]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
cpus: move icount preparation out of tcg_exec_cpu
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #include "qemu/config-file.h"
29 #include "cpu.h"
30 #include "monitor/monitor.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qemu/error-report.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/block-backend.h"
35 #include "exec/gdbstub.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/hw_accel.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/hax.h"
40 #include "qmp-commands.h"
41 #include "exec/exec-all.h"
42
43 #include "qemu/thread.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/qtest.h"
46 #include "qemu/main-loop.h"
47 #include "qemu/bitmap.h"
48 #include "qemu/seqlock.h"
49 #include "tcg.h"
50 #include "qapi-event.h"
51 #include "hw/nmi.h"
52 #include "sysemu/replay.h"
53
54 #ifdef CONFIG_LINUX
55
56 #include <sys/prctl.h>
57
58 #ifndef PR_MCE_KILL
59 #define PR_MCE_KILL 33
60 #endif
61
62 #ifndef PR_MCE_KILL_SET
63 #define PR_MCE_KILL_SET 1
64 #endif
65
66 #ifndef PR_MCE_KILL_EARLY
67 #define PR_MCE_KILL_EARLY 1
68 #endif
69
70 #endif /* CONFIG_LINUX */
71
72 int64_t max_delay;
73 int64_t max_advance;
74
75 /* vcpu throttling controls */
76 static QEMUTimer *throttle_timer;
77 static unsigned int throttle_percentage;
78
79 #define CPU_THROTTLE_PCT_MIN 1
80 #define CPU_THROTTLE_PCT_MAX 99
81 #define CPU_THROTTLE_TIMESLICE_NS 10000000
82
83 bool cpu_is_stopped(CPUState *cpu)
84 {
85 return cpu->stopped || !runstate_is_running();
86 }
87
88 static bool cpu_thread_is_idle(CPUState *cpu)
89 {
90 if (cpu->stop || cpu->queued_work_first) {
91 return false;
92 }
93 if (cpu_is_stopped(cpu)) {
94 return true;
95 }
96 if (!cpu->halted || cpu_has_work(cpu) ||
97 kvm_halt_in_kernel()) {
98 return false;
99 }
100 return true;
101 }
102
103 static bool all_cpu_threads_idle(void)
104 {
105 CPUState *cpu;
106
107 CPU_FOREACH(cpu) {
108 if (!cpu_thread_is_idle(cpu)) {
109 return false;
110 }
111 }
112 return true;
113 }
114
115 /***********************************************************/
116 /* guest cycle counter */
117
118 /* Protected by TimersState seqlock */
119
120 static bool icount_sleep = true;
121 static int64_t vm_clock_warp_start = -1;
122 /* Conversion factor from emulated instructions to virtual clock ticks. */
123 static int icount_time_shift;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
125 #define MAX_ICOUNT_SHIFT 10
126
127 static QEMUTimer *icount_rt_timer;
128 static QEMUTimer *icount_vm_timer;
129 static QEMUTimer *icount_warp_timer;
130
131 typedef struct TimersState {
132 /* Protected by BQL. */
133 int64_t cpu_ticks_prev;
134 int64_t cpu_ticks_offset;
135
136 /* cpu_clock_offset can be read out of BQL, so protect it with
137 * this lock.
138 */
139 QemuSeqLock vm_clock_seqlock;
140 int64_t cpu_clock_offset;
141 int32_t cpu_ticks_enabled;
142 int64_t dummy;
143
144 /* Compensate for varying guest execution speed. */
145 int64_t qemu_icount_bias;
146 /* Only written by TCG thread */
147 int64_t qemu_icount;
148 } TimersState;
149
150 static TimersState timers_state;
151 bool mttcg_enabled;
152
153 /*
154 * We default to false if we know other options have been enabled
155 * which are currently incompatible with MTTCG. Otherwise when each
156 * guest (target) has been updated to support:
157 * - atomic instructions
158 * - memory ordering primitives (barriers)
159 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
160 *
161 * Once a guest architecture has been converted to the new primitives
162 * there are two remaining limitations to check.
163 *
164 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
165 * - The host must have a stronger memory order than the guest
166 *
167 * It may be possible in future to support strong guests on weak hosts
168 * but that will require tagging all load/stores in a guest with their
169 * implicit memory order requirements which would likely slow things
170 * down a lot.
171 */
172
173 static bool check_tcg_memory_orders_compatible(void)
174 {
175 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
176 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
177 #else
178 return false;
179 #endif
180 }
181
182 static bool default_mttcg_enabled(void)
183 {
184 if (use_icount || TCG_OVERSIZED_GUEST) {
185 return false;
186 } else {
187 #ifdef TARGET_SUPPORTS_MTTCG
188 return check_tcg_memory_orders_compatible();
189 #else
190 return false;
191 #endif
192 }
193 }
194
195 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
196 {
197 const char *t = qemu_opt_get(opts, "thread");
198 if (t) {
199 if (strcmp(t, "multi") == 0) {
200 if (TCG_OVERSIZED_GUEST) {
201 error_setg(errp, "No MTTCG when guest word size > hosts");
202 } else if (use_icount) {
203 error_setg(errp, "No MTTCG when icount is enabled");
204 } else {
205 #ifndef TARGET_SUPPORTS_MTTCG
206 error_report("Guest not yet converted to MTTCG - "
207 "you may get unexpected results");
208 #endif
209 if (!check_tcg_memory_orders_compatible()) {
210 error_report("Guest expects a stronger memory ordering "
211 "than the host provides");
212 error_printf("This may cause strange/hard to debug errors\n");
213 }
214 mttcg_enabled = true;
215 }
216 } else if (strcmp(t, "single") == 0) {
217 mttcg_enabled = false;
218 } else {
219 error_setg(errp, "Invalid 'thread' setting %s", t);
220 }
221 } else {
222 mttcg_enabled = default_mttcg_enabled();
223 }
224 }
225
226 int64_t cpu_get_icount_raw(void)
227 {
228 int64_t icount;
229 CPUState *cpu = current_cpu;
230
231 icount = timers_state.qemu_icount;
232 if (cpu && cpu->running) {
233 if (!cpu->can_do_io) {
234 fprintf(stderr, "Bad icount read\n");
235 exit(1);
236 }
237 icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
238 }
239 return icount;
240 }
241
242 /* Return the virtual CPU time, based on the instruction counter. */
243 static int64_t cpu_get_icount_locked(void)
244 {
245 int64_t icount = cpu_get_icount_raw();
246 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
247 }
248
249 int64_t cpu_get_icount(void)
250 {
251 int64_t icount;
252 unsigned start;
253
254 do {
255 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
256 icount = cpu_get_icount_locked();
257 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
258
259 return icount;
260 }
261
262 int64_t cpu_icount_to_ns(int64_t icount)
263 {
264 return icount << icount_time_shift;
265 }
266
267 /* return the time elapsed in VM between vm_start and vm_stop. Unless
268 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
269 * counter.
270 *
271 * Caller must hold the BQL
272 */
273 int64_t cpu_get_ticks(void)
274 {
275 int64_t ticks;
276
277 if (use_icount) {
278 return cpu_get_icount();
279 }
280
281 ticks = timers_state.cpu_ticks_offset;
282 if (timers_state.cpu_ticks_enabled) {
283 ticks += cpu_get_host_ticks();
284 }
285
286 if (timers_state.cpu_ticks_prev > ticks) {
287 /* Note: non increasing ticks may happen if the host uses
288 software suspend */
289 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
290 ticks = timers_state.cpu_ticks_prev;
291 }
292
293 timers_state.cpu_ticks_prev = ticks;
294 return ticks;
295 }
296
297 static int64_t cpu_get_clock_locked(void)
298 {
299 int64_t time;
300
301 time = timers_state.cpu_clock_offset;
302 if (timers_state.cpu_ticks_enabled) {
303 time += get_clock();
304 }
305
306 return time;
307 }
308
309 /* Return the monotonic time elapsed in VM, i.e.,
310 * the time between vm_start and vm_stop
311 */
312 int64_t cpu_get_clock(void)
313 {
314 int64_t ti;
315 unsigned start;
316
317 do {
318 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
319 ti = cpu_get_clock_locked();
320 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
321
322 return ti;
323 }
324
325 /* enable cpu_get_ticks()
326 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
327 */
328 void cpu_enable_ticks(void)
329 {
330 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
331 seqlock_write_begin(&timers_state.vm_clock_seqlock);
332 if (!timers_state.cpu_ticks_enabled) {
333 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
334 timers_state.cpu_clock_offset -= get_clock();
335 timers_state.cpu_ticks_enabled = 1;
336 }
337 seqlock_write_end(&timers_state.vm_clock_seqlock);
338 }
339
340 /* disable cpu_get_ticks() : the clock is stopped. You must not call
341 * cpu_get_ticks() after that.
342 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
343 */
344 void cpu_disable_ticks(void)
345 {
346 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
347 seqlock_write_begin(&timers_state.vm_clock_seqlock);
348 if (timers_state.cpu_ticks_enabled) {
349 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
350 timers_state.cpu_clock_offset = cpu_get_clock_locked();
351 timers_state.cpu_ticks_enabled = 0;
352 }
353 seqlock_write_end(&timers_state.vm_clock_seqlock);
354 }
355
356 /* Correlation between real and virtual time is always going to be
357 fairly approximate, so ignore small variation.
358 When the guest is idle real and virtual time will be aligned in
359 the IO wait loop. */
360 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
361
362 static void icount_adjust(void)
363 {
364 int64_t cur_time;
365 int64_t cur_icount;
366 int64_t delta;
367
368 /* Protected by TimersState mutex. */
369 static int64_t last_delta;
370
371 /* If the VM is not running, then do nothing. */
372 if (!runstate_is_running()) {
373 return;
374 }
375
376 seqlock_write_begin(&timers_state.vm_clock_seqlock);
377 cur_time = cpu_get_clock_locked();
378 cur_icount = cpu_get_icount_locked();
379
380 delta = cur_icount - cur_time;
381 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
382 if (delta > 0
383 && last_delta + ICOUNT_WOBBLE < delta * 2
384 && icount_time_shift > 0) {
385 /* The guest is getting too far ahead. Slow time down. */
386 icount_time_shift--;
387 }
388 if (delta < 0
389 && last_delta - ICOUNT_WOBBLE > delta * 2
390 && icount_time_shift < MAX_ICOUNT_SHIFT) {
391 /* The guest is getting too far behind. Speed time up. */
392 icount_time_shift++;
393 }
394 last_delta = delta;
395 timers_state.qemu_icount_bias = cur_icount
396 - (timers_state.qemu_icount << icount_time_shift);
397 seqlock_write_end(&timers_state.vm_clock_seqlock);
398 }
399
400 static void icount_adjust_rt(void *opaque)
401 {
402 timer_mod(icount_rt_timer,
403 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
404 icount_adjust();
405 }
406
407 static void icount_adjust_vm(void *opaque)
408 {
409 timer_mod(icount_vm_timer,
410 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
411 NANOSECONDS_PER_SECOND / 10);
412 icount_adjust();
413 }
414
415 static int64_t qemu_icount_round(int64_t count)
416 {
417 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
418 }
419
420 static void icount_warp_rt(void)
421 {
422 unsigned seq;
423 int64_t warp_start;
424
425 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
426 * changes from -1 to another value, so the race here is okay.
427 */
428 do {
429 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
430 warp_start = vm_clock_warp_start;
431 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
432
433 if (warp_start == -1) {
434 return;
435 }
436
437 seqlock_write_begin(&timers_state.vm_clock_seqlock);
438 if (runstate_is_running()) {
439 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
440 cpu_get_clock_locked());
441 int64_t warp_delta;
442
443 warp_delta = clock - vm_clock_warp_start;
444 if (use_icount == 2) {
445 /*
446 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
447 * far ahead of real time.
448 */
449 int64_t cur_icount = cpu_get_icount_locked();
450 int64_t delta = clock - cur_icount;
451 warp_delta = MIN(warp_delta, delta);
452 }
453 timers_state.qemu_icount_bias += warp_delta;
454 }
455 vm_clock_warp_start = -1;
456 seqlock_write_end(&timers_state.vm_clock_seqlock);
457
458 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
459 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
460 }
461 }
462
463 static void icount_timer_cb(void *opaque)
464 {
465 /* No need for a checkpoint because the timer already synchronizes
466 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
467 */
468 icount_warp_rt();
469 }
470
471 void qtest_clock_warp(int64_t dest)
472 {
473 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
474 AioContext *aio_context;
475 assert(qtest_enabled());
476 aio_context = qemu_get_aio_context();
477 while (clock < dest) {
478 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
479 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
480
481 seqlock_write_begin(&timers_state.vm_clock_seqlock);
482 timers_state.qemu_icount_bias += warp;
483 seqlock_write_end(&timers_state.vm_clock_seqlock);
484
485 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
486 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
487 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
488 }
489 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
490 }
491
492 void qemu_start_warp_timer(void)
493 {
494 int64_t clock;
495 int64_t deadline;
496
497 if (!use_icount) {
498 return;
499 }
500
501 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
502 * do not fire, so computing the deadline does not make sense.
503 */
504 if (!runstate_is_running()) {
505 return;
506 }
507
508 /* warp clock deterministically in record/replay mode */
509 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
510 return;
511 }
512
513 if (!all_cpu_threads_idle()) {
514 return;
515 }
516
517 if (qtest_enabled()) {
518 /* When testing, qtest commands advance icount. */
519 return;
520 }
521
522 /* We want to use the earliest deadline from ALL vm_clocks */
523 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
524 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
525 if (deadline < 0) {
526 static bool notified;
527 if (!icount_sleep && !notified) {
528 error_report("WARNING: icount sleep disabled and no active timers");
529 notified = true;
530 }
531 return;
532 }
533
534 if (deadline > 0) {
535 /*
536 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
537 * sleep. Otherwise, the CPU might be waiting for a future timer
538 * interrupt to wake it up, but the interrupt never comes because
539 * the vCPU isn't running any insns and thus doesn't advance the
540 * QEMU_CLOCK_VIRTUAL.
541 */
542 if (!icount_sleep) {
543 /*
544 * We never let VCPUs sleep in no sleep icount mode.
545 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
546 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
547 * It is useful when we want a deterministic execution time,
548 * isolated from host latencies.
549 */
550 seqlock_write_begin(&timers_state.vm_clock_seqlock);
551 timers_state.qemu_icount_bias += deadline;
552 seqlock_write_end(&timers_state.vm_clock_seqlock);
553 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
554 } else {
555 /*
556 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
557 * "real" time, (related to the time left until the next event) has
558 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
559 * This avoids that the warps are visible externally; for example,
560 * you will not be sending network packets continuously instead of
561 * every 100ms.
562 */
563 seqlock_write_begin(&timers_state.vm_clock_seqlock);
564 if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
565 vm_clock_warp_start = clock;
566 }
567 seqlock_write_end(&timers_state.vm_clock_seqlock);
568 timer_mod_anticipate(icount_warp_timer, clock + deadline);
569 }
570 } else if (deadline == 0) {
571 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
572 }
573 }
574
575 static void qemu_account_warp_timer(void)
576 {
577 if (!use_icount || !icount_sleep) {
578 return;
579 }
580
581 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
582 * do not fire, so computing the deadline does not make sense.
583 */
584 if (!runstate_is_running()) {
585 return;
586 }
587
588 /* warp clock deterministically in record/replay mode */
589 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
590 return;
591 }
592
593 timer_del(icount_warp_timer);
594 icount_warp_rt();
595 }
596
597 static bool icount_state_needed(void *opaque)
598 {
599 return use_icount;
600 }
601
602 /*
603 * This is a subsection for icount migration.
604 */
605 static const VMStateDescription icount_vmstate_timers = {
606 .name = "timer/icount",
607 .version_id = 1,
608 .minimum_version_id = 1,
609 .needed = icount_state_needed,
610 .fields = (VMStateField[]) {
611 VMSTATE_INT64(qemu_icount_bias, TimersState),
612 VMSTATE_INT64(qemu_icount, TimersState),
613 VMSTATE_END_OF_LIST()
614 }
615 };
616
617 static const VMStateDescription vmstate_timers = {
618 .name = "timer",
619 .version_id = 2,
620 .minimum_version_id = 1,
621 .fields = (VMStateField[]) {
622 VMSTATE_INT64(cpu_ticks_offset, TimersState),
623 VMSTATE_INT64(dummy, TimersState),
624 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
625 VMSTATE_END_OF_LIST()
626 },
627 .subsections = (const VMStateDescription*[]) {
628 &icount_vmstate_timers,
629 NULL
630 }
631 };
632
633 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
634 {
635 double pct;
636 double throttle_ratio;
637 long sleeptime_ns;
638
639 if (!cpu_throttle_get_percentage()) {
640 return;
641 }
642
643 pct = (double)cpu_throttle_get_percentage()/100;
644 throttle_ratio = pct / (1 - pct);
645 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
646
647 qemu_mutex_unlock_iothread();
648 atomic_set(&cpu->throttle_thread_scheduled, 0);
649 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
650 qemu_mutex_lock_iothread();
651 }
652
653 static void cpu_throttle_timer_tick(void *opaque)
654 {
655 CPUState *cpu;
656 double pct;
657
658 /* Stop the timer if needed */
659 if (!cpu_throttle_get_percentage()) {
660 return;
661 }
662 CPU_FOREACH(cpu) {
663 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
664 async_run_on_cpu(cpu, cpu_throttle_thread,
665 RUN_ON_CPU_NULL);
666 }
667 }
668
669 pct = (double)cpu_throttle_get_percentage()/100;
670 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
671 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
672 }
673
674 void cpu_throttle_set(int new_throttle_pct)
675 {
676 /* Ensure throttle percentage is within valid range */
677 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
678 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
679
680 atomic_set(&throttle_percentage, new_throttle_pct);
681
682 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
683 CPU_THROTTLE_TIMESLICE_NS);
684 }
685
686 void cpu_throttle_stop(void)
687 {
688 atomic_set(&throttle_percentage, 0);
689 }
690
691 bool cpu_throttle_active(void)
692 {
693 return (cpu_throttle_get_percentage() != 0);
694 }
695
696 int cpu_throttle_get_percentage(void)
697 {
698 return atomic_read(&throttle_percentage);
699 }
700
701 void cpu_ticks_init(void)
702 {
703 seqlock_init(&timers_state.vm_clock_seqlock);
704 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
705 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
706 cpu_throttle_timer_tick, NULL);
707 }
708
709 void configure_icount(QemuOpts *opts, Error **errp)
710 {
711 const char *option;
712 char *rem_str = NULL;
713
714 option = qemu_opt_get(opts, "shift");
715 if (!option) {
716 if (qemu_opt_get(opts, "align") != NULL) {
717 error_setg(errp, "Please specify shift option when using align");
718 }
719 return;
720 }
721
722 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
723 if (icount_sleep) {
724 icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
725 icount_timer_cb, NULL);
726 }
727
728 icount_align_option = qemu_opt_get_bool(opts, "align", false);
729
730 if (icount_align_option && !icount_sleep) {
731 error_setg(errp, "align=on and sleep=off are incompatible");
732 }
733 if (strcmp(option, "auto") != 0) {
734 errno = 0;
735 icount_time_shift = strtol(option, &rem_str, 0);
736 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
737 error_setg(errp, "icount: Invalid shift value");
738 }
739 use_icount = 1;
740 return;
741 } else if (icount_align_option) {
742 error_setg(errp, "shift=auto and align=on are incompatible");
743 } else if (!icount_sleep) {
744 error_setg(errp, "shift=auto and sleep=off are incompatible");
745 }
746
747 use_icount = 2;
748
749 /* 125MIPS seems a reasonable initial guess at the guest speed.
750 It will be corrected fairly quickly anyway. */
751 icount_time_shift = 3;
752
753 /* Have both realtime and virtual time triggers for speed adjustment.
754 The realtime trigger catches emulated time passing too slowly,
755 the virtual time trigger catches emulated time passing too fast.
756 Realtime triggers occur even when idle, so use them less frequently
757 than VM triggers. */
758 icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
759 icount_adjust_rt, NULL);
760 timer_mod(icount_rt_timer,
761 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
762 icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
763 icount_adjust_vm, NULL);
764 timer_mod(icount_vm_timer,
765 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
766 NANOSECONDS_PER_SECOND / 10);
767 }
768
769 /***********************************************************/
770 /* TCG vCPU kick timer
771 *
772 * The kick timer is responsible for moving single threaded vCPU
773 * emulation on to the next vCPU. If more than one vCPU is running a
774 * timer event with force a cpu->exit so the next vCPU can get
775 * scheduled.
776 *
777 * The timer is removed if all vCPUs are idle and restarted again once
778 * idleness is complete.
779 */
780
781 static QEMUTimer *tcg_kick_vcpu_timer;
782 static CPUState *tcg_current_rr_cpu;
783
784 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
785
786 static inline int64_t qemu_tcg_next_kick(void)
787 {
788 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
789 }
790
791 /* Kick the currently round-robin scheduled vCPU */
792 static void qemu_cpu_kick_rr_cpu(void)
793 {
794 CPUState *cpu;
795 do {
796 cpu = atomic_mb_read(&tcg_current_rr_cpu);
797 if (cpu) {
798 cpu_exit(cpu);
799 }
800 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
801 }
802
803 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
804 {
805 }
806
807 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
808 {
809 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
810 qemu_notify_event();
811 return;
812 }
813
814 if (!qemu_in_vcpu_thread() && first_cpu) {
815 /* qemu_cpu_kick is not enough to kick a halted CPU out of
816 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
817 * causes cpu_thread_is_idle to return false. This way,
818 * handle_icount_deadline can run.
819 */
820 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
821 }
822 }
823
824 static void kick_tcg_thread(void *opaque)
825 {
826 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
827 qemu_cpu_kick_rr_cpu();
828 }
829
830 static void start_tcg_kick_timer(void)
831 {
832 if (!mttcg_enabled && !tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
833 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
834 kick_tcg_thread, NULL);
835 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
836 }
837 }
838
839 static void stop_tcg_kick_timer(void)
840 {
841 if (tcg_kick_vcpu_timer) {
842 timer_del(tcg_kick_vcpu_timer);
843 tcg_kick_vcpu_timer = NULL;
844 }
845 }
846
847 /***********************************************************/
848 void hw_error(const char *fmt, ...)
849 {
850 va_list ap;
851 CPUState *cpu;
852
853 va_start(ap, fmt);
854 fprintf(stderr, "qemu: hardware error: ");
855 vfprintf(stderr, fmt, ap);
856 fprintf(stderr, "\n");
857 CPU_FOREACH(cpu) {
858 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
859 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
860 }
861 va_end(ap);
862 abort();
863 }
864
865 void cpu_synchronize_all_states(void)
866 {
867 CPUState *cpu;
868
869 CPU_FOREACH(cpu) {
870 cpu_synchronize_state(cpu);
871 }
872 }
873
874 void cpu_synchronize_all_post_reset(void)
875 {
876 CPUState *cpu;
877
878 CPU_FOREACH(cpu) {
879 cpu_synchronize_post_reset(cpu);
880 }
881 }
882
883 void cpu_synchronize_all_post_init(void)
884 {
885 CPUState *cpu;
886
887 CPU_FOREACH(cpu) {
888 cpu_synchronize_post_init(cpu);
889 }
890 }
891
892 static int do_vm_stop(RunState state)
893 {
894 int ret = 0;
895
896 if (runstate_is_running()) {
897 cpu_disable_ticks();
898 pause_all_vcpus();
899 runstate_set(state);
900 vm_state_notify(0, state);
901 qapi_event_send_stop(&error_abort);
902 }
903
904 bdrv_drain_all();
905 replay_disable_events();
906 ret = bdrv_flush_all();
907
908 return ret;
909 }
910
911 static bool cpu_can_run(CPUState *cpu)
912 {
913 if (cpu->stop) {
914 return false;
915 }
916 if (cpu_is_stopped(cpu)) {
917 return false;
918 }
919 return true;
920 }
921
922 static void cpu_handle_guest_debug(CPUState *cpu)
923 {
924 gdb_set_stop_cpu(cpu);
925 qemu_system_debug_request();
926 cpu->stopped = true;
927 }
928
929 #ifdef CONFIG_LINUX
930 static void sigbus_reraise(void)
931 {
932 sigset_t set;
933 struct sigaction action;
934
935 memset(&action, 0, sizeof(action));
936 action.sa_handler = SIG_DFL;
937 if (!sigaction(SIGBUS, &action, NULL)) {
938 raise(SIGBUS);
939 sigemptyset(&set);
940 sigaddset(&set, SIGBUS);
941 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
942 }
943 perror("Failed to re-raise SIGBUS!\n");
944 abort();
945 }
946
947 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
948 {
949 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
950 sigbus_reraise();
951 }
952
953 if (current_cpu) {
954 /* Called asynchronously in VCPU thread. */
955 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
956 sigbus_reraise();
957 }
958 } else {
959 /* Called synchronously (via signalfd) in main thread. */
960 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
961 sigbus_reraise();
962 }
963 }
964 }
965
966 static void qemu_init_sigbus(void)
967 {
968 struct sigaction action;
969
970 memset(&action, 0, sizeof(action));
971 action.sa_flags = SA_SIGINFO;
972 action.sa_sigaction = sigbus_handler;
973 sigaction(SIGBUS, &action, NULL);
974
975 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
976 }
977 #else /* !CONFIG_LINUX */
978 static void qemu_init_sigbus(void)
979 {
980 }
981 #endif /* !CONFIG_LINUX */
982
983 static QemuMutex qemu_global_mutex;
984
985 static QemuThread io_thread;
986
987 /* cpu creation */
988 static QemuCond qemu_cpu_cond;
989 /* system init */
990 static QemuCond qemu_pause_cond;
991
992 void qemu_init_cpu_loop(void)
993 {
994 qemu_init_sigbus();
995 qemu_cond_init(&qemu_cpu_cond);
996 qemu_cond_init(&qemu_pause_cond);
997 qemu_mutex_init(&qemu_global_mutex);
998
999 qemu_thread_get_self(&io_thread);
1000 }
1001
1002 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1003 {
1004 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1005 }
1006
1007 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1008 {
1009 if (kvm_destroy_vcpu(cpu) < 0) {
1010 error_report("kvm_destroy_vcpu failed");
1011 exit(EXIT_FAILURE);
1012 }
1013 }
1014
1015 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1016 {
1017 }
1018
1019 static void qemu_wait_io_event_common(CPUState *cpu)
1020 {
1021 atomic_mb_set(&cpu->thread_kicked, false);
1022 if (cpu->stop) {
1023 cpu->stop = false;
1024 cpu->stopped = true;
1025 qemu_cond_broadcast(&qemu_pause_cond);
1026 }
1027 process_queued_cpu_work(cpu);
1028 }
1029
1030 static bool qemu_tcg_should_sleep(CPUState *cpu)
1031 {
1032 if (mttcg_enabled) {
1033 return cpu_thread_is_idle(cpu);
1034 } else {
1035 return all_cpu_threads_idle();
1036 }
1037 }
1038
1039 static void qemu_tcg_wait_io_event(CPUState *cpu)
1040 {
1041 while (qemu_tcg_should_sleep(cpu)) {
1042 stop_tcg_kick_timer();
1043 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1044 }
1045
1046 start_tcg_kick_timer();
1047
1048 qemu_wait_io_event_common(cpu);
1049 }
1050
1051 static void qemu_kvm_wait_io_event(CPUState *cpu)
1052 {
1053 while (cpu_thread_is_idle(cpu)) {
1054 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1055 }
1056
1057 qemu_wait_io_event_common(cpu);
1058 }
1059
1060 static void *qemu_kvm_cpu_thread_fn(void *arg)
1061 {
1062 CPUState *cpu = arg;
1063 int r;
1064
1065 rcu_register_thread();
1066
1067 qemu_mutex_lock_iothread();
1068 qemu_thread_get_self(cpu->thread);
1069 cpu->thread_id = qemu_get_thread_id();
1070 cpu->can_do_io = 1;
1071 current_cpu = cpu;
1072
1073 r = kvm_init_vcpu(cpu);
1074 if (r < 0) {
1075 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
1076 exit(1);
1077 }
1078
1079 kvm_init_cpu_signals(cpu);
1080
1081 /* signal CPU creation */
1082 cpu->created = true;
1083 qemu_cond_signal(&qemu_cpu_cond);
1084
1085 do {
1086 if (cpu_can_run(cpu)) {
1087 r = kvm_cpu_exec(cpu);
1088 if (r == EXCP_DEBUG) {
1089 cpu_handle_guest_debug(cpu);
1090 }
1091 }
1092 qemu_kvm_wait_io_event(cpu);
1093 } while (!cpu->unplug || cpu_can_run(cpu));
1094
1095 qemu_kvm_destroy_vcpu(cpu);
1096 cpu->created = false;
1097 qemu_cond_signal(&qemu_cpu_cond);
1098 qemu_mutex_unlock_iothread();
1099 return NULL;
1100 }
1101
1102 static void *qemu_dummy_cpu_thread_fn(void *arg)
1103 {
1104 #ifdef _WIN32
1105 fprintf(stderr, "qtest is not supported under Windows\n");
1106 exit(1);
1107 #else
1108 CPUState *cpu = arg;
1109 sigset_t waitset;
1110 int r;
1111
1112 rcu_register_thread();
1113
1114 qemu_mutex_lock_iothread();
1115 qemu_thread_get_self(cpu->thread);
1116 cpu->thread_id = qemu_get_thread_id();
1117 cpu->can_do_io = 1;
1118 current_cpu = cpu;
1119
1120 sigemptyset(&waitset);
1121 sigaddset(&waitset, SIG_IPI);
1122
1123 /* signal CPU creation */
1124 cpu->created = true;
1125 qemu_cond_signal(&qemu_cpu_cond);
1126
1127 while (1) {
1128 qemu_mutex_unlock_iothread();
1129 do {
1130 int sig;
1131 r = sigwait(&waitset, &sig);
1132 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1133 if (r == -1) {
1134 perror("sigwait");
1135 exit(1);
1136 }
1137 qemu_mutex_lock_iothread();
1138 qemu_wait_io_event_common(cpu);
1139 }
1140
1141 return NULL;
1142 #endif
1143 }
1144
1145 static int64_t tcg_get_icount_limit(void)
1146 {
1147 int64_t deadline;
1148
1149 if (replay_mode != REPLAY_MODE_PLAY) {
1150 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1151
1152 /* Maintain prior (possibly buggy) behaviour where if no deadline
1153 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1154 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1155 * nanoseconds.
1156 */
1157 if ((deadline < 0) || (deadline > INT32_MAX)) {
1158 deadline = INT32_MAX;
1159 }
1160
1161 return qemu_icount_round(deadline);
1162 } else {
1163 return replay_get_instructions();
1164 }
1165 }
1166
1167 static void handle_icount_deadline(void)
1168 {
1169 assert(qemu_in_vcpu_thread());
1170 if (use_icount) {
1171 int64_t deadline =
1172 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1173
1174 if (deadline == 0) {
1175 /* Wake up other AioContexts. */
1176 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1177 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1178 }
1179 }
1180 }
1181
1182 static void prepare_icount_for_run(CPUState *cpu)
1183 {
1184 if (use_icount) {
1185 int64_t count;
1186 int decr;
1187
1188 /* These should always be cleared by process_icount_data after
1189 * each vCPU execution. However u16.high can be raised
1190 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1191 */
1192 g_assert(cpu->icount_decr.u16.low == 0);
1193 g_assert(cpu->icount_extra == 0);
1194
1195
1196 count = tcg_get_icount_limit();
1197
1198 timers_state.qemu_icount += count;
1199 decr = (count > 0xffff) ? 0xffff : count;
1200 count -= decr;
1201 cpu->icount_decr.u16.low = decr;
1202 cpu->icount_extra = count;
1203 }
1204 }
1205
1206 static void process_icount_data(CPUState *cpu)
1207 {
1208 if (use_icount) {
1209 /* Fold pending instructions back into the
1210 instruction counter, and clear the interrupt flag. */
1211 timers_state.qemu_icount -= (cpu->icount_decr.u16.low
1212 + cpu->icount_extra);
1213
1214 /* Reset the counters */
1215 cpu->icount_decr.u16.low = 0;
1216 cpu->icount_extra = 0;
1217 replay_account_executed_instructions();
1218 }
1219 }
1220
1221
1222 static int tcg_cpu_exec(CPUState *cpu)
1223 {
1224 int ret;
1225 #ifdef CONFIG_PROFILER
1226 int64_t ti;
1227 #endif
1228
1229 #ifdef CONFIG_PROFILER
1230 ti = profile_getclock();
1231 #endif
1232 qemu_mutex_unlock_iothread();
1233 cpu_exec_start(cpu);
1234 ret = cpu_exec(cpu);
1235 cpu_exec_end(cpu);
1236 qemu_mutex_lock_iothread();
1237 #ifdef CONFIG_PROFILER
1238 tcg_time += profile_getclock() - ti;
1239 #endif
1240 return ret;
1241 }
1242
1243 /* Destroy any remaining vCPUs which have been unplugged and have
1244 * finished running
1245 */
1246 static void deal_with_unplugged_cpus(void)
1247 {
1248 CPUState *cpu;
1249
1250 CPU_FOREACH(cpu) {
1251 if (cpu->unplug && !cpu_can_run(cpu)) {
1252 qemu_tcg_destroy_vcpu(cpu);
1253 cpu->created = false;
1254 qemu_cond_signal(&qemu_cpu_cond);
1255 break;
1256 }
1257 }
1258 }
1259
1260 /* Single-threaded TCG
1261 *
1262 * In the single-threaded case each vCPU is simulated in turn. If
1263 * there is more than a single vCPU we create a simple timer to kick
1264 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1265 * This is done explicitly rather than relying on side-effects
1266 * elsewhere.
1267 */
1268
1269 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1270 {
1271 CPUState *cpu = arg;
1272
1273 rcu_register_thread();
1274
1275 qemu_mutex_lock_iothread();
1276 qemu_thread_get_self(cpu->thread);
1277
1278 CPU_FOREACH(cpu) {
1279 cpu->thread_id = qemu_get_thread_id();
1280 cpu->created = true;
1281 cpu->can_do_io = 1;
1282 }
1283 qemu_cond_signal(&qemu_cpu_cond);
1284
1285 /* wait for initial kick-off after machine start */
1286 while (first_cpu->stopped) {
1287 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1288
1289 /* process any pending work */
1290 CPU_FOREACH(cpu) {
1291 current_cpu = cpu;
1292 qemu_wait_io_event_common(cpu);
1293 }
1294 }
1295
1296 start_tcg_kick_timer();
1297
1298 cpu = first_cpu;
1299
1300 /* process any pending work */
1301 cpu->exit_request = 1;
1302
1303 while (1) {
1304 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1305 qemu_account_warp_timer();
1306
1307 /* Run the timers here. This is much more efficient than
1308 * waking up the I/O thread and waiting for completion.
1309 */
1310 handle_icount_deadline();
1311
1312 if (!cpu) {
1313 cpu = first_cpu;
1314 }
1315
1316 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1317
1318 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1319 current_cpu = cpu;
1320
1321 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1322 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1323
1324 if (cpu_can_run(cpu)) {
1325 int r;
1326
1327 prepare_icount_for_run(cpu);
1328
1329 r = tcg_cpu_exec(cpu);
1330
1331 process_icount_data(cpu);
1332
1333 if (r == EXCP_DEBUG) {
1334 cpu_handle_guest_debug(cpu);
1335 break;
1336 } else if (r == EXCP_ATOMIC) {
1337 qemu_mutex_unlock_iothread();
1338 cpu_exec_step_atomic(cpu);
1339 qemu_mutex_lock_iothread();
1340 break;
1341 }
1342 } else if (cpu->stop) {
1343 if (cpu->unplug) {
1344 cpu = CPU_NEXT(cpu);
1345 }
1346 break;
1347 }
1348
1349 cpu = CPU_NEXT(cpu);
1350 } /* while (cpu && !cpu->exit_request).. */
1351
1352 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1353 atomic_set(&tcg_current_rr_cpu, NULL);
1354
1355 if (cpu && cpu->exit_request) {
1356 atomic_mb_set(&cpu->exit_request, 0);
1357 }
1358
1359 qemu_tcg_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus));
1360 deal_with_unplugged_cpus();
1361 }
1362
1363 return NULL;
1364 }
1365
1366 static void *qemu_hax_cpu_thread_fn(void *arg)
1367 {
1368 CPUState *cpu = arg;
1369 int r;
1370
1371 qemu_mutex_lock_iothread();
1372 qemu_thread_get_self(cpu->thread);
1373
1374 cpu->thread_id = qemu_get_thread_id();
1375 cpu->created = true;
1376 cpu->halted = 0;
1377 current_cpu = cpu;
1378
1379 hax_init_vcpu(cpu);
1380 qemu_cond_signal(&qemu_cpu_cond);
1381
1382 while (1) {
1383 if (cpu_can_run(cpu)) {
1384 r = hax_smp_cpu_exec(cpu);
1385 if (r == EXCP_DEBUG) {
1386 cpu_handle_guest_debug(cpu);
1387 }
1388 }
1389
1390 while (cpu_thread_is_idle(cpu)) {
1391 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1392 }
1393 #ifdef _WIN32
1394 SleepEx(0, TRUE);
1395 #endif
1396 qemu_wait_io_event_common(cpu);
1397 }
1398 return NULL;
1399 }
1400
1401 #ifdef _WIN32
1402 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1403 {
1404 }
1405 #endif
1406
1407 /* Multi-threaded TCG
1408 *
1409 * In the multi-threaded case each vCPU has its own thread. The TLS
1410 * variable current_cpu can be used deep in the code to find the
1411 * current CPUState for a given thread.
1412 */
1413
1414 static void *qemu_tcg_cpu_thread_fn(void *arg)
1415 {
1416 CPUState *cpu = arg;
1417
1418 g_assert(!use_icount);
1419
1420 rcu_register_thread();
1421
1422 qemu_mutex_lock_iothread();
1423 qemu_thread_get_self(cpu->thread);
1424
1425 cpu->thread_id = qemu_get_thread_id();
1426 cpu->created = true;
1427 cpu->can_do_io = 1;
1428 current_cpu = cpu;
1429 qemu_cond_signal(&qemu_cpu_cond);
1430
1431 /* process any pending work */
1432 cpu->exit_request = 1;
1433
1434 while (1) {
1435 if (cpu_can_run(cpu)) {
1436 int r;
1437 r = tcg_cpu_exec(cpu);
1438 switch (r) {
1439 case EXCP_DEBUG:
1440 cpu_handle_guest_debug(cpu);
1441 break;
1442 case EXCP_HALTED:
1443 /* during start-up the vCPU is reset and the thread is
1444 * kicked several times. If we don't ensure we go back
1445 * to sleep in the halted state we won't cleanly
1446 * start-up when the vCPU is enabled.
1447 *
1448 * cpu->halted should ensure we sleep in wait_io_event
1449 */
1450 g_assert(cpu->halted);
1451 break;
1452 case EXCP_ATOMIC:
1453 qemu_mutex_unlock_iothread();
1454 cpu_exec_step_atomic(cpu);
1455 qemu_mutex_lock_iothread();
1456 default:
1457 /* Ignore everything else? */
1458 break;
1459 }
1460 }
1461
1462 atomic_mb_set(&cpu->exit_request, 0);
1463 qemu_tcg_wait_io_event(cpu);
1464 }
1465
1466 return NULL;
1467 }
1468
1469 static void qemu_cpu_kick_thread(CPUState *cpu)
1470 {
1471 #ifndef _WIN32
1472 int err;
1473
1474 if (cpu->thread_kicked) {
1475 return;
1476 }
1477 cpu->thread_kicked = true;
1478 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1479 if (err) {
1480 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1481 exit(1);
1482 }
1483 #else /* _WIN32 */
1484 if (!qemu_cpu_is_self(cpu)) {
1485 if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1486 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1487 __func__, GetLastError());
1488 exit(1);
1489 }
1490 }
1491 #endif
1492 }
1493
1494 void qemu_cpu_kick(CPUState *cpu)
1495 {
1496 qemu_cond_broadcast(cpu->halt_cond);
1497 if (tcg_enabled()) {
1498 cpu_exit(cpu);
1499 /* NOP unless doing single-thread RR */
1500 qemu_cpu_kick_rr_cpu();
1501 } else {
1502 if (hax_enabled()) {
1503 /*
1504 * FIXME: race condition with the exit_request check in
1505 * hax_vcpu_hax_exec
1506 */
1507 cpu->exit_request = 1;
1508 }
1509 qemu_cpu_kick_thread(cpu);
1510 }
1511 }
1512
1513 void qemu_cpu_kick_self(void)
1514 {
1515 assert(current_cpu);
1516 qemu_cpu_kick_thread(current_cpu);
1517 }
1518
1519 bool qemu_cpu_is_self(CPUState *cpu)
1520 {
1521 return qemu_thread_is_self(cpu->thread);
1522 }
1523
1524 bool qemu_in_vcpu_thread(void)
1525 {
1526 return current_cpu && qemu_cpu_is_self(current_cpu);
1527 }
1528
1529 static __thread bool iothread_locked = false;
1530
1531 bool qemu_mutex_iothread_locked(void)
1532 {
1533 return iothread_locked;
1534 }
1535
1536 void qemu_mutex_lock_iothread(void)
1537 {
1538 g_assert(!qemu_mutex_iothread_locked());
1539 qemu_mutex_lock(&qemu_global_mutex);
1540 iothread_locked = true;
1541 }
1542
1543 void qemu_mutex_unlock_iothread(void)
1544 {
1545 g_assert(qemu_mutex_iothread_locked());
1546 iothread_locked = false;
1547 qemu_mutex_unlock(&qemu_global_mutex);
1548 }
1549
1550 static bool all_vcpus_paused(void)
1551 {
1552 CPUState *cpu;
1553
1554 CPU_FOREACH(cpu) {
1555 if (!cpu->stopped) {
1556 return false;
1557 }
1558 }
1559
1560 return true;
1561 }
1562
1563 void pause_all_vcpus(void)
1564 {
1565 CPUState *cpu;
1566
1567 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1568 CPU_FOREACH(cpu) {
1569 cpu->stop = true;
1570 qemu_cpu_kick(cpu);
1571 }
1572
1573 if (qemu_in_vcpu_thread()) {
1574 cpu_stop_current();
1575 }
1576
1577 while (!all_vcpus_paused()) {
1578 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1579 CPU_FOREACH(cpu) {
1580 qemu_cpu_kick(cpu);
1581 }
1582 }
1583 }
1584
1585 void cpu_resume(CPUState *cpu)
1586 {
1587 cpu->stop = false;
1588 cpu->stopped = false;
1589 qemu_cpu_kick(cpu);
1590 }
1591
1592 void resume_all_vcpus(void)
1593 {
1594 CPUState *cpu;
1595
1596 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1597 CPU_FOREACH(cpu) {
1598 cpu_resume(cpu);
1599 }
1600 }
1601
1602 void cpu_remove(CPUState *cpu)
1603 {
1604 cpu->stop = true;
1605 cpu->unplug = true;
1606 qemu_cpu_kick(cpu);
1607 }
1608
1609 void cpu_remove_sync(CPUState *cpu)
1610 {
1611 cpu_remove(cpu);
1612 while (cpu->created) {
1613 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1614 }
1615 }
1616
1617 /* For temporary buffers for forming a name */
1618 #define VCPU_THREAD_NAME_SIZE 16
1619
1620 static void qemu_tcg_init_vcpu(CPUState *cpu)
1621 {
1622 char thread_name[VCPU_THREAD_NAME_SIZE];
1623 static QemuCond *single_tcg_halt_cond;
1624 static QemuThread *single_tcg_cpu_thread;
1625
1626 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1627 cpu->thread = g_malloc0(sizeof(QemuThread));
1628 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1629 qemu_cond_init(cpu->halt_cond);
1630
1631 if (qemu_tcg_mttcg_enabled()) {
1632 /* create a thread per vCPU with TCG (MTTCG) */
1633 parallel_cpus = true;
1634 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1635 cpu->cpu_index);
1636
1637 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1638 cpu, QEMU_THREAD_JOINABLE);
1639
1640 } else {
1641 /* share a single thread for all cpus with TCG */
1642 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1643 qemu_thread_create(cpu->thread, thread_name,
1644 qemu_tcg_rr_cpu_thread_fn,
1645 cpu, QEMU_THREAD_JOINABLE);
1646
1647 single_tcg_halt_cond = cpu->halt_cond;
1648 single_tcg_cpu_thread = cpu->thread;
1649 }
1650 #ifdef _WIN32
1651 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1652 #endif
1653 while (!cpu->created) {
1654 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1655 }
1656 } else {
1657 /* For non-MTTCG cases we share the thread */
1658 cpu->thread = single_tcg_cpu_thread;
1659 cpu->halt_cond = single_tcg_halt_cond;
1660 }
1661 }
1662
1663 static void qemu_hax_start_vcpu(CPUState *cpu)
1664 {
1665 char thread_name[VCPU_THREAD_NAME_SIZE];
1666
1667 cpu->thread = g_malloc0(sizeof(QemuThread));
1668 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1669 qemu_cond_init(cpu->halt_cond);
1670
1671 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1672 cpu->cpu_index);
1673 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1674 cpu, QEMU_THREAD_JOINABLE);
1675 #ifdef _WIN32
1676 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1677 #endif
1678 while (!cpu->created) {
1679 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1680 }
1681 }
1682
1683 static void qemu_kvm_start_vcpu(CPUState *cpu)
1684 {
1685 char thread_name[VCPU_THREAD_NAME_SIZE];
1686
1687 cpu->thread = g_malloc0(sizeof(QemuThread));
1688 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1689 qemu_cond_init(cpu->halt_cond);
1690 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1691 cpu->cpu_index);
1692 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1693 cpu, QEMU_THREAD_JOINABLE);
1694 while (!cpu->created) {
1695 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1696 }
1697 }
1698
1699 static void qemu_dummy_start_vcpu(CPUState *cpu)
1700 {
1701 char thread_name[VCPU_THREAD_NAME_SIZE];
1702
1703 cpu->thread = g_malloc0(sizeof(QemuThread));
1704 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1705 qemu_cond_init(cpu->halt_cond);
1706 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1707 cpu->cpu_index);
1708 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1709 QEMU_THREAD_JOINABLE);
1710 while (!cpu->created) {
1711 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1712 }
1713 }
1714
1715 void qemu_init_vcpu(CPUState *cpu)
1716 {
1717 cpu->nr_cores = smp_cores;
1718 cpu->nr_threads = smp_threads;
1719 cpu->stopped = true;
1720
1721 if (!cpu->as) {
1722 /* If the target cpu hasn't set up any address spaces itself,
1723 * give it the default one.
1724 */
1725 AddressSpace *as = address_space_init_shareable(cpu->memory,
1726 "cpu-memory");
1727 cpu->num_ases = 1;
1728 cpu_address_space_init(cpu, as, 0);
1729 }
1730
1731 if (kvm_enabled()) {
1732 qemu_kvm_start_vcpu(cpu);
1733 } else if (hax_enabled()) {
1734 qemu_hax_start_vcpu(cpu);
1735 } else if (tcg_enabled()) {
1736 qemu_tcg_init_vcpu(cpu);
1737 } else {
1738 qemu_dummy_start_vcpu(cpu);
1739 }
1740 }
1741
1742 void cpu_stop_current(void)
1743 {
1744 if (current_cpu) {
1745 current_cpu->stop = false;
1746 current_cpu->stopped = true;
1747 cpu_exit(current_cpu);
1748 qemu_cond_broadcast(&qemu_pause_cond);
1749 }
1750 }
1751
1752 int vm_stop(RunState state)
1753 {
1754 if (qemu_in_vcpu_thread()) {
1755 qemu_system_vmstop_request_prepare();
1756 qemu_system_vmstop_request(state);
1757 /*
1758 * FIXME: should not return to device code in case
1759 * vm_stop() has been requested.
1760 */
1761 cpu_stop_current();
1762 return 0;
1763 }
1764
1765 return do_vm_stop(state);
1766 }
1767
1768 /**
1769 * Prepare for (re)starting the VM.
1770 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
1771 * running or in case of an error condition), 0 otherwise.
1772 */
1773 int vm_prepare_start(void)
1774 {
1775 RunState requested;
1776 int res = 0;
1777
1778 qemu_vmstop_requested(&requested);
1779 if (runstate_is_running() && requested == RUN_STATE__MAX) {
1780 return -1;
1781 }
1782
1783 /* Ensure that a STOP/RESUME pair of events is emitted if a
1784 * vmstop request was pending. The BLOCK_IO_ERROR event, for
1785 * example, according to documentation is always followed by
1786 * the STOP event.
1787 */
1788 if (runstate_is_running()) {
1789 qapi_event_send_stop(&error_abort);
1790 res = -1;
1791 } else {
1792 replay_enable_events();
1793 cpu_enable_ticks();
1794 runstate_set(RUN_STATE_RUNNING);
1795 vm_state_notify(1, RUN_STATE_RUNNING);
1796 }
1797
1798 /* We are sending this now, but the CPUs will be resumed shortly later */
1799 qapi_event_send_resume(&error_abort);
1800 return res;
1801 }
1802
1803 void vm_start(void)
1804 {
1805 if (!vm_prepare_start()) {
1806 resume_all_vcpus();
1807 }
1808 }
1809
1810 /* does a state transition even if the VM is already stopped,
1811 current state is forgotten forever */
1812 int vm_stop_force_state(RunState state)
1813 {
1814 if (runstate_is_running()) {
1815 return vm_stop(state);
1816 } else {
1817 runstate_set(state);
1818
1819 bdrv_drain_all();
1820 /* Make sure to return an error if the flush in a previous vm_stop()
1821 * failed. */
1822 return bdrv_flush_all();
1823 }
1824 }
1825
1826 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1827 {
1828 /* XXX: implement xxx_cpu_list for targets that still miss it */
1829 #if defined(cpu_list)
1830 cpu_list(f, cpu_fprintf);
1831 #endif
1832 }
1833
1834 CpuInfoList *qmp_query_cpus(Error **errp)
1835 {
1836 CpuInfoList *head = NULL, *cur_item = NULL;
1837 CPUState *cpu;
1838
1839 CPU_FOREACH(cpu) {
1840 CpuInfoList *info;
1841 #if defined(TARGET_I386)
1842 X86CPU *x86_cpu = X86_CPU(cpu);
1843 CPUX86State *env = &x86_cpu->env;
1844 #elif defined(TARGET_PPC)
1845 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
1846 CPUPPCState *env = &ppc_cpu->env;
1847 #elif defined(TARGET_SPARC)
1848 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
1849 CPUSPARCState *env = &sparc_cpu->env;
1850 #elif defined(TARGET_MIPS)
1851 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
1852 CPUMIPSState *env = &mips_cpu->env;
1853 #elif defined(TARGET_TRICORE)
1854 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
1855 CPUTriCoreState *env = &tricore_cpu->env;
1856 #endif
1857
1858 cpu_synchronize_state(cpu);
1859
1860 info = g_malloc0(sizeof(*info));
1861 info->value = g_malloc0(sizeof(*info->value));
1862 info->value->CPU = cpu->cpu_index;
1863 info->value->current = (cpu == first_cpu);
1864 info->value->halted = cpu->halted;
1865 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
1866 info->value->thread_id = cpu->thread_id;
1867 #if defined(TARGET_I386)
1868 info->value->arch = CPU_INFO_ARCH_X86;
1869 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
1870 #elif defined(TARGET_PPC)
1871 info->value->arch = CPU_INFO_ARCH_PPC;
1872 info->value->u.ppc.nip = env->nip;
1873 #elif defined(TARGET_SPARC)
1874 info->value->arch = CPU_INFO_ARCH_SPARC;
1875 info->value->u.q_sparc.pc = env->pc;
1876 info->value->u.q_sparc.npc = env->npc;
1877 #elif defined(TARGET_MIPS)
1878 info->value->arch = CPU_INFO_ARCH_MIPS;
1879 info->value->u.q_mips.PC = env->active_tc.PC;
1880 #elif defined(TARGET_TRICORE)
1881 info->value->arch = CPU_INFO_ARCH_TRICORE;
1882 info->value->u.tricore.PC = env->PC;
1883 #else
1884 info->value->arch = CPU_INFO_ARCH_OTHER;
1885 #endif
1886
1887 /* XXX: waiting for the qapi to support GSList */
1888 if (!cur_item) {
1889 head = cur_item = info;
1890 } else {
1891 cur_item->next = info;
1892 cur_item = info;
1893 }
1894 }
1895
1896 return head;
1897 }
1898
1899 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1900 bool has_cpu, int64_t cpu_index, Error **errp)
1901 {
1902 FILE *f;
1903 uint32_t l;
1904 CPUState *cpu;
1905 uint8_t buf[1024];
1906 int64_t orig_addr = addr, orig_size = size;
1907
1908 if (!has_cpu) {
1909 cpu_index = 0;
1910 }
1911
1912 cpu = qemu_get_cpu(cpu_index);
1913 if (cpu == NULL) {
1914 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1915 "a CPU number");
1916 return;
1917 }
1918
1919 f = fopen(filename, "wb");
1920 if (!f) {
1921 error_setg_file_open(errp, errno, filename);
1922 return;
1923 }
1924
1925 while (size != 0) {
1926 l = sizeof(buf);
1927 if (l > size)
1928 l = size;
1929 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
1930 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
1931 " specified", orig_addr, orig_size);
1932 goto exit;
1933 }
1934 if (fwrite(buf, 1, l, f) != l) {
1935 error_setg(errp, QERR_IO_ERROR);
1936 goto exit;
1937 }
1938 addr += l;
1939 size -= l;
1940 }
1941
1942 exit:
1943 fclose(f);
1944 }
1945
1946 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1947 Error **errp)
1948 {
1949 FILE *f;
1950 uint32_t l;
1951 uint8_t buf[1024];
1952
1953 f = fopen(filename, "wb");
1954 if (!f) {
1955 error_setg_file_open(errp, errno, filename);
1956 return;
1957 }
1958
1959 while (size != 0) {
1960 l = sizeof(buf);
1961 if (l > size)
1962 l = size;
1963 cpu_physical_memory_read(addr, buf, l);
1964 if (fwrite(buf, 1, l, f) != l) {
1965 error_setg(errp, QERR_IO_ERROR);
1966 goto exit;
1967 }
1968 addr += l;
1969 size -= l;
1970 }
1971
1972 exit:
1973 fclose(f);
1974 }
1975
1976 void qmp_inject_nmi(Error **errp)
1977 {
1978 nmi_monitor_handle(monitor_get_cpu_index(), errp);
1979 }
1980
1981 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
1982 {
1983 if (!use_icount) {
1984 return;
1985 }
1986
1987 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
1988 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
1989 if (icount_align_option) {
1990 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
1991 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
1992 } else {
1993 cpu_fprintf(f, "Max guest delay NA\n");
1994 cpu_fprintf(f, "Max guest advance NA\n");
1995 }
1996 }