN32
774 fprintf(stderr, "qtest is not supported under Windows\n");
775 exit(1);
776 #else
777 CPUArchState *env = arg;
778 CPUState *cpu = ENV_GET_CPU(env);
779 sigset_t waitset;
780 int r;
781
782 qemu_mutex_lock_iothread();
783 qemu_thread_get_self(cpu->thread);
784 env->thread_id = qemu_get_thread_id();
785
786 sigemptyset(&waitset);
787 sigaddset(&waitset, SIG_IPI);
788
789 /* signal CPU creation */
790 cpu->created = true;
791 qemu_cond_signal(&qemu_cpu_cond);
792
793 cpu_single_env = env;
794 while (1) {
795 cpu_single_env = NULL;
796 qemu_mutex_unlock_iothread();
797 do {
798 int sig;
799 r = sigwait(&waitset, &sig);
800 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
801 if (r == -1) {
802 perror("sigwait");
803 exit(1);
804 }
805 qemu_mutex_lock_iothread();
806 cpu_single_env = env;
807 qemu_wait_io_event_common(env);
808 }
809
810 return NULL;
811 #endif
812 }
813
814 static void tcg_exec_all(void);
815
816 static void *qemu_tcg_cpu_thread_fn(void *arg)
817 {
818 CPUState *cpu = arg;
819 CPUArchState *env;
820
821 qemu_tcg_init_cpu_signals();
822 qemu_thread_get_self(cpu->thread);
823
824 /* signal CPU creation */
825 qemu_mutex_lock(&qemu_global_mutex);
826 for (env = first_cpu; env != NULL; env = env->next_cpu) {
827 cpu = ENV_GET_CPU(env);
828 env->thread_id = qemu_get_thread_id();
829 cpu->created = true;
830 }
831 qemu_cond_signal(&qemu_cpu_cond);
832
833 /* wait for initial kick-off after machine start */
834 while (ENV_GET_CPU(first_cpu)->stopped) {
835 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
836
837 /* process any pending work */
838 for (env = first_cpu; env != NULL; env = env->next_cpu) {
839 qemu_wait_io_event_common(env);
840 }
841 }
842
843 while (1) {
844 tcg_exec_all();
845 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
846 qemu_notify_event();
847 }
848 qemu_tcg_wait_io_event();
849 }
850
851 return NULL;
852 }
853
854 static void qemu_cpu_kick_thread(CPUState *cpu)
855 {
856 #ifndef _WIN32
857 int err;
858
859 err = pthread_kill(cpu->thread->thread, SIG_IPI);
860 if (err) {
861 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
862 exit(1);
863 }
864 #else /* _WIN32 */
865 if (!qemu_cpu_is_self(cpu)) {
866 SuspendThread(cpu->hThread);
867 cpu_signal(0);
868 ResumeThread(cpu->hThread);
869 }
870 #endif
871 }
872
873 void qemu_cpu_kick(CPUState *cpu)
874 {
875 qemu_cond_broadcast(cpu->halt_cond);
876 if (!tcg_enabled() && !cpu->thread_kicked) {
877 qemu_cpu_kick_thread(cpu);
878 cpu->thread_kicked = true;
879 }
880 }
881
882 void qemu_cpu_kick_self(void)
883 {
884 #ifndef _WIN32
885 assert(cpu_single_env);
886 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
887
888 if (!cpu_single_cpu->thread_kicked) {
889 qemu_cpu_kick_thread(cpu_single_cpu);
890 cpu_single_cpu->thread_kicked = true;
891 }
892 #else
893 abort();
894 #endif
895 }
896
897 bool qemu_cpu_is_self(CPUState *cpu)
898 {
899 return qemu_thread_is_self(cpu->thread);
900 }
901
902 static bool qemu_in_vcpu_thread(void)
903 {
904 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
905 }
906
907 void qemu_mutex_lock_iothread(void)
908 {
909 if (!tcg_enabled()) {
910 qemu_mutex_lock(&qemu_global_mutex);
911 } else {
912 iothread_requesting_mutex = true;
913 if (qemu_mutex_trylock(&qemu_global_mutex)) {
914 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
915 qemu_mutex_lock(&qemu_global_mutex);
916 }
917 iothread_requesting_mutex = false;
918 qemu_cond_broadcast(&qemu_io_proceeded_cond);
919 }
920 }
921
922 void qemu_mutex_unlock_iothread(void)
923 {
924 qemu_mutex_unlock(&qemu_global_mutex);
925 }
926
927 static int all_vcpus_paused(void)
928 {
929 CPUArchState *penv = first_cpu;
930
931 while (penv) {
932 CPUState *pcpu = ENV_GET_CPU(penv);
933 if (!pcpu->stopped) {
934 return 0;
935 }
936 penv = penv->next_cpu;
937 }
938
939 return 1;
940 }
941
942 void pause_all_vcpus(void)
943 {
944 CPUArchState *penv = first_cpu;
945
946 qemu_clock_enable(vm_clock, false);
947 while (penv) {
948 CPUState *pcpu = ENV_GET_CPU(penv);
949 pcpu->stop = true;
950 qemu_cpu_kick(pcpu);
951 penv = penv->next_cpu;
952 }
953
954 if (qemu_in_vcpu_thread()) {
955 cpu_stop_current();
956 if (!kvm_enabled()) {
957 while (penv) {
958 CPUState *pcpu = ENV_GET_CPU(penv);
959 pcpu->stop = 0;
960 pcpu->stopped = true;
961 penv = penv->next_cpu;
962 }
963 return;
964 }
965 }
966
967 while (!all_vcpus_paused()) {
968 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
969 penv = first_cpu;
970 while (penv) {
971 qemu_cpu_kick(ENV_GET_CPU(penv));
972 penv = penv->next_cpu;
973 }
974 }
975 }
976
977 void resume_all_vcpus(void)
978 {
979 CPUArchState *penv = first_cpu;
980
981 qemu_clock_enable(vm_clock, true);
982 while (penv) {
983 CPUState *pcpu = ENV_GET_CPU(penv);
984 pcpu->stop = false;
985 pcpu->stopped = false;
986 qemu_cpu_kick(pcpu);
987 penv = penv->next_cpu;
988 }
989 }
990
991 static void qemu_tcg_init_vcpu(CPUState *cpu)
992 {
993 /* share a single thread for all cpus with TCG */
994 if (!tcg_cpu_thread) {
995 cpu->thread = g_malloc0(sizeof(QemuThread));
996 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
997 qemu_cond_init(cpu->halt_cond);
998 tcg_halt_cond = cpu->halt_cond;
999 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
1000 QEMU_THREAD_JOINABLE);
1001 #ifdef _WIN32
1002 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1003 #endif
1004 while (!cpu->created) {
1005 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1006 }
1007 tcg_cpu_thread = cpu->thread;
1008 } else {
1009 cpu->thread = tcg_cpu_thread;
1010 cpu->halt_cond = tcg_halt_cond;
1011 }
1012 }
1013
1014 static void qemu_kvm_start_vcpu(CPUArchState *env)
1015 {
1016 CPUState *cpu = ENV_GET_CPU(env);
1017
1018 cpu->thread = g_malloc0(sizeof(QemuThread));
1019 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1020 qemu_cond_init(cpu->halt_cond);
1021 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1022 QEMU_THREAD_JOINABLE);
1023 while (!cpu->created) {
1024 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1025 }
1026 }
1027
1028 static void qemu_dummy_start_vcpu(CPUArchState *env)
1029 {
1030 CPUState *cpu = ENV_GET_CPU(env);
1031
1032 cpu->thread = g_malloc0(sizeof(QemuThread));
1033 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1034 qemu_cond_init(cpu->halt_cond);
1035 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1036 QEMU_THREAD_JOINABLE);
1037 while (!cpu->created) {
1038 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1039 }
1040 }
1041
1042 void qemu_init_vcpu(void *_env)
1043 {
1044 CPUArchState *env = _env;
1045 CPUState *cpu = ENV_GET_CPU(env);
1046
1047 env->nr_cores = smp_cores;
1048 env->nr_threads = smp_threads;
1049 cpu->stopped = true;
1050 if (kvm_enabled()) {
1051 qemu_kvm_start_vcpu(env);
1052 } else if (tcg_enabled()) {
1053 qemu_tcg_init_vcpu(cpu);
1054 } else {
1055 qemu_dummy_start_vcpu(env);
1056 }
1057 }
1058
1059 void cpu_stop_current(void)
1060 {
1061 if (cpu_single_env) {
1062 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
1063 cpu_single_cpu->stop = false;
1064 cpu_single_cpu->stopped = true;
1065 cpu_exit(cpu_single_env);
1066 qemu_cond_signal(&qemu_pause_cond);
1067 }
1068 }
1069
1070 void vm_stop(RunState state)
1071 {
1072 if (qemu_in_vcpu_thread()) {
1073 qemu_system_vmstop_request(state);
1074 /*
1075 * FIXME: should not return to device code in case
1076 * vm_stop() has been requested.
1077 */
1078 cpu_stop_current();
1079 return;
1080 }
1081 do_vm_stop(state);
1082 }
1083
1084 /* does a state transition even if the VM is already stopped,
1085 current state is forgotten forever */
1086 void vm_stop_force_state(RunState state)
1087 {
1088 if (runstate_is_running()) {
1089 vm_stop(state);
1090 } else {
1091 runstate_set(state);
1092 }
1093 }
1094
1095 static int tcg_cpu_exec(CPUArchState *env)
1096 {
1097 int ret;
1098 #ifdef CONFIG_PROFILER
1099 int64_t ti;
1100 #endif
1101
1102 #ifdef CONFIG_PROFILER
1103 ti = profile_getclock();
1104 #endif
1105 if (use_icount) {
1106 int64_t count;
1107 int decr;
1108 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1109 env->icount_decr.u16.low = 0;
1110 env->icount_extra = 0;
1111 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1112 qemu_icount += count;
1113 decr = (count > 0xffff) ? 0xffff : count;
1114 count -= decr;
1115 env->icount_decr.u16.low = decr;
1116 env->icount_extra = count;
1117 }
1118 ret = cpu_exec(env);
1119 #ifdef CONFIG_PROFILER
1120 qemu_time += profile_getclock() - ti;
1121 #endif
1122 if (use_icount) {
1123 /* Fold pending instructions back into the
1124 instruction counter, and clear the interrupt flag. */
1125 qemu_icount -= (env->icount_decr.u16.low
1126 + env->icount_extra);
1127 env->icount_decr.u32 = 0;
1128 env->icount_extra = 0;
1129 }
1130 return ret;
1131 }
1132
1133 static void tcg_exec_all(void)
1134 {
1135 int r;
1136
1137 /* Account partial waits to the vm_clock. */
1138 qemu_clock_warp(vm_clock);
1139
1140 if (next_cpu == NULL) {
1141 next_cpu = first_cpu;
1142 }
1143 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1144 CPUArchState *env = next_cpu;
1145 CPUState *cpu = ENV_GET_CPU(env);
1146
1147 qemu_clock_enable(vm_clock,
1148 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1149
1150 if (cpu_can_run(cpu)) {
1151 r = tcg_cpu_exec(env);
1152 if (r == EXCP_DEBUG) {
1153 cpu_handle_guest_debug(env);
1154 break;
1155 }
1156 } else if (cpu->stop || cpu->stopped) {
1157 break;
1158 }
1159 }
1160 exit_request = 0;
1161 }
1162
1163 void set_numa_modes(void)
1164 {
1165 CPUArchState *env;
1166 int i;
1167
1168 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1169 for (i = 0; i < nb_numa_nodes; i++) {
1170 if (test_bit(env->cpu_index, node_cpumask[i])) {
1171 env->numa_node = i;
1172 }
1173 }
1174 }
1175 }
1176
1177 void set_cpu_log(const char *optarg)
1178 {
1179 int mask;
1180 const CPULogItem *item;
1181
1182 mask = cpu_str_to_log_mask(optarg);
1183 if (!mask) {
1184 printf("Log items (comma separated):\n");
1185 for (item = cpu_log_items; item->mask != 0; item++) {
1186 printf("%-10s %s\n", item->name, item->help);
1187 }
1188 exit(1);
1189 }
1190 cpu_set_log(mask);
1191 }
1192
1193 void set_cpu_log_filename(const char *optarg)
1194 {
1195 cpu_set_log_filename(optarg);
1196 }
1197
1198 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1199 {
1200 /* XXX: implement xxx_cpu_list for targets that still miss it */
1201 #if defined(cpu_list)
1202 cpu_list(f, cpu_fprintf);
1203 #endif
1204 }
1205
1206 CpuInfoList *qmp_query_cpus(Error **errp)
1207 {
1208 CpuInfoList *head = NULL, *cur_item = NULL;
1209 CPUArchState *env;
1210
1211 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1212 CpuInfoList *info;
1213
1214 cpu_synchronize_state(env);
1215
1216 info = g_malloc0(sizeof(*info));
1217 info->value = g_malloc0(sizeof(*info->value));
1218 info->value->CPU = env->cpu_index;
1219 info->value->current = (env == first_cpu);
1220 info->value->halted = env->halted;
1221 info->value->thread_id = env->thread_id;
1222 #if defined(TARGET_I386)
1223 info->value->has_pc = true;
1224 info->value->pc = env->eip + env->segs[R_CS].base;
1225 #elif defined(TARGET_PPC)
1226 info->value->has_nip = true;
1227 info->value->nip = env->nip;
1228 #elif defined(TARGET_SPARC)
1229 info->value->has_pc = true;
1230 info->value->pc = env->pc;
1231 info->value->has_npc = true;
1232 info->value->npc = env->npc;
1233 #elif defined(TARGET_MIPS)
1234 info->value->has_PC = true;
1235 info->value->PC = env->active_tc.PC;
1236 #endif
1237
1238 /* XXX: waiting for the qapi to support GSList */
1239 if (!cur_item) {
1240 head = cur_item = info;
1241 } else {
1242 cur_item->next = info;
1243 cur_item = info;
1244 }
1245 }
1246
1247 return head;
1248 }
1249
1250 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1251 bool has_cpu, int64_t cpu_index, Error **errp)
1252 {
1253 FILE *f;
1254 uint32_t l;
1255 CPUArchState *env;
1256 uint8_t buf[1024];
1257
1258 if (!has_cpu) {
1259 cpu_index = 0;
1260 }
1261
1262 for (env = first_cpu; env; env = env->next_cpu) {
1263 if (cpu_index == env->cpu_index) {
1264 break;
1265 }
1266 }
1267
1268 if (env == NULL) {
1269 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1270 "a CPU number");
1271 return;
1272 }
1273
1274 f = fopen(filename, "wb");
1275 if (!f) {
1276 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1277 return;
1278 }
1279
1280 while (size != 0) {
1281 l = sizeof(buf);
1282 if (l > size)
1283 l = size;
1284 cpu_memory_rw_debug(env, addr, buf, l, 0);
1285 if (fwrite(buf, 1, l, f) != l) {
1286 error_set(errp, QERR_IO_ERROR);
1287 goto exit;
1288 }
1289 addr += l;
1290 size -= l;
1291 }
1292
1293 exit:
1294 fclose(f);
1295 }
1296
1297 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1298 Error **errp)
1299 {
1300 FILE *f;
1301 uint32_t l;
1302 uint8_t buf[1024];
1303
1304 f = fopen(filename, "wb");
1305 if (!f) {
1306 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1307 return;
1308 }
1309
1310 while (size != 0) {
1311 l = sizeof(buf);
1312 if (l > size)
1313 l = size;
1314 cpu_physical_memory_rw(addr, buf, l, 0);
1315 if (fwrite(buf, 1, l, f) != l) {
1316 error_set(errp, QERR_IO_ERROR);
1317 goto exit;
1318 }
1319 addr += l;
1320 size -= l;
1321 }
1322
1323 exit:
1324 fclose(f);
1325 }
1326
1327 void qmp_inject_nmi(Error **errp)
1328 {
1329 #if defined(TARGET_I386)
1330 CPUArchState *env;
1331
1332 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1333 if (!env->apic_state) {
1334 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1335 } else {
1336 apic_deliver_nmi(env->apic_state);
1337 }
1338 }
1339 #else
1340 error_set(errp, QERR_UNSUPPORTED);
1341 #endif
1342 }