]> git.proxmox.com Git - qemu.git/blob - cpus.c
f1414282254298b3cbe7d5816bac5a0f53dc6f2b
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor/monitor.h"
29 #include "sysemu/sysemu.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/dma.h"
32 #include "sysemu/kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu/thread.h"
36 #include "sysemu/cpus.h"
37 #include "sysemu/qtest.h"
38 #include "qemu/main-loop.h"
39 #include "qemu/bitmap.h"
40
41 #ifndef _WIN32
42 #include "qemu/compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUState *cpu)
66 {
67 if (cpu->stop || cpu->queued_work_first) {
68 return false;
69 }
70 if (cpu->stopped || !runstate_is_running()) {
71 return true;
72 }
73 if (!cpu->halted || qemu_cpu_has_work(cpu) ||
74 kvm_halt_in_kernel()) {
75 return false;
76 }
77 return true;
78 }
79
80 static bool all_cpu_threads_idle(void)
81 {
82 CPUState *cpu;
83
84 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
85 if (!cpu_thread_is_idle(cpu)) {
86 return false;
87 }
88 }
89 return true;
90 }
91
92 /***********************************************************/
93 /* guest cycle counter */
94
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias;
101 static QEMUTimer *icount_rt_timer;
102 static QEMUTimer *icount_vm_timer;
103 static QEMUTimer *icount_warp_timer;
104 static int64_t vm_clock_warp_start;
105 static int64_t qemu_icount;
106
107 typedef struct TimersState {
108 int64_t cpu_ticks_prev;
109 int64_t cpu_ticks_offset;
110 int64_t cpu_clock_offset;
111 int32_t cpu_ticks_enabled;
112 int64_t dummy;
113 } TimersState;
114
115 TimersState timers_state;
116
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
119 {
120 int64_t icount;
121 CPUState *cpu = current_cpu;
122
123 icount = qemu_icount;
124 if (cpu) {
125 CPUArchState *env = cpu->env_ptr;
126 if (!can_do_io(env)) {
127 fprintf(stderr, "Bad clock read\n");
128 }
129 icount -= (env->icount_decr.u16.low + env->icount_extra);
130 }
131 return qemu_icount_bias + (icount << icount_time_shift);
132 }
133
134 /* return the host CPU cycle counter and handle stop/restart */
135 int64_t cpu_get_ticks(void)
136 {
137 if (use_icount) {
138 return cpu_get_icount();
139 }
140 if (!timers_state.cpu_ticks_enabled) {
141 return timers_state.cpu_ticks_offset;
142 } else {
143 int64_t ticks;
144 ticks = cpu_get_real_ticks();
145 if (timers_state.cpu_ticks_prev > ticks) {
146 /* Note: non increasing ticks may happen if the host uses
147 software suspend */
148 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
149 }
150 timers_state.cpu_ticks_prev = ticks;
151 return ticks + timers_state.cpu_ticks_offset;
152 }
153 }
154
155 /* return the host CPU monotonic timer and handle stop/restart */
156 int64_t cpu_get_clock(void)
157 {
158 int64_t ti;
159 if (!timers_state.cpu_ticks_enabled) {
160 return timers_state.cpu_clock_offset;
161 } else {
162 ti = get_clock();
163 return ti + timers_state.cpu_clock_offset;
164 }
165 }
166
167 /* enable cpu_get_ticks() */
168 void cpu_enable_ticks(void)
169 {
170 if (!timers_state.cpu_ticks_enabled) {
171 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
172 timers_state.cpu_clock_offset -= get_clock();
173 timers_state.cpu_ticks_enabled = 1;
174 }
175 }
176
177 /* disable cpu_get_ticks() : the clock is stopped. You must not call
178 cpu_get_ticks() after that. */
179 void cpu_disable_ticks(void)
180 {
181 if (timers_state.cpu_ticks_enabled) {
182 timers_state.cpu_ticks_offset = cpu_get_ticks();
183 timers_state.cpu_clock_offset = cpu_get_clock();
184 timers_state.cpu_ticks_enabled = 0;
185 }
186 }
187
188 /* Correlation between real and virtual time is always going to be
189 fairly approximate, so ignore small variation.
190 When the guest is idle real and virtual time will be aligned in
191 the IO wait loop. */
192 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
193
194 static void icount_adjust(void)
195 {
196 int64_t cur_time;
197 int64_t cur_icount;
198 int64_t delta;
199 static int64_t last_delta;
200 /* If the VM is not running, then do nothing. */
201 if (!runstate_is_running()) {
202 return;
203 }
204 cur_time = cpu_get_clock();
205 cur_icount = qemu_get_clock_ns(vm_clock);
206 delta = cur_icount - cur_time;
207 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
208 if (delta > 0
209 && last_delta + ICOUNT_WOBBLE < delta * 2
210 && icount_time_shift > 0) {
211 /* The guest is getting too far ahead. Slow time down. */
212 icount_time_shift--;
213 }
214 if (delta < 0
215 && last_delta - ICOUNT_WOBBLE > delta * 2
216 && icount_time_shift < MAX_ICOUNT_SHIFT) {
217 /* The guest is getting too far behind. Speed time up. */
218 icount_time_shift++;
219 }
220 last_delta = delta;
221 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
222 }
223
224 static void icount_adjust_rt(void *opaque)
225 {
226 qemu_mod_timer(icount_rt_timer,
227 qemu_get_clock_ms(rt_clock) + 1000);
228 icount_adjust();
229 }
230
231 static void icount_adjust_vm(void *opaque)
232 {
233 qemu_mod_timer(icount_vm_timer,
234 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
235 icount_adjust();
236 }
237
238 static int64_t qemu_icount_round(int64_t count)
239 {
240 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
241 }
242
243 static void icount_warp_rt(void *opaque)
244 {
245 if (vm_clock_warp_start == -1) {
246 return;
247 }
248
249 if (runstate_is_running()) {
250 int64_t clock = qemu_get_clock_ns(rt_clock);
251 int64_t warp_delta = clock - vm_clock_warp_start;
252 if (use_icount == 1) {
253 qemu_icount_bias += warp_delta;
254 } else {
255 /*
256 * In adaptive mode, do not let the vm_clock run too
257 * far ahead of real time.
258 */
259 int64_t cur_time = cpu_get_clock();
260 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
261 int64_t delta = cur_time - cur_icount;
262 qemu_icount_bias += MIN(warp_delta, delta);
263 }
264 if (qemu_clock_expired(vm_clock)) {
265 qemu_notify_event();
266 }
267 }
268 vm_clock_warp_start = -1;
269 }
270
271 void qtest_clock_warp(int64_t dest)
272 {
273 int64_t clock = qemu_get_clock_ns(vm_clock);
274 assert(qtest_enabled());
275 while (clock < dest) {
276 int64_t deadline = qemu_clock_deadline(vm_clock);
277 int64_t warp = MIN(dest - clock, deadline);
278 qemu_icount_bias += warp;
279 qemu_run_timers(vm_clock);
280 clock = qemu_get_clock_ns(vm_clock);
281 }
282 qemu_notify_event();
283 }
284
285 void qemu_clock_warp(QEMUClock *clock)
286 {
287 int64_t deadline;
288
289 /*
290 * There are too many global variables to make the "warp" behavior
291 * applicable to other clocks. But a clock argument removes the
292 * need for if statements all over the place.
293 */
294 if (clock != vm_clock || !use_icount) {
295 return;
296 }
297
298 /*
299 * If the CPUs have been sleeping, advance the vm_clock timer now. This
300 * ensures that the deadline for the timer is computed correctly below.
301 * This also makes sure that the insn counter is synchronized before the
302 * CPU starts running, in case the CPU is woken by an event other than
303 * the earliest vm_clock timer.
304 */
305 icount_warp_rt(NULL);
306 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
307 qemu_del_timer(icount_warp_timer);
308 return;
309 }
310
311 if (qtest_enabled()) {
312 /* When testing, qtest commands advance icount. */
313 return;
314 }
315
316 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
317 deadline = qemu_clock_deadline(vm_clock);
318 if (deadline > 0) {
319 /*
320 * Ensure the vm_clock proceeds even when the virtual CPU goes to
321 * sleep. Otherwise, the CPU might be waiting for a future timer
322 * interrupt to wake it up, but the interrupt never comes because
323 * the vCPU isn't running any insns and thus doesn't advance the
324 * vm_clock.
325 *
326 * An extreme solution for this problem would be to never let VCPUs
327 * sleep in icount mode if there is a pending vm_clock timer; rather
328 * time could just advance to the next vm_clock event. Instead, we
329 * do stop VCPUs and only advance vm_clock after some "real" time,
330 * (related to the time left until the next event) has passed. This
331 * rt_clock timer will do this. This avoids that the warps are too
332 * visible externally---for example, you will not be sending network
333 * packets continuously instead of every 100ms.
334 */
335 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
336 } else {
337 qemu_notify_event();
338 }
339 }
340
341 static const VMStateDescription vmstate_timers = {
342 .name = "timer",
343 .version_id = 2,
344 .minimum_version_id = 1,
345 .minimum_version_id_old = 1,
346 .fields = (VMStateField[]) {
347 VMSTATE_INT64(cpu_ticks_offset, TimersState),
348 VMSTATE_INT64(dummy, TimersState),
349 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
350 VMSTATE_END_OF_LIST()
351 }
352 };
353
354 void configure_icount(const char *option)
355 {
356 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
357 if (!option) {
358 return;
359 }
360
361 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
362 if (strcmp(option, "auto") != 0) {
363 icount_time_shift = strtol(option, NULL, 0);
364 use_icount = 1;
365 return;
366 }
367
368 use_icount = 2;
369
370 /* 125MIPS seems a reasonable initial guess at the guest speed.
371 It will be corrected fairly quickly anyway. */
372 icount_time_shift = 3;
373
374 /* Have both realtime and virtual time triggers for speed adjustment.
375 The realtime trigger catches emulated time passing too slowly,
376 the virtual time trigger catches emulated time passing too fast.
377 Realtime triggers occur even when idle, so use them less frequently
378 than VM triggers. */
379 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
380 qemu_mod_timer(icount_rt_timer,
381 qemu_get_clock_ms(rt_clock) + 1000);
382 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
383 qemu_mod_timer(icount_vm_timer,
384 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
385 }
386
387 /***********************************************************/
388 void hw_error(const char *fmt, ...)
389 {
390 va_list ap;
391 CPUState *cpu;
392
393 va_start(ap, fmt);
394 fprintf(stderr, "qemu: hardware error: ");
395 vfprintf(stderr, fmt, ap);
396 fprintf(stderr, "\n");
397 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
398 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
399 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
400 }
401 va_end(ap);
402 abort();
403 }
404
405 void cpu_synchronize_all_states(void)
406 {
407 CPUState *cpu;
408
409 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
410 cpu_synchronize_state(cpu);
411 }
412 }
413
414 void cpu_synchronize_all_post_reset(void)
415 {
416 CPUState *cpu;
417
418 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
419 cpu_synchronize_post_reset(cpu);
420 }
421 }
422
423 void cpu_synchronize_all_post_init(void)
424 {
425 CPUState *cpu;
426
427 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
428 cpu_synchronize_post_init(cpu);
429 }
430 }
431
432 bool cpu_is_stopped(CPUState *cpu)
433 {
434 return !runstate_is_running() || cpu->stopped;
435 }
436
437 static void do_vm_stop(RunState state)
438 {
439 if (runstate_is_running()) {
440 cpu_disable_ticks();
441 pause_all_vcpus();
442 runstate_set(state);
443 vm_state_notify(0, state);
444 bdrv_drain_all();
445 bdrv_flush_all();
446 monitor_protocol_event(QEVENT_STOP, NULL);
447 }
448 }
449
450 static bool cpu_can_run(CPUState *cpu)
451 {
452 if (cpu->stop) {
453 return false;
454 }
455 if (cpu->stopped || !runstate_is_running()) {
456 return false;
457 }
458 return true;
459 }
460
461 static void cpu_handle_guest_debug(CPUState *cpu)
462 {
463 gdb_set_stop_cpu(cpu);
464 qemu_system_debug_request();
465 cpu->stopped = true;
466 }
467
468 static void cpu_signal(int sig)
469 {
470 if (current_cpu) {
471 cpu_exit(current_cpu);
472 }
473 exit_request = 1;
474 }
475
476 #ifdef CONFIG_LINUX
477 static void sigbus_reraise(void)
478 {
479 sigset_t set;
480 struct sigaction action;
481
482 memset(&action, 0, sizeof(action));
483 action.sa_handler = SIG_DFL;
484 if (!sigaction(SIGBUS, &action, NULL)) {
485 raise(SIGBUS);
486 sigemptyset(&set);
487 sigaddset(&set, SIGBUS);
488 sigprocmask(SIG_UNBLOCK, &set, NULL);
489 }
490 perror("Failed to re-raise SIGBUS!\n");
491 abort();
492 }
493
494 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
495 void *ctx)
496 {
497 if (kvm_on_sigbus(siginfo->ssi_code,
498 (void *)(intptr_t)siginfo->ssi_addr)) {
499 sigbus_reraise();
500 }
501 }
502
503 static void qemu_init_sigbus(void)
504 {
505 struct sigaction action;
506
507 memset(&action, 0, sizeof(action));
508 action.sa_flags = SA_SIGINFO;
509 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
510 sigaction(SIGBUS, &action, NULL);
511
512 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
513 }
514
515 static void qemu_kvm_eat_signals(CPUState *cpu)
516 {
517 struct timespec ts = { 0, 0 };
518 siginfo_t siginfo;
519 sigset_t waitset;
520 sigset_t chkset;
521 int r;
522
523 sigemptyset(&waitset);
524 sigaddset(&waitset, SIG_IPI);
525 sigaddset(&waitset, SIGBUS);
526
527 do {
528 r = sigtimedwait(&waitset, &siginfo, &ts);
529 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
530 perror("sigtimedwait");
531 exit(1);
532 }
533
534 switch (r) {
535 case SIGBUS:
536 if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
537 sigbus_reraise();
538 }
539 break;
540 default:
541 break;
542 }
543
544 r = sigpending(&chkset);
545 if (r == -1) {
546 perror("sigpending");
547 exit(1);
548 }
549 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
550 }
551
552 #else /* !CONFIG_LINUX */
553
554 static void qemu_init_sigbus(void)
555 {
556 }
557
558 static void qemu_kvm_eat_signals(CPUState *cpu)
559 {
560 }
561 #endif /* !CONFIG_LINUX */
562
563 #ifndef _WIN32
564 static void dummy_signal(int sig)
565 {
566 }
567
568 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
569 {
570 int r;
571 sigset_t set;
572 struct sigaction sigact;
573
574 memset(&sigact, 0, sizeof(sigact));
575 sigact.sa_handler = dummy_signal;
576 sigaction(SIG_IPI, &sigact, NULL);
577
578 pthread_sigmask(SIG_BLOCK, NULL, &set);
579 sigdelset(&set, SIG_IPI);
580 sigdelset(&set, SIGBUS);
581 r = kvm_set_signal_mask(cpu, &set);
582 if (r) {
583 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
584 exit(1);
585 }
586 }
587
588 static void qemu_tcg_init_cpu_signals(void)
589 {
590 sigset_t set;
591 struct sigaction sigact;
592
593 memset(&sigact, 0, sizeof(sigact));
594 sigact.sa_handler = cpu_signal;
595 sigaction(SIG_IPI, &sigact, NULL);
596
597 sigemptyset(&set);
598 sigaddset(&set, SIG_IPI);
599 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
600 }
601
602 #else /* _WIN32 */
603 static void qemu_kvm_init_cpu_signals(CPUState *cpu)
604 {
605 abort();
606 }
607
608 static void qemu_tcg_init_cpu_signals(void)
609 {
610 }
611 #endif /* _WIN32 */
612
613 static QemuMutex qemu_global_mutex;
614 static QemuCond qemu_io_proceeded_cond;
615 static bool iothread_requesting_mutex;
616
617 static QemuThread io_thread;
618
619 static QemuThread *tcg_cpu_thread;
620 static QemuCond *tcg_halt_cond;
621
622 /* cpu creation */
623 static QemuCond qemu_cpu_cond;
624 /* system init */
625 static QemuCond qemu_pause_cond;
626 static QemuCond qemu_work_cond;
627
628 void qemu_init_cpu_loop(void)
629 {
630 qemu_init_sigbus();
631 qemu_cond_init(&qemu_cpu_cond);
632 qemu_cond_init(&qemu_pause_cond);
633 qemu_cond_init(&qemu_work_cond);
634 qemu_cond_init(&qemu_io_proceeded_cond);
635 qemu_mutex_init(&qemu_global_mutex);
636
637 qemu_thread_get_self(&io_thread);
638 }
639
640 void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
641 {
642 struct qemu_work_item wi;
643
644 if (qemu_cpu_is_self(cpu)) {
645 func(data);
646 return;
647 }
648
649 wi.func = func;
650 wi.data = data;
651 if (cpu->queued_work_first == NULL) {
652 cpu->queued_work_first = &wi;
653 } else {
654 cpu->queued_work_last->next = &wi;
655 }
656 cpu->queued_work_last = &wi;
657 wi.next = NULL;
658 wi.done = false;
659
660 qemu_cpu_kick(cpu);
661 while (!wi.done) {
662 CPUState *self_cpu = current_cpu;
663
664 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
665 current_cpu = self_cpu;
666 }
667 }
668
669 static void flush_queued_work(CPUState *cpu)
670 {
671 struct qemu_work_item *wi;
672
673 if (cpu->queued_work_first == NULL) {
674 return;
675 }
676
677 while ((wi = cpu->queued_work_first)) {
678 cpu->queued_work_first = wi->next;
679 wi->func(wi->data);
680 wi->done = true;
681 }
682 cpu->queued_work_last = NULL;
683 qemu_cond_broadcast(&qemu_work_cond);
684 }
685
686 static void qemu_wait_io_event_common(CPUState *cpu)
687 {
688 if (cpu->stop) {
689 cpu->stop = false;
690 cpu->stopped = true;
691 qemu_cond_signal(&qemu_pause_cond);
692 }
693 flush_queued_work(cpu);
694 cpu->thread_kicked = false;
695 }
696
697 static void qemu_tcg_wait_io_event(void)
698 {
699 CPUState *cpu;
700
701 while (all_cpu_threads_idle()) {
702 /* Start accounting real time to the virtual clock if the CPUs
703 are idle. */
704 qemu_clock_warp(vm_clock);
705 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
706 }
707
708 while (iothread_requesting_mutex) {
709 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
710 }
711
712 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
713 qemu_wait_io_event_common(cpu);
714 }
715 }
716
717 static void qemu_kvm_wait_io_event(CPUState *cpu)
718 {
719 while (cpu_thread_is_idle(cpu)) {
720 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
721 }
722
723 qemu_kvm_eat_signals(cpu);
724 qemu_wait_io_event_common(cpu);
725 }
726
727 static void *qemu_kvm_cpu_thread_fn(void *arg)
728 {
729 CPUState *cpu = arg;
730 int r;
731
732 qemu_mutex_lock(&qemu_global_mutex);
733 qemu_thread_get_self(cpu->thread);
734 cpu->thread_id = qemu_get_thread_id();
735 current_cpu = cpu;
736
737 r = kvm_init_vcpu(cpu);
738 if (r < 0) {
739 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
740 exit(1);
741 }
742
743 qemu_kvm_init_cpu_signals(cpu);
744
745 /* signal CPU creation */
746 cpu->created = true;
747 qemu_cond_signal(&qemu_cpu_cond);
748
749 while (1) {
750 if (cpu_can_run(cpu)) {
751 r = kvm_cpu_exec(cpu);
752 if (r == EXCP_DEBUG) {
753 cpu_handle_guest_debug(cpu);
754 }
755 }
756 qemu_kvm_wait_io_event(cpu);
757 }
758
759 return NULL;
760 }
761
762 static void *qemu_dummy_cpu_thread_fn(void *arg)
763 {
764 #ifdef _WIN32
765 fprintf(stderr, "qtest is not supported under Windows\n");
766 exit(1);
767 #else
768 CPUState *cpu = arg;
769 sigset_t waitset;
770 int r;
771
772 qemu_mutex_lock_iothread();
773 qemu_thread_get_self(cpu->thread);
774 cpu->thread_id = qemu_get_thread_id();
775
776 sigemptyset(&waitset);
777 sigaddset(&waitset, SIG_IPI);
778
779 /* signal CPU creation */
780 cpu->created = true;
781 qemu_cond_signal(&qemu_cpu_cond);
782
783 current_cpu = cpu;
784 while (1) {
785 current_cpu = NULL;
786 qemu_mutex_unlock_iothread();
787 do {
788 int sig;
789 r = sigwait(&waitset, &sig);
790 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
791 if (r == -1) {
792 perror("sigwait");
793 exit(1);
794 }
795 qemu_mutex_lock_iothread();
796 current_cpu = cpu;
797 qemu_wait_io_event_common(cpu);
798 }
799
800 return NULL;
801 #endif
802 }
803
804 static void tcg_exec_all(void);
805
806 static void tcg_signal_cpu_creation(CPUState *cpu, void *data)
807 {
808 cpu->thread_id = qemu_get_thread_id();
809 cpu->created = true;
810 }
811
812 static void *qemu_tcg_cpu_thread_fn(void *arg)
813 {
814 CPUState *cpu = arg;
815
816 qemu_tcg_init_cpu_signals();
817 qemu_thread_get_self(cpu->thread);
818
819 qemu_mutex_lock(&qemu_global_mutex);
820 qemu_for_each_cpu(tcg_signal_cpu_creation, NULL);
821 qemu_cond_signal(&qemu_cpu_cond);
822
823 /* wait for initial kick-off after machine start */
824 while (first_cpu->stopped) {
825 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
826
827 /* process any pending work */
828 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
829 qemu_wait_io_event_common(cpu);
830 }
831 }
832
833 while (1) {
834 tcg_exec_all();
835 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
836 qemu_notify_event();
837 }
838 qemu_tcg_wait_io_event();
839 }
840
841 return NULL;
842 }
843
844 static void qemu_cpu_kick_thread(CPUState *cpu)
845 {
846 #ifndef _WIN32
847 int err;
848
849 err = pthread_kill(cpu->thread->thread, SIG_IPI);
850 if (err) {
851 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
852 exit(1);
853 }
854 #else /* _WIN32 */
855 if (!qemu_cpu_is_self(cpu)) {
856 CONTEXT tcgContext;
857
858 if (SuspendThread(cpu->hThread) == (DWORD)-1) {
859 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
860 GetLastError());
861 exit(1);
862 }
863
864 /* On multi-core systems, we are not sure that the thread is actually
865 * suspended until we can get the context.
866 */
867 tcgContext.ContextFlags = CONTEXT_CONTROL;
868 while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
869 continue;
870 }
871
872 cpu_signal(0);
873
874 if (ResumeThread(cpu->hThread) == (DWORD)-1) {
875 fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
876 GetLastError());
877 exit(1);
878 }
879 }
880 #endif
881 }
882
883 void qemu_cpu_kick(CPUState *cpu)
884 {
885 qemu_cond_broadcast(cpu->halt_cond);
886 if (!tcg_enabled() && !cpu->thread_kicked) {
887 qemu_cpu_kick_thread(cpu);
888 cpu->thread_kicked = true;
889 }
890 }
891
892 void qemu_cpu_kick_self(void)
893 {
894 #ifndef _WIN32
895 assert(current_cpu);
896
897 if (!current_cpu->thread_kicked) {
898 qemu_cpu_kick_thread(current_cpu);
899 current_cpu->thread_kicked = true;
900 }
901 #else
902 abort();
903 #endif
904 }
905
906 bool qemu_cpu_is_self(CPUState *cpu)
907 {
908 return qemu_thread_is_self(cpu->thread);
909 }
910
911 static bool qemu_in_vcpu_thread(void)
912 {
913 return current_cpu && qemu_cpu_is_self(current_cpu);
914 }
915
916 void qemu_mutex_lock_iothread(void)
917 {
918 if (!tcg_enabled()) {
919 qemu_mutex_lock(&qemu_global_mutex);
920 } else {
921 iothread_requesting_mutex = true;
922 if (qemu_mutex_trylock(&qemu_global_mutex)) {
923 qemu_cpu_kick_thread(first_cpu);
924 qemu_mutex_lock(&qemu_global_mutex);
925 }
926 iothread_requesting_mutex = false;
927 qemu_cond_broadcast(&qemu_io_proceeded_cond);
928 }
929 }
930
931 void qemu_mutex_unlock_iothread(void)
932 {
933 qemu_mutex_unlock(&qemu_global_mutex);
934 }
935
936 static int all_vcpus_paused(void)
937 {
938 CPUState *cpu = first_cpu;
939
940 while (cpu) {
941 if (!cpu->stopped) {
942 return 0;
943 }
944 cpu = cpu->next_cpu;
945 }
946
947 return 1;
948 }
949
950 void pause_all_vcpus(void)
951 {
952 CPUState *cpu = first_cpu;
953
954 qemu_clock_enable(vm_clock, false);
955 while (cpu) {
956 cpu->stop = true;
957 qemu_cpu_kick(cpu);
958 cpu = cpu->next_cpu;
959 }
960
961 if (qemu_in_vcpu_thread()) {
962 cpu_stop_current();
963 if (!kvm_enabled()) {
964 cpu = first_cpu;
965 while (cpu) {
966 cpu->stop = false;
967 cpu->stopped = true;
968 cpu = cpu->next_cpu;
969 }
970 return;
971 }
972 }
973
974 while (!all_vcpus_paused()) {
975 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
976 cpu = first_cpu;
977 while (cpu) {
978 qemu_cpu_kick(cpu);
979 cpu = cpu->next_cpu;
980 }
981 }
982 }
983
984 void cpu_resume(CPUState *cpu)
985 {
986 cpu->stop = false;
987 cpu->stopped = false;
988 qemu_cpu_kick(cpu);
989 }
990
991 void resume_all_vcpus(void)
992 {
993 CPUState *cpu = first_cpu;
994
995 qemu_clock_enable(vm_clock, true);
996 while (cpu) {
997 cpu_resume(cpu);
998 cpu = cpu->next_cpu;
999 }
1000 }
1001
1002 static void qemu_tcg_init_vcpu(CPUState *cpu)
1003 {
1004 /* share a single thread for all cpus with TCG */
1005 if (!tcg_cpu_thread) {
1006 cpu->thread = g_malloc0(sizeof(QemuThread));
1007 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1008 qemu_cond_init(cpu->halt_cond);
1009 tcg_halt_cond = cpu->halt_cond;
1010 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, cpu,
1011 QEMU_THREAD_JOINABLE);
1012 #ifdef _WIN32
1013 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1014 #endif
1015 while (!cpu->created) {
1016 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1017 }
1018 tcg_cpu_thread = cpu->thread;
1019 } else {
1020 cpu->thread = tcg_cpu_thread;
1021 cpu->halt_cond = tcg_halt_cond;
1022 }
1023 }
1024
1025 static void qemu_kvm_start_vcpu(CPUState *cpu)
1026 {
1027 cpu->thread = g_malloc0(sizeof(QemuThread));
1028 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1029 qemu_cond_init(cpu->halt_cond);
1030 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, cpu,
1031 QEMU_THREAD_JOINABLE);
1032 while (!cpu->created) {
1033 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1034 }
1035 }
1036
1037 static void qemu_dummy_start_vcpu(CPUState *cpu)
1038 {
1039 cpu->thread = g_malloc0(sizeof(QemuThread));
1040 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1041 qemu_cond_init(cpu->halt_cond);
1042 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, cpu,
1043 QEMU_THREAD_JOINABLE);
1044 while (!cpu->created) {
1045 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1046 }
1047 }
1048
1049 void qemu_init_vcpu(CPUState *cpu)
1050 {
1051 cpu->nr_cores = smp_cores;
1052 cpu->nr_threads = smp_threads;
1053 cpu->stopped = true;
1054 if (kvm_enabled()) {
1055 qemu_kvm_start_vcpu(cpu);
1056 } else if (tcg_enabled()) {
1057 qemu_tcg_init_vcpu(cpu);
1058 } else {
1059 qemu_dummy_start_vcpu(cpu);
1060 }
1061 }
1062
1063 void cpu_stop_current(void)
1064 {
1065 if (current_cpu) {
1066 current_cpu->stop = false;
1067 current_cpu->stopped = true;
1068 cpu_exit(current_cpu);
1069 qemu_cond_signal(&qemu_pause_cond);
1070 }
1071 }
1072
1073 void vm_stop(RunState state)
1074 {
1075 if (qemu_in_vcpu_thread()) {
1076 qemu_system_vmstop_request(state);
1077 /*
1078 * FIXME: should not return to device code in case
1079 * vm_stop() has been requested.
1080 */
1081 cpu_stop_current();
1082 return;
1083 }
1084 do_vm_stop(state);
1085 }
1086
1087 /* does a state transition even if the VM is already stopped,
1088 current state is forgotten forever */
1089 void vm_stop_force_state(RunState state)
1090 {
1091 if (runstate_is_running()) {
1092 vm_stop(state);
1093 } else {
1094 runstate_set(state);
1095 }
1096 }
1097
1098 static int tcg_cpu_exec(CPUArchState *env)
1099 {
1100 int ret;
1101 #ifdef CONFIG_PROFILER
1102 int64_t ti;
1103 #endif
1104
1105 #ifdef CONFIG_PROFILER
1106 ti = profile_getclock();
1107 #endif
1108 if (use_icount) {
1109 int64_t count;
1110 int decr;
1111 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1112 env->icount_decr.u16.low = 0;
1113 env->icount_extra = 0;
1114 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1115 qemu_icount += count;
1116 decr = (count > 0xffff) ? 0xffff : count;
1117 count -= decr;
1118 env->icount_decr.u16.low = decr;
1119 env->icount_extra = count;
1120 }
1121 ret = cpu_exec(env);
1122 #ifdef CONFIG_PROFILER
1123 qemu_time += profile_getclock() - ti;
1124 #endif
1125 if (use_icount) {
1126 /* Fold pending instructions back into the
1127 instruction counter, and clear the interrupt flag. */
1128 qemu_icount -= (env->icount_decr.u16.low
1129 + env->icount_extra);
1130 env->icount_decr.u32 = 0;
1131 env->icount_extra = 0;
1132 }
1133 return ret;
1134 }
1135
1136 static void tcg_exec_all(void)
1137 {
1138 int r;
1139
1140 /* Account partial waits to the vm_clock. */
1141 qemu_clock_warp(vm_clock);
1142
1143 if (next_cpu == NULL) {
1144 next_cpu = first_cpu;
1145 }
1146 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1147 CPUState *cpu = next_cpu;
1148 CPUArchState *env = cpu->env_ptr;
1149
1150 qemu_clock_enable(vm_clock,
1151 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1152
1153 if (cpu_can_run(cpu)) {
1154 r = tcg_cpu_exec(env);
1155 if (r == EXCP_DEBUG) {
1156 cpu_handle_guest_debug(cpu);
1157 break;
1158 }
1159 } else if (cpu->stop || cpu->stopped) {
1160 break;
1161 }
1162 }
1163 exit_request = 0;
1164 }
1165
1166 void set_numa_modes(void)
1167 {
1168 CPUState *cpu;
1169 int i;
1170
1171 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1172 for (i = 0; i < nb_numa_nodes; i++) {
1173 if (test_bit(cpu->cpu_index, node_cpumask[i])) {
1174 cpu->numa_node = i;
1175 }
1176 }
1177 }
1178 }
1179
1180 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1181 {
1182 /* XXX: implement xxx_cpu_list for targets that still miss it */
1183 #if defined(cpu_list)
1184 cpu_list(f, cpu_fprintf);
1185 #endif
1186 }
1187
1188 CpuInfoList *qmp_query_cpus(Error **errp)
1189 {
1190 CpuInfoList *head = NULL, *cur_item = NULL;
1191 CPUState *cpu;
1192
1193 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
1194 CpuInfoList *info;
1195 #if defined(TARGET_I386)
1196 X86CPU *x86_cpu = X86_CPU(cpu);
1197 CPUX86State *env = &x86_cpu->env;
1198 #elif defined(TARGET_PPC)
1199 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1200 CPUPPCState *env = &ppc_cpu->env;
1201 #elif defined(TARGET_SPARC)
1202 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1203 CPUSPARCState *env = &sparc_cpu->env;
1204 #elif defined(TARGET_MIPS)
1205 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1206 CPUMIPSState *env = &mips_cpu->env;
1207 #endif
1208
1209 cpu_synchronize_state(cpu);
1210
1211 info = g_malloc0(sizeof(*info));
1212 info->value = g_malloc0(sizeof(*info->value));
1213 info->value->CPU = cpu->cpu_index;
1214 info->value->current = (cpu == first_cpu);
1215 info->value->halted = cpu->halted;
1216 info->value->thread_id = cpu->thread_id;
1217 #if defined(TARGET_I386)
1218 info->value->has_pc = true;
1219 info->value->pc = env->eip + env->segs[R_CS].base;
1220 #elif defined(TARGET_PPC)
1221 info->value->has_nip = true;
1222 info->value->nip = env->nip;
1223 #elif defined(TARGET_SPARC)
1224 info->value->has_pc = true;
1225 info->value->pc = env->pc;
1226 info->value->has_npc = true;
1227 info->value->npc = env->npc;
1228 #elif defined(TARGET_MIPS)
1229 info->value->has_PC = true;
1230 info->value->PC = env->active_tc.PC;
1231 #endif
1232
1233 /* XXX: waiting for the qapi to support GSList */
1234 if (!cur_item) {
1235 head = cur_item = info;
1236 } else {
1237 cur_item->next = info;
1238 cur_item = info;
1239 }
1240 }
1241
1242 return head;
1243 }
1244
1245 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1246 bool has_cpu, int64_t cpu_index, Error **errp)
1247 {
1248 FILE *f;
1249 uint32_t l;
1250 CPUArchState *env;
1251 CPUState *cpu;
1252 uint8_t buf[1024];
1253
1254 if (!has_cpu) {
1255 cpu_index = 0;
1256 }
1257
1258 cpu = qemu_get_cpu(cpu_index);
1259 if (cpu == NULL) {
1260 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1261 "a CPU number");
1262 return;
1263 }
1264 env = cpu->env_ptr;
1265
1266 f = fopen(filename, "wb");
1267 if (!f) {
1268 error_setg_file_open(errp, errno, filename);
1269 return;
1270 }
1271
1272 while (size != 0) {
1273 l = sizeof(buf);
1274 if (l > size)
1275 l = size;
1276 cpu_memory_rw_debug(env, addr, buf, l, 0);
1277 if (fwrite(buf, 1, l, f) != l) {
1278 error_set(errp, QERR_IO_ERROR);
1279 goto exit;
1280 }
1281 addr += l;
1282 size -= l;
1283 }
1284
1285 exit:
1286 fclose(f);
1287 }
1288
1289 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1290 Error **errp)
1291 {
1292 FILE *f;
1293 uint32_t l;
1294 uint8_t buf[1024];
1295
1296 f = fopen(filename, "wb");
1297 if (!f) {
1298 error_setg_file_open(errp, errno, filename);
1299 return;
1300 }
1301
1302 while (size != 0) {
1303 l = sizeof(buf);
1304 if (l > size)
1305 l = size;
1306 cpu_physical_memory_rw(addr, buf, l, 0);
1307 if (fwrite(buf, 1, l, f) != l) {
1308 error_set(errp, QERR_IO_ERROR);
1309 goto exit;
1310 }
1311 addr += l;
1312 size -= l;
1313 }
1314
1315 exit:
1316 fclose(f);
1317 }
1318
1319 void qmp_inject_nmi(Error **errp)
1320 {
1321 #if defined(TARGET_I386)
1322 CPUState *cs;
1323
1324 for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
1325 X86CPU *cpu = X86_CPU(cs);
1326 CPUX86State *env = &cpu->env;
1327
1328 if (!env->apic_state) {
1329 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
1330 } else {
1331 apic_deliver_nmi(env->apic_state);
1332 }
1333 }
1334 #else
1335 error_set(errp, QERR_UNSUPPORTED);
1336 #endif
1337 }