]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
replay: pass raw icount value to replay_save_clock
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/config-file.h"
27 #include "cpu.h"
28 #include "monitor/monitor.h"
29 #include "qapi/error.h"
30 #include "qapi/qapi-commands-misc.h"
31 #include "qapi/qapi-events-run-state.h"
32 #include "qapi/qmp/qerror.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/block-backend.h"
36 #include "exec/gdbstub.h"
37 #include "sysemu/dma.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/hax.h"
41 #include "sysemu/hvf.h"
42 #include "sysemu/whpx.h"
43 #include "exec/exec-all.h"
44
45 #include "qemu/thread.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/qtest.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/option.h"
50 #include "qemu/bitmap.h"
51 #include "qemu/seqlock.h"
52 #include "tcg.h"
53 #include "hw/nmi.h"
54 #include "sysemu/replay.h"
55 #include "hw/boards.h"
56
57 #ifdef CONFIG_LINUX
58
59 #include <sys/prctl.h>
60
61 #ifndef PR_MCE_KILL
62 #define PR_MCE_KILL 33
63 #endif
64
65 #ifndef PR_MCE_KILL_SET
66 #define PR_MCE_KILL_SET 1
67 #endif
68
69 #ifndef PR_MCE_KILL_EARLY
70 #define PR_MCE_KILL_EARLY 1
71 #endif
72
73 #endif /* CONFIG_LINUX */
74
75 int64_t max_delay;
76 int64_t max_advance;
77
78 /* vcpu throttling controls */
79 static QEMUTimer *throttle_timer;
80 static unsigned int throttle_percentage;
81
82 #define CPU_THROTTLE_PCT_MIN 1
83 #define CPU_THROTTLE_PCT_MAX 99
84 #define CPU_THROTTLE_TIMESLICE_NS 10000000
85
86 bool cpu_is_stopped(CPUState *cpu)
87 {
88 return cpu->stopped || !runstate_is_running();
89 }
90
91 static bool cpu_thread_is_idle(CPUState *cpu)
92 {
93 if (cpu->stop || cpu->queued_work_first) {
94 return false;
95 }
96 if (cpu_is_stopped(cpu)) {
97 return true;
98 }
99 if (!cpu->halted || cpu_has_work(cpu) ||
100 kvm_halt_in_kernel()) {
101 return false;
102 }
103 return true;
104 }
105
106 static bool all_cpu_threads_idle(void)
107 {
108 CPUState *cpu;
109
110 CPU_FOREACH(cpu) {
111 if (!cpu_thread_is_idle(cpu)) {
112 return false;
113 }
114 }
115 return true;
116 }
117
118 /***********************************************************/
119 /* guest cycle counter */
120
121 /* Protected by TimersState seqlock */
122
123 static bool icount_sleep = true;
124 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
125 #define MAX_ICOUNT_SHIFT 10
126
127 typedef struct TimersState {
128 /* Protected by BQL. */
129 int64_t cpu_ticks_prev;
130 int64_t cpu_ticks_offset;
131
132 /* Protect fields that can be respectively read outside the
133 * BQL, and written from multiple threads.
134 */
135 QemuSeqLock vm_clock_seqlock;
136 QemuSpin vm_clock_lock;
137
138 int16_t cpu_ticks_enabled;
139
140 /* Conversion factor from emulated instructions to virtual clock ticks. */
141 int16_t icount_time_shift;
142
143 /* Compensate for varying guest execution speed. */
144 int64_t qemu_icount_bias;
145
146 int64_t vm_clock_warp_start;
147 int64_t cpu_clock_offset;
148
149 /* Only written by TCG thread */
150 int64_t qemu_icount;
151
152 /* for adjusting icount */
153 QEMUTimer *icount_rt_timer;
154 QEMUTimer *icount_vm_timer;
155 QEMUTimer *icount_warp_timer;
156 } TimersState;
157
158 static TimersState timers_state;
159 bool mttcg_enabled;
160
161 /*
162 * We default to false if we know other options have been enabled
163 * which are currently incompatible with MTTCG. Otherwise when each
164 * guest (target) has been updated to support:
165 * - atomic instructions
166 * - memory ordering primitives (barriers)
167 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
168 *
169 * Once a guest architecture has been converted to the new primitives
170 * there are two remaining limitations to check.
171 *
172 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
173 * - The host must have a stronger memory order than the guest
174 *
175 * It may be possible in future to support strong guests on weak hosts
176 * but that will require tagging all load/stores in a guest with their
177 * implicit memory order requirements which would likely slow things
178 * down a lot.
179 */
180
181 static bool check_tcg_memory_orders_compatible(void)
182 {
183 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
184 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
185 #else
186 return false;
187 #endif
188 }
189
190 static bool default_mttcg_enabled(void)
191 {
192 if (use_icount || TCG_OVERSIZED_GUEST) {
193 return false;
194 } else {
195 #ifdef TARGET_SUPPORTS_MTTCG
196 return check_tcg_memory_orders_compatible();
197 #else
198 return false;
199 #endif
200 }
201 }
202
203 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
204 {
205 const char *t = qemu_opt_get(opts, "thread");
206 if (t) {
207 if (strcmp(t, "multi") == 0) {
208 if (TCG_OVERSIZED_GUEST) {
209 error_setg(errp, "No MTTCG when guest word size > hosts");
210 } else if (use_icount) {
211 error_setg(errp, "No MTTCG when icount is enabled");
212 } else {
213 #ifndef TARGET_SUPPORTS_MTTCG
214 error_report("Guest not yet converted to MTTCG - "
215 "you may get unexpected results");
216 #endif
217 if (!check_tcg_memory_orders_compatible()) {
218 error_report("Guest expects a stronger memory ordering "
219 "than the host provides");
220 error_printf("This may cause strange/hard to debug errors\n");
221 }
222 mttcg_enabled = true;
223 }
224 } else if (strcmp(t, "single") == 0) {
225 mttcg_enabled = false;
226 } else {
227 error_setg(errp, "Invalid 'thread' setting %s", t);
228 }
229 } else {
230 mttcg_enabled = default_mttcg_enabled();
231 }
232 }
233
234 /* The current number of executed instructions is based on what we
235 * originally budgeted minus the current state of the decrementing
236 * icount counters in extra/u16.low.
237 */
238 static int64_t cpu_get_icount_executed(CPUState *cpu)
239 {
240 return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
241 }
242
243 /*
244 * Update the global shared timer_state.qemu_icount to take into
245 * account executed instructions. This is done by the TCG vCPU
246 * thread so the main-loop can see time has moved forward.
247 */
248 static void cpu_update_icount_locked(CPUState *cpu)
249 {
250 int64_t executed = cpu_get_icount_executed(cpu);
251 cpu->icount_budget -= executed;
252
253 atomic_set_i64(&timers_state.qemu_icount,
254 timers_state.qemu_icount + executed);
255 }
256
257 /*
258 * Update the global shared timer_state.qemu_icount to take into
259 * account executed instructions. This is done by the TCG vCPU
260 * thread so the main-loop can see time has moved forward.
261 */
262 void cpu_update_icount(CPUState *cpu)
263 {
264 seqlock_write_lock(&timers_state.vm_clock_seqlock,
265 &timers_state.vm_clock_lock);
266 cpu_update_icount_locked(cpu);
267 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
268 &timers_state.vm_clock_lock);
269 }
270
271 static int64_t cpu_get_icount_raw_locked(void)
272 {
273 CPUState *cpu = current_cpu;
274
275 if (cpu && cpu->running) {
276 if (!cpu->can_do_io) {
277 error_report("Bad icount read");
278 exit(1);
279 }
280 /* Take into account what has run */
281 cpu_update_icount_locked(cpu);
282 }
283 /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
284 return atomic_read_i64(&timers_state.qemu_icount);
285 }
286
287 static int64_t cpu_get_icount_locked(void)
288 {
289 int64_t icount = cpu_get_icount_raw_locked();
290 return atomic_read_i64(&timers_state.qemu_icount_bias) +
291 cpu_icount_to_ns(icount);
292 }
293
294 int64_t cpu_get_icount_raw(void)
295 {
296 int64_t icount;
297 unsigned start;
298
299 do {
300 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
301 icount = cpu_get_icount_raw_locked();
302 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
303
304 return icount;
305 }
306
307 /* Return the virtual CPU time, based on the instruction counter. */
308 int64_t cpu_get_icount(void)
309 {
310 int64_t icount;
311 unsigned start;
312
313 do {
314 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
315 icount = cpu_get_icount_locked();
316 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
317
318 return icount;
319 }
320
321 int64_t cpu_icount_to_ns(int64_t icount)
322 {
323 return icount << atomic_read(&timers_state.icount_time_shift);
324 }
325
326 static int64_t cpu_get_ticks_locked(void)
327 {
328 int64_t ticks = timers_state.cpu_ticks_offset;
329 if (timers_state.cpu_ticks_enabled) {
330 ticks += cpu_get_host_ticks();
331 }
332
333 if (timers_state.cpu_ticks_prev > ticks) {
334 /* Non increasing ticks may happen if the host uses software suspend. */
335 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
336 ticks = timers_state.cpu_ticks_prev;
337 }
338
339 timers_state.cpu_ticks_prev = ticks;
340 return ticks;
341 }
342
343 /* return the time elapsed in VM between vm_start and vm_stop. Unless
344 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
345 * counter.
346 */
347 int64_t cpu_get_ticks(void)
348 {
349 int64_t ticks;
350
351 if (use_icount) {
352 return cpu_get_icount();
353 }
354
355 qemu_spin_lock(&timers_state.vm_clock_lock);
356 ticks = cpu_get_ticks_locked();
357 qemu_spin_unlock(&timers_state.vm_clock_lock);
358 return ticks;
359 }
360
361 static int64_t cpu_get_clock_locked(void)
362 {
363 int64_t time;
364
365 time = timers_state.cpu_clock_offset;
366 if (timers_state.cpu_ticks_enabled) {
367 time += get_clock();
368 }
369
370 return time;
371 }
372
373 /* Return the monotonic time elapsed in VM, i.e.,
374 * the time between vm_start and vm_stop
375 */
376 int64_t cpu_get_clock(void)
377 {
378 int64_t ti;
379 unsigned start;
380
381 do {
382 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
383 ti = cpu_get_clock_locked();
384 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
385
386 return ti;
387 }
388
389 /* enable cpu_get_ticks()
390 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
391 */
392 void cpu_enable_ticks(void)
393 {
394 seqlock_write_lock(&timers_state.vm_clock_seqlock,
395 &timers_state.vm_clock_lock);
396 if (!timers_state.cpu_ticks_enabled) {
397 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
398 timers_state.cpu_clock_offset -= get_clock();
399 timers_state.cpu_ticks_enabled = 1;
400 }
401 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
402 &timers_state.vm_clock_lock);
403 }
404
405 /* disable cpu_get_ticks() : the clock is stopped. You must not call
406 * cpu_get_ticks() after that.
407 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
408 */
409 void cpu_disable_ticks(void)
410 {
411 seqlock_write_lock(&timers_state.vm_clock_seqlock,
412 &timers_state.vm_clock_lock);
413 if (timers_state.cpu_ticks_enabled) {
414 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
415 timers_state.cpu_clock_offset = cpu_get_clock_locked();
416 timers_state.cpu_ticks_enabled = 0;
417 }
418 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
419 &timers_state.vm_clock_lock);
420 }
421
422 /* Correlation between real and virtual time is always going to be
423 fairly approximate, so ignore small variation.
424 When the guest is idle real and virtual time will be aligned in
425 the IO wait loop. */
426 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
427
428 static void icount_adjust(void)
429 {
430 int64_t cur_time;
431 int64_t cur_icount;
432 int64_t delta;
433
434 /* Protected by TimersState mutex. */
435 static int64_t last_delta;
436
437 /* If the VM is not running, then do nothing. */
438 if (!runstate_is_running()) {
439 return;
440 }
441
442 seqlock_write_lock(&timers_state.vm_clock_seqlock,
443 &timers_state.vm_clock_lock);
444 cur_time = cpu_get_clock_locked();
445 cur_icount = cpu_get_icount_locked();
446
447 delta = cur_icount - cur_time;
448 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
449 if (delta > 0
450 && last_delta + ICOUNT_WOBBLE < delta * 2
451 && timers_state.icount_time_shift > 0) {
452 /* The guest is getting too far ahead. Slow time down. */
453 atomic_set(&timers_state.icount_time_shift,
454 timers_state.icount_time_shift - 1);
455 }
456 if (delta < 0
457 && last_delta - ICOUNT_WOBBLE > delta * 2
458 && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
459 /* The guest is getting too far behind. Speed time up. */
460 atomic_set(&timers_state.icount_time_shift,
461 timers_state.icount_time_shift + 1);
462 }
463 last_delta = delta;
464 atomic_set_i64(&timers_state.qemu_icount_bias,
465 cur_icount - (timers_state.qemu_icount
466 << timers_state.icount_time_shift));
467 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
468 &timers_state.vm_clock_lock);
469 }
470
471 static void icount_adjust_rt(void *opaque)
472 {
473 timer_mod(timers_state.icount_rt_timer,
474 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
475 icount_adjust();
476 }
477
478 static void icount_adjust_vm(void *opaque)
479 {
480 timer_mod(timers_state.icount_vm_timer,
481 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
482 NANOSECONDS_PER_SECOND / 10);
483 icount_adjust();
484 }
485
486 static int64_t qemu_icount_round(int64_t count)
487 {
488 int shift = atomic_read(&timers_state.icount_time_shift);
489 return (count + (1 << shift) - 1) >> shift;
490 }
491
492 static void icount_warp_rt(void)
493 {
494 unsigned seq;
495 int64_t warp_start;
496
497 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
498 * changes from -1 to another value, so the race here is okay.
499 */
500 do {
501 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
502 warp_start = timers_state.vm_clock_warp_start;
503 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
504
505 if (warp_start == -1) {
506 return;
507 }
508
509 seqlock_write_lock(&timers_state.vm_clock_seqlock,
510 &timers_state.vm_clock_lock);
511 if (runstate_is_running()) {
512 int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
513 cpu_get_clock_locked());
514 int64_t warp_delta;
515
516 warp_delta = clock - timers_state.vm_clock_warp_start;
517 if (use_icount == 2) {
518 /*
519 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
520 * far ahead of real time.
521 */
522 int64_t cur_icount = cpu_get_icount_locked();
523 int64_t delta = clock - cur_icount;
524 warp_delta = MIN(warp_delta, delta);
525 }
526 atomic_set_i64(&timers_state.qemu_icount_bias,
527 timers_state.qemu_icount_bias + warp_delta);
528 }
529 timers_state.vm_clock_warp_start = -1;
530 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
531 &timers_state.vm_clock_lock);
532
533 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
534 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
535 }
536 }
537
538 static void icount_timer_cb(void *opaque)
539 {
540 /* No need for a checkpoint because the timer already synchronizes
541 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
542 */
543 icount_warp_rt();
544 }
545
546 void qtest_clock_warp(int64_t dest)
547 {
548 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
549 AioContext *aio_context;
550 assert(qtest_enabled());
551 aio_context = qemu_get_aio_context();
552 while (clock < dest) {
553 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
554 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
555
556 seqlock_write_lock(&timers_state.vm_clock_seqlock,
557 &timers_state.vm_clock_lock);
558 atomic_set_i64(&timers_state.qemu_icount_bias,
559 timers_state.qemu_icount_bias + warp);
560 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
561 &timers_state.vm_clock_lock);
562
563 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
564 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
565 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
566 }
567 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
568 }
569
570 void qemu_start_warp_timer(void)
571 {
572 int64_t clock;
573 int64_t deadline;
574
575 if (!use_icount) {
576 return;
577 }
578
579 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
580 * do not fire, so computing the deadline does not make sense.
581 */
582 if (!runstate_is_running()) {
583 return;
584 }
585
586 if (replay_mode != REPLAY_MODE_PLAY) {
587 if (!all_cpu_threads_idle()) {
588 return;
589 }
590
591 if (qtest_enabled()) {
592 /* When testing, qtest commands advance icount. */
593 return;
594 }
595
596 replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
597 } else {
598 /* warp clock deterministically in record/replay mode */
599 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
600 /* vCPU is sleeping and warp can't be started.
601 It is probably a race condition: notification sent
602 to vCPU was processed in advance and vCPU went to sleep.
603 Therefore we have to wake it up for doing someting. */
604 if (replay_has_checkpoint()) {
605 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
606 }
607 return;
608 }
609 }
610
611 /* We want to use the earliest deadline from ALL vm_clocks */
612 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
613 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
614 if (deadline < 0) {
615 static bool notified;
616 if (!icount_sleep && !notified) {
617 warn_report("icount sleep disabled and no active timers");
618 notified = true;
619 }
620 return;
621 }
622
623 if (deadline > 0) {
624 /*
625 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
626 * sleep. Otherwise, the CPU might be waiting for a future timer
627 * interrupt to wake it up, but the interrupt never comes because
628 * the vCPU isn't running any insns and thus doesn't advance the
629 * QEMU_CLOCK_VIRTUAL.
630 */
631 if (!icount_sleep) {
632 /*
633 * We never let VCPUs sleep in no sleep icount mode.
634 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
635 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
636 * It is useful when we want a deterministic execution time,
637 * isolated from host latencies.
638 */
639 seqlock_write_lock(&timers_state.vm_clock_seqlock,
640 &timers_state.vm_clock_lock);
641 atomic_set_i64(&timers_state.qemu_icount_bias,
642 timers_state.qemu_icount_bias + deadline);
643 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
644 &timers_state.vm_clock_lock);
645 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
646 } else {
647 /*
648 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
649 * "real" time, (related to the time left until the next event) has
650 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
651 * This avoids that the warps are visible externally; for example,
652 * you will not be sending network packets continuously instead of
653 * every 100ms.
654 */
655 seqlock_write_lock(&timers_state.vm_clock_seqlock,
656 &timers_state.vm_clock_lock);
657 if (timers_state.vm_clock_warp_start == -1
658 || timers_state.vm_clock_warp_start > clock) {
659 timers_state.vm_clock_warp_start = clock;
660 }
661 seqlock_write_unlock(&timers_state.vm_clock_seqlock,
662 &timers_state.vm_clock_lock);
663 timer_mod_anticipate(timers_state.icount_warp_timer,
664 clock + deadline);
665 }
666 } else if (deadline == 0) {
667 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
668 }
669 }
670
671 static void qemu_account_warp_timer(void)
672 {
673 if (!use_icount || !icount_sleep) {
674 return;
675 }
676
677 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
678 * do not fire, so computing the deadline does not make sense.
679 */
680 if (!runstate_is_running()) {
681 return;
682 }
683
684 /* warp clock deterministically in record/replay mode */
685 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
686 return;
687 }
688
689 timer_del(timers_state.icount_warp_timer);
690 icount_warp_rt();
691 }
692
693 static bool icount_state_needed(void *opaque)
694 {
695 return use_icount;
696 }
697
698 static bool warp_timer_state_needed(void *opaque)
699 {
700 TimersState *s = opaque;
701 return s->icount_warp_timer != NULL;
702 }
703
704 static bool adjust_timers_state_needed(void *opaque)
705 {
706 TimersState *s = opaque;
707 return s->icount_rt_timer != NULL;
708 }
709
710 /*
711 * Subsection for warp timer migration is optional, because may not be created
712 */
713 static const VMStateDescription icount_vmstate_warp_timer = {
714 .name = "timer/icount/warp_timer",
715 .version_id = 1,
716 .minimum_version_id = 1,
717 .needed = warp_timer_state_needed,
718 .fields = (VMStateField[]) {
719 VMSTATE_INT64(vm_clock_warp_start, TimersState),
720 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
721 VMSTATE_END_OF_LIST()
722 }
723 };
724
725 static const VMStateDescription icount_vmstate_adjust_timers = {
726 .name = "timer/icount/timers",
727 .version_id = 1,
728 .minimum_version_id = 1,
729 .needed = adjust_timers_state_needed,
730 .fields = (VMStateField[]) {
731 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
732 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
733 VMSTATE_END_OF_LIST()
734 }
735 };
736
737 /*
738 * This is a subsection for icount migration.
739 */
740 static const VMStateDescription icount_vmstate_timers = {
741 .name = "timer/icount",
742 .version_id = 1,
743 .minimum_version_id = 1,
744 .needed = icount_state_needed,
745 .fields = (VMStateField[]) {
746 VMSTATE_INT64(qemu_icount_bias, TimersState),
747 VMSTATE_INT64(qemu_icount, TimersState),
748 VMSTATE_END_OF_LIST()
749 },
750 .subsections = (const VMStateDescription*[]) {
751 &icount_vmstate_warp_timer,
752 &icount_vmstate_adjust_timers,
753 NULL
754 }
755 };
756
757 static const VMStateDescription vmstate_timers = {
758 .name = "timer",
759 .version_id = 2,
760 .minimum_version_id = 1,
761 .fields = (VMStateField[]) {
762 VMSTATE_INT64(cpu_ticks_offset, TimersState),
763 VMSTATE_UNUSED(8),
764 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
765 VMSTATE_END_OF_LIST()
766 },
767 .subsections = (const VMStateDescription*[]) {
768 &icount_vmstate_timers,
769 NULL
770 }
771 };
772
773 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
774 {
775 double pct;
776 double throttle_ratio;
777 long sleeptime_ns;
778
779 if (!cpu_throttle_get_percentage()) {
780 return;
781 }
782
783 pct = (double)cpu_throttle_get_percentage()/100;
784 throttle_ratio = pct / (1 - pct);
785 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
786
787 qemu_mutex_unlock_iothread();
788 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
789 qemu_mutex_lock_iothread();
790 atomic_set(&cpu->throttle_thread_scheduled, 0);
791 }
792
793 static void cpu_throttle_timer_tick(void *opaque)
794 {
795 CPUState *cpu;
796 double pct;
797
798 /* Stop the timer if needed */
799 if (!cpu_throttle_get_percentage()) {
800 return;
801 }
802 CPU_FOREACH(cpu) {
803 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
804 async_run_on_cpu(cpu, cpu_throttle_thread,
805 RUN_ON_CPU_NULL);
806 }
807 }
808
809 pct = (double)cpu_throttle_get_percentage()/100;
810 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
811 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
812 }
813
814 void cpu_throttle_set(int new_throttle_pct)
815 {
816 /* Ensure throttle percentage is within valid range */
817 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
818 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
819
820 atomic_set(&throttle_percentage, new_throttle_pct);
821
822 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
823 CPU_THROTTLE_TIMESLICE_NS);
824 }
825
826 void cpu_throttle_stop(void)
827 {
828 atomic_set(&throttle_percentage, 0);
829 }
830
831 bool cpu_throttle_active(void)
832 {
833 return (cpu_throttle_get_percentage() != 0);
834 }
835
836 int cpu_throttle_get_percentage(void)
837 {
838 return atomic_read(&throttle_percentage);
839 }
840
841 void cpu_ticks_init(void)
842 {
843 seqlock_init(&timers_state.vm_clock_seqlock);
844 qemu_spin_init(&timers_state.vm_clock_lock);
845 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
846 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
847 cpu_throttle_timer_tick, NULL);
848 }
849
850 void configure_icount(QemuOpts *opts, Error **errp)
851 {
852 const char *option;
853 char *rem_str = NULL;
854
855 option = qemu_opt_get(opts, "shift");
856 if (!option) {
857 if (qemu_opt_get(opts, "align") != NULL) {
858 error_setg(errp, "Please specify shift option when using align");
859 }
860 return;
861 }
862
863 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
864 if (icount_sleep) {
865 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
866 icount_timer_cb, NULL);
867 }
868
869 icount_align_option = qemu_opt_get_bool(opts, "align", false);
870
871 if (icount_align_option && !icount_sleep) {
872 error_setg(errp, "align=on and sleep=off are incompatible");
873 }
874 if (strcmp(option, "auto") != 0) {
875 errno = 0;
876 timers_state.icount_time_shift = strtol(option, &rem_str, 0);
877 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
878 error_setg(errp, "icount: Invalid shift value");
879 }
880 use_icount = 1;
881 return;
882 } else if (icount_align_option) {
883 error_setg(errp, "shift=auto and align=on are incompatible");
884 } else if (!icount_sleep) {
885 error_setg(errp, "shift=auto and sleep=off are incompatible");
886 }
887
888 use_icount = 2;
889
890 /* 125MIPS seems a reasonable initial guess at the guest speed.
891 It will be corrected fairly quickly anyway. */
892 timers_state.icount_time_shift = 3;
893
894 /* Have both realtime and virtual time triggers for speed adjustment.
895 The realtime trigger catches emulated time passing too slowly,
896 the virtual time trigger catches emulated time passing too fast.
897 Realtime triggers occur even when idle, so use them less frequently
898 than VM triggers. */
899 timers_state.vm_clock_warp_start = -1;
900 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
901 icount_adjust_rt, NULL);
902 timer_mod(timers_state.icount_rt_timer,
903 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
904 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
905 icount_adjust_vm, NULL);
906 timer_mod(timers_state.icount_vm_timer,
907 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
908 NANOSECONDS_PER_SECOND / 10);
909 }
910
911 /***********************************************************/
912 /* TCG vCPU kick timer
913 *
914 * The kick timer is responsible for moving single threaded vCPU
915 * emulation on to the next vCPU. If more than one vCPU is running a
916 * timer event with force a cpu->exit so the next vCPU can get
917 * scheduled.
918 *
919 * The timer is removed if all vCPUs are idle and restarted again once
920 * idleness is complete.
921 */
922
923 static QEMUTimer *tcg_kick_vcpu_timer;
924 static CPUState *tcg_current_rr_cpu;
925
926 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
927
928 static inline int64_t qemu_tcg_next_kick(void)
929 {
930 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
931 }
932
933 /* Kick the currently round-robin scheduled vCPU */
934 static void qemu_cpu_kick_rr_cpu(void)
935 {
936 CPUState *cpu;
937 do {
938 cpu = atomic_mb_read(&tcg_current_rr_cpu);
939 if (cpu) {
940 cpu_exit(cpu);
941 }
942 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
943 }
944
945 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
946 {
947 }
948
949 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
950 {
951 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
952 qemu_notify_event();
953 return;
954 }
955
956 if (qemu_in_vcpu_thread()) {
957 /* A CPU is currently running; kick it back out to the
958 * tcg_cpu_exec() loop so it will recalculate its
959 * icount deadline immediately.
960 */
961 qemu_cpu_kick(current_cpu);
962 } else if (first_cpu) {
963 /* qemu_cpu_kick is not enough to kick a halted CPU out of
964 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
965 * causes cpu_thread_is_idle to return false. This way,
966 * handle_icount_deadline can run.
967 * If we have no CPUs at all for some reason, we don't
968 * need to do anything.
969 */
970 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
971 }
972 }
973
974 static void kick_tcg_thread(void *opaque)
975 {
976 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
977 qemu_cpu_kick_rr_cpu();
978 }
979
980 static void start_tcg_kick_timer(void)
981 {
982 assert(!mttcg_enabled);
983 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
984 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
985 kick_tcg_thread, NULL);
986 }
987 if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
988 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
989 }
990 }
991
992 static void stop_tcg_kick_timer(void)
993 {
994 assert(!mttcg_enabled);
995 if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
996 timer_del(tcg_kick_vcpu_timer);
997 }
998 }
999
1000 /***********************************************************/
1001 void hw_error(const char *fmt, ...)
1002 {
1003 va_list ap;
1004 CPUState *cpu;
1005
1006 va_start(ap, fmt);
1007 fprintf(stderr, "qemu: hardware error: ");
1008 vfprintf(stderr, fmt, ap);
1009 fprintf(stderr, "\n");
1010 CPU_FOREACH(cpu) {
1011 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
1012 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
1013 }
1014 va_end(ap);
1015 abort();
1016 }
1017
1018 void cpu_synchronize_all_states(void)
1019 {
1020 CPUState *cpu;
1021
1022 CPU_FOREACH(cpu) {
1023 cpu_synchronize_state(cpu);
1024 /* TODO: move to cpu_synchronize_state() */
1025 if (hvf_enabled()) {
1026 hvf_cpu_synchronize_state(cpu);
1027 }
1028 }
1029 }
1030
1031 void cpu_synchronize_all_post_reset(void)
1032 {
1033 CPUState *cpu;
1034
1035 CPU_FOREACH(cpu) {
1036 cpu_synchronize_post_reset(cpu);
1037 /* TODO: move to cpu_synchronize_post_reset() */
1038 if (hvf_enabled()) {
1039 hvf_cpu_synchronize_post_reset(cpu);
1040 }
1041 }
1042 }
1043
1044 void cpu_synchronize_all_post_init(void)
1045 {
1046 CPUState *cpu;
1047
1048 CPU_FOREACH(cpu) {
1049 cpu_synchronize_post_init(cpu);
1050 /* TODO: move to cpu_synchronize_post_init() */
1051 if (hvf_enabled()) {
1052 hvf_cpu_synchronize_post_init(cpu);
1053 }
1054 }
1055 }
1056
1057 void cpu_synchronize_all_pre_loadvm(void)
1058 {
1059 CPUState *cpu;
1060
1061 CPU_FOREACH(cpu) {
1062 cpu_synchronize_pre_loadvm(cpu);
1063 }
1064 }
1065
1066 static int do_vm_stop(RunState state, bool send_stop)
1067 {
1068 int ret = 0;
1069
1070 if (runstate_is_running()) {
1071 cpu_disable_ticks();
1072 pause_all_vcpus();
1073 runstate_set(state);
1074 vm_state_notify(0, state);
1075 if (send_stop) {
1076 qapi_event_send_stop();
1077 }
1078 }
1079
1080 bdrv_drain_all();
1081 replay_disable_events();
1082 ret = bdrv_flush_all();
1083
1084 return ret;
1085 }
1086
1087 /* Special vm_stop() variant for terminating the process. Historically clients
1088 * did not expect a QMP STOP event and so we need to retain compatibility.
1089 */
1090 int vm_shutdown(void)
1091 {
1092 return do_vm_stop(RUN_STATE_SHUTDOWN, false);
1093 }
1094
1095 static bool cpu_can_run(CPUState *cpu)
1096 {
1097 if (cpu->stop) {
1098 return false;
1099 }
1100 if (cpu_is_stopped(cpu)) {
1101 return false;
1102 }
1103 return true;
1104 }
1105
1106 static void cpu_handle_guest_debug(CPUState *cpu)
1107 {
1108 gdb_set_stop_cpu(cpu);
1109 qemu_system_debug_request();
1110 cpu->stopped = true;
1111 }
1112
1113 #ifdef CONFIG_LINUX
1114 static void sigbus_reraise(void)
1115 {
1116 sigset_t set;
1117 struct sigaction action;
1118
1119 memset(&action, 0, sizeof(action));
1120 action.sa_handler = SIG_DFL;
1121 if (!sigaction(SIGBUS, &action, NULL)) {
1122 raise(SIGBUS);
1123 sigemptyset(&set);
1124 sigaddset(&set, SIGBUS);
1125 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1126 }
1127 perror("Failed to re-raise SIGBUS!\n");
1128 abort();
1129 }
1130
1131 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1132 {
1133 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1134 sigbus_reraise();
1135 }
1136
1137 if (current_cpu) {
1138 /* Called asynchronously in VCPU thread. */
1139 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1140 sigbus_reraise();
1141 }
1142 } else {
1143 /* Called synchronously (via signalfd) in main thread. */
1144 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1145 sigbus_reraise();
1146 }
1147 }
1148 }
1149
1150 static void qemu_init_sigbus(void)
1151 {
1152 struct sigaction action;
1153
1154 memset(&action, 0, sizeof(action));
1155 action.sa_flags = SA_SIGINFO;
1156 action.sa_sigaction = sigbus_handler;
1157 sigaction(SIGBUS, &action, NULL);
1158
1159 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1160 }
1161 #else /* !CONFIG_LINUX */
1162 static void qemu_init_sigbus(void)
1163 {
1164 }
1165 #endif /* !CONFIG_LINUX */
1166
1167 static QemuMutex qemu_global_mutex;
1168
1169 static QemuThread io_thread;
1170
1171 /* cpu creation */
1172 static QemuCond qemu_cpu_cond;
1173 /* system init */
1174 static QemuCond qemu_pause_cond;
1175
1176 void qemu_init_cpu_loop(void)
1177 {
1178 qemu_init_sigbus();
1179 qemu_cond_init(&qemu_cpu_cond);
1180 qemu_cond_init(&qemu_pause_cond);
1181 qemu_mutex_init(&qemu_global_mutex);
1182
1183 qemu_thread_get_self(&io_thread);
1184 }
1185
1186 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1187 {
1188 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1189 }
1190
1191 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1192 {
1193 if (kvm_destroy_vcpu(cpu) < 0) {
1194 error_report("kvm_destroy_vcpu failed");
1195 exit(EXIT_FAILURE);
1196 }
1197 }
1198
1199 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1200 {
1201 }
1202
1203 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1204 {
1205 g_assert(qemu_cpu_is_self(cpu));
1206 cpu->stop = false;
1207 cpu->stopped = true;
1208 if (exit) {
1209 cpu_exit(cpu);
1210 }
1211 qemu_cond_broadcast(&qemu_pause_cond);
1212 }
1213
1214 static void qemu_wait_io_event_common(CPUState *cpu)
1215 {
1216 atomic_mb_set(&cpu->thread_kicked, false);
1217 if (cpu->stop) {
1218 qemu_cpu_stop(cpu, false);
1219 }
1220 process_queued_cpu_work(cpu);
1221 }
1222
1223 static void qemu_tcg_rr_wait_io_event(CPUState *cpu)
1224 {
1225 while (all_cpu_threads_idle()) {
1226 stop_tcg_kick_timer();
1227 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1228 }
1229
1230 start_tcg_kick_timer();
1231
1232 qemu_wait_io_event_common(cpu);
1233 }
1234
1235 static void qemu_wait_io_event(CPUState *cpu)
1236 {
1237 while (cpu_thread_is_idle(cpu)) {
1238 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1239 }
1240
1241 #ifdef _WIN32
1242 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1243 if (!tcg_enabled()) {
1244 SleepEx(0, TRUE);
1245 }
1246 #endif
1247 qemu_wait_io_event_common(cpu);
1248 }
1249
1250 static void *qemu_kvm_cpu_thread_fn(void *arg)
1251 {
1252 CPUState *cpu = arg;
1253 int r;
1254
1255 rcu_register_thread();
1256
1257 qemu_mutex_lock_iothread();
1258 qemu_thread_get_self(cpu->thread);
1259 cpu->thread_id = qemu_get_thread_id();
1260 cpu->can_do_io = 1;
1261 current_cpu = cpu;
1262
1263 r = kvm_init_vcpu(cpu);
1264 if (r < 0) {
1265 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1266 exit(1);
1267 }
1268
1269 kvm_init_cpu_signals(cpu);
1270
1271 /* signal CPU creation */
1272 cpu->created = true;
1273 qemu_cond_signal(&qemu_cpu_cond);
1274
1275 do {
1276 if (cpu_can_run(cpu)) {
1277 r = kvm_cpu_exec(cpu);
1278 if (r == EXCP_DEBUG) {
1279 cpu_handle_guest_debug(cpu);
1280 }
1281 }
1282 qemu_wait_io_event(cpu);
1283 } while (!cpu->unplug || cpu_can_run(cpu));
1284
1285 qemu_kvm_destroy_vcpu(cpu);
1286 cpu->created = false;
1287 qemu_cond_signal(&qemu_cpu_cond);
1288 qemu_mutex_unlock_iothread();
1289 rcu_unregister_thread();
1290 return NULL;
1291 }
1292
1293 static void *qemu_dummy_cpu_thread_fn(void *arg)
1294 {
1295 #ifdef _WIN32
1296 error_report("qtest is not supported under Windows");
1297 exit(1);
1298 #else
1299 CPUState *cpu = arg;
1300 sigset_t waitset;
1301 int r;
1302
1303 rcu_register_thread();
1304
1305 qemu_mutex_lock_iothread();
1306 qemu_thread_get_self(cpu->thread);
1307 cpu->thread_id = qemu_get_thread_id();
1308 cpu->can_do_io = 1;
1309 current_cpu = cpu;
1310
1311 sigemptyset(&waitset);
1312 sigaddset(&waitset, SIG_IPI);
1313
1314 /* signal CPU creation */
1315 cpu->created = true;
1316 qemu_cond_signal(&qemu_cpu_cond);
1317
1318 do {
1319 qemu_mutex_unlock_iothread();
1320 do {
1321 int sig;
1322 r = sigwait(&waitset, &sig);
1323 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1324 if (r == -1) {
1325 perror("sigwait");
1326 exit(1);
1327 }
1328 qemu_mutex_lock_iothread();
1329 qemu_wait_io_event(cpu);
1330 } while (!cpu->unplug);
1331
1332 rcu_unregister_thread();
1333 return NULL;
1334 #endif
1335 }
1336
1337 static int64_t tcg_get_icount_limit(void)
1338 {
1339 int64_t deadline;
1340
1341 if (replay_mode != REPLAY_MODE_PLAY) {
1342 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1343
1344 /* Maintain prior (possibly buggy) behaviour where if no deadline
1345 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1346 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1347 * nanoseconds.
1348 */
1349 if ((deadline < 0) || (deadline > INT32_MAX)) {
1350 deadline = INT32_MAX;
1351 }
1352
1353 return qemu_icount_round(deadline);
1354 } else {
1355 return replay_get_instructions();
1356 }
1357 }
1358
1359 static void handle_icount_deadline(void)
1360 {
1361 assert(qemu_in_vcpu_thread());
1362 if (use_icount) {
1363 int64_t deadline =
1364 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1365
1366 if (deadline == 0) {
1367 /* Wake up other AioContexts. */
1368 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1369 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1370 }
1371 }
1372 }
1373
1374 static void prepare_icount_for_run(CPUState *cpu)
1375 {
1376 if (use_icount) {
1377 int insns_left;
1378
1379 /* These should always be cleared by process_icount_data after
1380 * each vCPU execution. However u16.high can be raised
1381 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1382 */
1383 g_assert(cpu->icount_decr.u16.low == 0);
1384 g_assert(cpu->icount_extra == 0);
1385
1386 cpu->icount_budget = tcg_get_icount_limit();
1387 insns_left = MIN(0xffff, cpu->icount_budget);
1388 cpu->icount_decr.u16.low = insns_left;
1389 cpu->icount_extra = cpu->icount_budget - insns_left;
1390
1391 replay_mutex_lock();
1392 }
1393 }
1394
1395 static void process_icount_data(CPUState *cpu)
1396 {
1397 if (use_icount) {
1398 /* Account for executed instructions */
1399 cpu_update_icount(cpu);
1400
1401 /* Reset the counters */
1402 cpu->icount_decr.u16.low = 0;
1403 cpu->icount_extra = 0;
1404 cpu->icount_budget = 0;
1405
1406 replay_account_executed_instructions();
1407
1408 replay_mutex_unlock();
1409 }
1410 }
1411
1412
1413 static int tcg_cpu_exec(CPUState *cpu)
1414 {
1415 int ret;
1416 #ifdef CONFIG_PROFILER
1417 int64_t ti;
1418 #endif
1419
1420 assert(tcg_enabled());
1421 #ifdef CONFIG_PROFILER
1422 ti = profile_getclock();
1423 #endif
1424 cpu_exec_start(cpu);
1425 ret = cpu_exec(cpu);
1426 cpu_exec_end(cpu);
1427 #ifdef CONFIG_PROFILER
1428 tcg_time += profile_getclock() - ti;
1429 #endif
1430 return ret;
1431 }
1432
1433 /* Destroy any remaining vCPUs which have been unplugged and have
1434 * finished running
1435 */
1436 static void deal_with_unplugged_cpus(void)
1437 {
1438 CPUState *cpu;
1439
1440 CPU_FOREACH(cpu) {
1441 if (cpu->unplug && !cpu_can_run(cpu)) {
1442 qemu_tcg_destroy_vcpu(cpu);
1443 cpu->created = false;
1444 qemu_cond_signal(&qemu_cpu_cond);
1445 break;
1446 }
1447 }
1448 }
1449
1450 /* Single-threaded TCG
1451 *
1452 * In the single-threaded case each vCPU is simulated in turn. If
1453 * there is more than a single vCPU we create a simple timer to kick
1454 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1455 * This is done explicitly rather than relying on side-effects
1456 * elsewhere.
1457 */
1458
1459 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1460 {
1461 CPUState *cpu = arg;
1462
1463 assert(tcg_enabled());
1464 rcu_register_thread();
1465 tcg_register_thread();
1466
1467 qemu_mutex_lock_iothread();
1468 qemu_thread_get_self(cpu->thread);
1469
1470 cpu->thread_id = qemu_get_thread_id();
1471 cpu->created = true;
1472 cpu->can_do_io = 1;
1473 qemu_cond_signal(&qemu_cpu_cond);
1474
1475 /* wait for initial kick-off after machine start */
1476 while (first_cpu->stopped) {
1477 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1478
1479 /* process any pending work */
1480 CPU_FOREACH(cpu) {
1481 current_cpu = cpu;
1482 qemu_wait_io_event_common(cpu);
1483 }
1484 }
1485
1486 start_tcg_kick_timer();
1487
1488 cpu = first_cpu;
1489
1490 /* process any pending work */
1491 cpu->exit_request = 1;
1492
1493 while (1) {
1494 qemu_mutex_unlock_iothread();
1495 replay_mutex_lock();
1496 qemu_mutex_lock_iothread();
1497 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1498 qemu_account_warp_timer();
1499
1500 /* Run the timers here. This is much more efficient than
1501 * waking up the I/O thread and waiting for completion.
1502 */
1503 handle_icount_deadline();
1504
1505 replay_mutex_unlock();
1506
1507 if (!cpu) {
1508 cpu = first_cpu;
1509 }
1510
1511 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1512
1513 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1514 current_cpu = cpu;
1515
1516 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1517 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1518
1519 if (cpu_can_run(cpu)) {
1520 int r;
1521
1522 qemu_mutex_unlock_iothread();
1523 prepare_icount_for_run(cpu);
1524
1525 r = tcg_cpu_exec(cpu);
1526
1527 process_icount_data(cpu);
1528 qemu_mutex_lock_iothread();
1529
1530 if (r == EXCP_DEBUG) {
1531 cpu_handle_guest_debug(cpu);
1532 break;
1533 } else if (r == EXCP_ATOMIC) {
1534 qemu_mutex_unlock_iothread();
1535 cpu_exec_step_atomic(cpu);
1536 qemu_mutex_lock_iothread();
1537 break;
1538 }
1539 } else if (cpu->stop) {
1540 if (cpu->unplug) {
1541 cpu = CPU_NEXT(cpu);
1542 }
1543 break;
1544 }
1545
1546 cpu = CPU_NEXT(cpu);
1547 } /* while (cpu && !cpu->exit_request).. */
1548
1549 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1550 atomic_set(&tcg_current_rr_cpu, NULL);
1551
1552 if (cpu && cpu->exit_request) {
1553 atomic_mb_set(&cpu->exit_request, 0);
1554 }
1555
1556 qemu_tcg_rr_wait_io_event(cpu ? cpu : first_cpu);
1557 deal_with_unplugged_cpus();
1558 }
1559
1560 rcu_unregister_thread();
1561 return NULL;
1562 }
1563
1564 static void *qemu_hax_cpu_thread_fn(void *arg)
1565 {
1566 CPUState *cpu = arg;
1567 int r;
1568
1569 rcu_register_thread();
1570 qemu_mutex_lock_iothread();
1571 qemu_thread_get_self(cpu->thread);
1572
1573 cpu->thread_id = qemu_get_thread_id();
1574 cpu->created = true;
1575 cpu->halted = 0;
1576 current_cpu = cpu;
1577
1578 hax_init_vcpu(cpu);
1579 qemu_cond_signal(&qemu_cpu_cond);
1580
1581 do {
1582 if (cpu_can_run(cpu)) {
1583 r = hax_smp_cpu_exec(cpu);
1584 if (r == EXCP_DEBUG) {
1585 cpu_handle_guest_debug(cpu);
1586 }
1587 }
1588
1589 qemu_wait_io_event(cpu);
1590 } while (!cpu->unplug || cpu_can_run(cpu));
1591 rcu_unregister_thread();
1592 return NULL;
1593 }
1594
1595 /* The HVF-specific vCPU thread function. This one should only run when the host
1596 * CPU supports the VMX "unrestricted guest" feature. */
1597 static void *qemu_hvf_cpu_thread_fn(void *arg)
1598 {
1599 CPUState *cpu = arg;
1600
1601 int r;
1602
1603 assert(hvf_enabled());
1604
1605 rcu_register_thread();
1606
1607 qemu_mutex_lock_iothread();
1608 qemu_thread_get_self(cpu->thread);
1609
1610 cpu->thread_id = qemu_get_thread_id();
1611 cpu->can_do_io = 1;
1612 current_cpu = cpu;
1613
1614 hvf_init_vcpu(cpu);
1615
1616 /* signal CPU creation */
1617 cpu->created = true;
1618 qemu_cond_signal(&qemu_cpu_cond);
1619
1620 do {
1621 if (cpu_can_run(cpu)) {
1622 r = hvf_vcpu_exec(cpu);
1623 if (r == EXCP_DEBUG) {
1624 cpu_handle_guest_debug(cpu);
1625 }
1626 }
1627 qemu_wait_io_event(cpu);
1628 } while (!cpu->unplug || cpu_can_run(cpu));
1629
1630 hvf_vcpu_destroy(cpu);
1631 cpu->created = false;
1632 qemu_cond_signal(&qemu_cpu_cond);
1633 qemu_mutex_unlock_iothread();
1634 rcu_unregister_thread();
1635 return NULL;
1636 }
1637
1638 static void *qemu_whpx_cpu_thread_fn(void *arg)
1639 {
1640 CPUState *cpu = arg;
1641 int r;
1642
1643 rcu_register_thread();
1644
1645 qemu_mutex_lock_iothread();
1646 qemu_thread_get_self(cpu->thread);
1647 cpu->thread_id = qemu_get_thread_id();
1648 current_cpu = cpu;
1649
1650 r = whpx_init_vcpu(cpu);
1651 if (r < 0) {
1652 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1653 exit(1);
1654 }
1655
1656 /* signal CPU creation */
1657 cpu->created = true;
1658 qemu_cond_signal(&qemu_cpu_cond);
1659
1660 do {
1661 if (cpu_can_run(cpu)) {
1662 r = whpx_vcpu_exec(cpu);
1663 if (r == EXCP_DEBUG) {
1664 cpu_handle_guest_debug(cpu);
1665 }
1666 }
1667 while (cpu_thread_is_idle(cpu)) {
1668 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1669 }
1670 qemu_wait_io_event_common(cpu);
1671 } while (!cpu->unplug || cpu_can_run(cpu));
1672
1673 whpx_destroy_vcpu(cpu);
1674 cpu->created = false;
1675 qemu_cond_signal(&qemu_cpu_cond);
1676 qemu_mutex_unlock_iothread();
1677 rcu_unregister_thread();
1678 return NULL;
1679 }
1680
1681 #ifdef _WIN32
1682 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1683 {
1684 }
1685 #endif
1686
1687 /* Multi-threaded TCG
1688 *
1689 * In the multi-threaded case each vCPU has its own thread. The TLS
1690 * variable current_cpu can be used deep in the code to find the
1691 * current CPUState for a given thread.
1692 */
1693
1694 static void *qemu_tcg_cpu_thread_fn(void *arg)
1695 {
1696 CPUState *cpu = arg;
1697
1698 assert(tcg_enabled());
1699 g_assert(!use_icount);
1700
1701 rcu_register_thread();
1702 tcg_register_thread();
1703
1704 qemu_mutex_lock_iothread();
1705 qemu_thread_get_self(cpu->thread);
1706
1707 cpu->thread_id = qemu_get_thread_id();
1708 cpu->created = true;
1709 cpu->can_do_io = 1;
1710 current_cpu = cpu;
1711 qemu_cond_signal(&qemu_cpu_cond);
1712
1713 /* process any pending work */
1714 cpu->exit_request = 1;
1715
1716 do {
1717 if (cpu_can_run(cpu)) {
1718 int r;
1719 qemu_mutex_unlock_iothread();
1720 r = tcg_cpu_exec(cpu);
1721 qemu_mutex_lock_iothread();
1722 switch (r) {
1723 case EXCP_DEBUG:
1724 cpu_handle_guest_debug(cpu);
1725 break;
1726 case EXCP_HALTED:
1727 /* during start-up the vCPU is reset and the thread is
1728 * kicked several times. If we don't ensure we go back
1729 * to sleep in the halted state we won't cleanly
1730 * start-up when the vCPU is enabled.
1731 *
1732 * cpu->halted should ensure we sleep in wait_io_event
1733 */
1734 g_assert(cpu->halted);
1735 break;
1736 case EXCP_ATOMIC:
1737 qemu_mutex_unlock_iothread();
1738 cpu_exec_step_atomic(cpu);
1739 qemu_mutex_lock_iothread();
1740 default:
1741 /* Ignore everything else? */
1742 break;
1743 }
1744 }
1745
1746 atomic_mb_set(&cpu->exit_request, 0);
1747 qemu_wait_io_event(cpu);
1748 } while (!cpu->unplug || cpu_can_run(cpu));
1749
1750 qemu_tcg_destroy_vcpu(cpu);
1751 cpu->created = false;
1752 qemu_cond_signal(&qemu_cpu_cond);
1753 qemu_mutex_unlock_iothread();
1754 rcu_unregister_thread();
1755 return NULL;
1756 }
1757
1758 static void qemu_cpu_kick_thread(CPUState *cpu)
1759 {
1760 #ifndef _WIN32
1761 int err;
1762
1763 if (cpu->thread_kicked) {
1764 return;
1765 }
1766 cpu->thread_kicked = true;
1767 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1768 if (err) {
1769 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1770 exit(1);
1771 }
1772 #else /* _WIN32 */
1773 if (!qemu_cpu_is_self(cpu)) {
1774 if (whpx_enabled()) {
1775 whpx_vcpu_kick(cpu);
1776 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1777 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1778 __func__, GetLastError());
1779 exit(1);
1780 }
1781 }
1782 #endif
1783 }
1784
1785 void qemu_cpu_kick(CPUState *cpu)
1786 {
1787 qemu_cond_broadcast(cpu->halt_cond);
1788 if (tcg_enabled()) {
1789 cpu_exit(cpu);
1790 /* NOP unless doing single-thread RR */
1791 qemu_cpu_kick_rr_cpu();
1792 } else {
1793 if (hax_enabled()) {
1794 /*
1795 * FIXME: race condition with the exit_request check in
1796 * hax_vcpu_hax_exec
1797 */
1798 cpu->exit_request = 1;
1799 }
1800 qemu_cpu_kick_thread(cpu);
1801 }
1802 }
1803
1804 void qemu_cpu_kick_self(void)
1805 {
1806 assert(current_cpu);
1807 qemu_cpu_kick_thread(current_cpu);
1808 }
1809
1810 bool qemu_cpu_is_self(CPUState *cpu)
1811 {
1812 return qemu_thread_is_self(cpu->thread);
1813 }
1814
1815 bool qemu_in_vcpu_thread(void)
1816 {
1817 return current_cpu && qemu_cpu_is_self(current_cpu);
1818 }
1819
1820 static __thread bool iothread_locked = false;
1821
1822 bool qemu_mutex_iothread_locked(void)
1823 {
1824 return iothread_locked;
1825 }
1826
1827 /*
1828 * The BQL is taken from so many places that it is worth profiling the
1829 * callers directly, instead of funneling them all through a single function.
1830 */
1831 void qemu_mutex_lock_iothread_impl(const char *file, int line)
1832 {
1833 QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
1834
1835 g_assert(!qemu_mutex_iothread_locked());
1836 bql_lock(&qemu_global_mutex, file, line);
1837 iothread_locked = true;
1838 }
1839
1840 void qemu_mutex_unlock_iothread(void)
1841 {
1842 g_assert(qemu_mutex_iothread_locked());
1843 iothread_locked = false;
1844 qemu_mutex_unlock(&qemu_global_mutex);
1845 }
1846
1847 static bool all_vcpus_paused(void)
1848 {
1849 CPUState *cpu;
1850
1851 CPU_FOREACH(cpu) {
1852 if (!cpu->stopped) {
1853 return false;
1854 }
1855 }
1856
1857 return true;
1858 }
1859
1860 void pause_all_vcpus(void)
1861 {
1862 CPUState *cpu;
1863
1864 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1865 CPU_FOREACH(cpu) {
1866 if (qemu_cpu_is_self(cpu)) {
1867 qemu_cpu_stop(cpu, true);
1868 } else {
1869 cpu->stop = true;
1870 qemu_cpu_kick(cpu);
1871 }
1872 }
1873
1874 /* We need to drop the replay_lock so any vCPU threads woken up
1875 * can finish their replay tasks
1876 */
1877 replay_mutex_unlock();
1878
1879 while (!all_vcpus_paused()) {
1880 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1881 CPU_FOREACH(cpu) {
1882 qemu_cpu_kick(cpu);
1883 }
1884 }
1885
1886 qemu_mutex_unlock_iothread();
1887 replay_mutex_lock();
1888 qemu_mutex_lock_iothread();
1889 }
1890
1891 void cpu_resume(CPUState *cpu)
1892 {
1893 cpu->stop = false;
1894 cpu->stopped = false;
1895 qemu_cpu_kick(cpu);
1896 }
1897
1898 void resume_all_vcpus(void)
1899 {
1900 CPUState *cpu;
1901
1902 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1903 CPU_FOREACH(cpu) {
1904 cpu_resume(cpu);
1905 }
1906 }
1907
1908 void cpu_remove_sync(CPUState *cpu)
1909 {
1910 cpu->stop = true;
1911 cpu->unplug = true;
1912 qemu_cpu_kick(cpu);
1913 qemu_mutex_unlock_iothread();
1914 qemu_thread_join(cpu->thread);
1915 qemu_mutex_lock_iothread();
1916 }
1917
1918 /* For temporary buffers for forming a name */
1919 #define VCPU_THREAD_NAME_SIZE 16
1920
1921 static void qemu_tcg_init_vcpu(CPUState *cpu)
1922 {
1923 char thread_name[VCPU_THREAD_NAME_SIZE];
1924 static QemuCond *single_tcg_halt_cond;
1925 static QemuThread *single_tcg_cpu_thread;
1926 static int tcg_region_inited;
1927
1928 assert(tcg_enabled());
1929 /*
1930 * Initialize TCG regions--once. Now is a good time, because:
1931 * (1) TCG's init context, prologue and target globals have been set up.
1932 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1933 * -accel flag is processed, so the check doesn't work then).
1934 */
1935 if (!tcg_region_inited) {
1936 tcg_region_inited = 1;
1937 tcg_region_init();
1938 }
1939
1940 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1941 cpu->thread = g_malloc0(sizeof(QemuThread));
1942 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1943 qemu_cond_init(cpu->halt_cond);
1944
1945 if (qemu_tcg_mttcg_enabled()) {
1946 /* create a thread per vCPU with TCG (MTTCG) */
1947 parallel_cpus = true;
1948 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1949 cpu->cpu_index);
1950
1951 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1952 cpu, QEMU_THREAD_JOINABLE);
1953
1954 } else {
1955 /* share a single thread for all cpus with TCG */
1956 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1957 qemu_thread_create(cpu->thread, thread_name,
1958 qemu_tcg_rr_cpu_thread_fn,
1959 cpu, QEMU_THREAD_JOINABLE);
1960
1961 single_tcg_halt_cond = cpu->halt_cond;
1962 single_tcg_cpu_thread = cpu->thread;
1963 }
1964 #ifdef _WIN32
1965 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1966 #endif
1967 } else {
1968 /* For non-MTTCG cases we share the thread */
1969 cpu->thread = single_tcg_cpu_thread;
1970 cpu->halt_cond = single_tcg_halt_cond;
1971 cpu->thread_id = first_cpu->thread_id;
1972 cpu->can_do_io = 1;
1973 cpu->created = true;
1974 }
1975 }
1976
1977 static void qemu_hax_start_vcpu(CPUState *cpu)
1978 {
1979 char thread_name[VCPU_THREAD_NAME_SIZE];
1980
1981 cpu->thread = g_malloc0(sizeof(QemuThread));
1982 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1983 qemu_cond_init(cpu->halt_cond);
1984
1985 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1986 cpu->cpu_index);
1987 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1988 cpu, QEMU_THREAD_JOINABLE);
1989 #ifdef _WIN32
1990 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1991 #endif
1992 }
1993
1994 static void qemu_kvm_start_vcpu(CPUState *cpu)
1995 {
1996 char thread_name[VCPU_THREAD_NAME_SIZE];
1997
1998 cpu->thread = g_malloc0(sizeof(QemuThread));
1999 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2000 qemu_cond_init(cpu->halt_cond);
2001 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
2002 cpu->cpu_index);
2003 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
2004 cpu, QEMU_THREAD_JOINABLE);
2005 }
2006
2007 static void qemu_hvf_start_vcpu(CPUState *cpu)
2008 {
2009 char thread_name[VCPU_THREAD_NAME_SIZE];
2010
2011 /* HVF currently does not support TCG, and only runs in
2012 * unrestricted-guest mode. */
2013 assert(hvf_enabled());
2014
2015 cpu->thread = g_malloc0(sizeof(QemuThread));
2016 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2017 qemu_cond_init(cpu->halt_cond);
2018
2019 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
2020 cpu->cpu_index);
2021 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
2022 cpu, QEMU_THREAD_JOINABLE);
2023 }
2024
2025 static void qemu_whpx_start_vcpu(CPUState *cpu)
2026 {
2027 char thread_name[VCPU_THREAD_NAME_SIZE];
2028
2029 cpu->thread = g_malloc0(sizeof(QemuThread));
2030 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2031 qemu_cond_init(cpu->halt_cond);
2032 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
2033 cpu->cpu_index);
2034 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
2035 cpu, QEMU_THREAD_JOINABLE);
2036 #ifdef _WIN32
2037 cpu->hThread = qemu_thread_get_handle(cpu->thread);
2038 #endif
2039 }
2040
2041 static void qemu_dummy_start_vcpu(CPUState *cpu)
2042 {
2043 char thread_name[VCPU_THREAD_NAME_SIZE];
2044
2045 cpu->thread = g_malloc0(sizeof(QemuThread));
2046 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
2047 qemu_cond_init(cpu->halt_cond);
2048 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
2049 cpu->cpu_index);
2050 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
2051 QEMU_THREAD_JOINABLE);
2052 }
2053
2054 void qemu_init_vcpu(CPUState *cpu)
2055 {
2056 cpu->nr_cores = smp_cores;
2057 cpu->nr_threads = smp_threads;
2058 cpu->stopped = true;
2059
2060 if (!cpu->as) {
2061 /* If the target cpu hasn't set up any address spaces itself,
2062 * give it the default one.
2063 */
2064 cpu->num_ases = 1;
2065 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
2066 }
2067
2068 if (kvm_enabled()) {
2069 qemu_kvm_start_vcpu(cpu);
2070 } else if (hax_enabled()) {
2071 qemu_hax_start_vcpu(cpu);
2072 } else if (hvf_enabled()) {
2073 qemu_hvf_start_vcpu(cpu);
2074 } else if (tcg_enabled()) {
2075 qemu_tcg_init_vcpu(cpu);
2076 } else if (whpx_enabled()) {
2077 qemu_whpx_start_vcpu(cpu);
2078 } else {
2079 qemu_dummy_start_vcpu(cpu);
2080 }
2081
2082 while (!cpu->created) {
2083 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
2084 }
2085 }
2086
2087 void cpu_stop_current(void)
2088 {
2089 if (current_cpu) {
2090 qemu_cpu_stop(current_cpu, true);
2091 }
2092 }
2093
2094 int vm_stop(RunState state)
2095 {
2096 if (qemu_in_vcpu_thread()) {
2097 qemu_system_vmstop_request_prepare();
2098 qemu_system_vmstop_request(state);
2099 /*
2100 * FIXME: should not return to device code in case
2101 * vm_stop() has been requested.
2102 */
2103 cpu_stop_current();
2104 return 0;
2105 }
2106
2107 return do_vm_stop(state, true);
2108 }
2109
2110 /**
2111 * Prepare for (re)starting the VM.
2112 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2113 * running or in case of an error condition), 0 otherwise.
2114 */
2115 int vm_prepare_start(void)
2116 {
2117 RunState requested;
2118
2119 qemu_vmstop_requested(&requested);
2120 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2121 return -1;
2122 }
2123
2124 /* Ensure that a STOP/RESUME pair of events is emitted if a
2125 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2126 * example, according to documentation is always followed by
2127 * the STOP event.
2128 */
2129 if (runstate_is_running()) {
2130 qapi_event_send_stop();
2131 qapi_event_send_resume();
2132 return -1;
2133 }
2134
2135 /* We are sending this now, but the CPUs will be resumed shortly later */
2136 qapi_event_send_resume();
2137
2138 replay_enable_events();
2139 cpu_enable_ticks();
2140 runstate_set(RUN_STATE_RUNNING);
2141 vm_state_notify(1, RUN_STATE_RUNNING);
2142 return 0;
2143 }
2144
2145 void vm_start(void)
2146 {
2147 if (!vm_prepare_start()) {
2148 resume_all_vcpus();
2149 }
2150 }
2151
2152 /* does a state transition even if the VM is already stopped,
2153 current state is forgotten forever */
2154 int vm_stop_force_state(RunState state)
2155 {
2156 if (runstate_is_running()) {
2157 return vm_stop(state);
2158 } else {
2159 runstate_set(state);
2160
2161 bdrv_drain_all();
2162 /* Make sure to return an error if the flush in a previous vm_stop()
2163 * failed. */
2164 return bdrv_flush_all();
2165 }
2166 }
2167
2168 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
2169 {
2170 /* XXX: implement xxx_cpu_list for targets that still miss it */
2171 #if defined(cpu_list)
2172 cpu_list(f, cpu_fprintf);
2173 #endif
2174 }
2175
2176 CpuInfoList *qmp_query_cpus(Error **errp)
2177 {
2178 MachineState *ms = MACHINE(qdev_get_machine());
2179 MachineClass *mc = MACHINE_GET_CLASS(ms);
2180 CpuInfoList *head = NULL, *cur_item = NULL;
2181 CPUState *cpu;
2182
2183 CPU_FOREACH(cpu) {
2184 CpuInfoList *info;
2185 #if defined(TARGET_I386)
2186 X86CPU *x86_cpu = X86_CPU(cpu);
2187 CPUX86State *env = &x86_cpu->env;
2188 #elif defined(TARGET_PPC)
2189 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
2190 CPUPPCState *env = &ppc_cpu->env;
2191 #elif defined(TARGET_SPARC)
2192 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
2193 CPUSPARCState *env = &sparc_cpu->env;
2194 #elif defined(TARGET_RISCV)
2195 RISCVCPU *riscv_cpu = RISCV_CPU(cpu);
2196 CPURISCVState *env = &riscv_cpu->env;
2197 #elif defined(TARGET_MIPS)
2198 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
2199 CPUMIPSState *env = &mips_cpu->env;
2200 #elif defined(TARGET_TRICORE)
2201 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
2202 CPUTriCoreState *env = &tricore_cpu->env;
2203 #elif defined(TARGET_S390X)
2204 S390CPU *s390_cpu = S390_CPU(cpu);
2205 CPUS390XState *env = &s390_cpu->env;
2206 #endif
2207
2208 cpu_synchronize_state(cpu);
2209
2210 info = g_malloc0(sizeof(*info));
2211 info->value = g_malloc0(sizeof(*info->value));
2212 info->value->CPU = cpu->cpu_index;
2213 info->value->current = (cpu == first_cpu);
2214 info->value->halted = cpu->halted;
2215 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2216 info->value->thread_id = cpu->thread_id;
2217 #if defined(TARGET_I386)
2218 info->value->arch = CPU_INFO_ARCH_X86;
2219 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
2220 #elif defined(TARGET_PPC)
2221 info->value->arch = CPU_INFO_ARCH_PPC;
2222 info->value->u.ppc.nip = env->nip;
2223 #elif defined(TARGET_SPARC)
2224 info->value->arch = CPU_INFO_ARCH_SPARC;
2225 info->value->u.q_sparc.pc = env->pc;
2226 info->value->u.q_sparc.npc = env->npc;
2227 #elif defined(TARGET_MIPS)
2228 info->value->arch = CPU_INFO_ARCH_MIPS;
2229 info->value->u.q_mips.PC = env->active_tc.PC;
2230 #elif defined(TARGET_TRICORE)
2231 info->value->arch = CPU_INFO_ARCH_TRICORE;
2232 info->value->u.tricore.PC = env->PC;
2233 #elif defined(TARGET_S390X)
2234 info->value->arch = CPU_INFO_ARCH_S390;
2235 info->value->u.s390.cpu_state = env->cpu_state;
2236 #elif defined(TARGET_RISCV)
2237 info->value->arch = CPU_INFO_ARCH_RISCV;
2238 info->value->u.riscv.pc = env->pc;
2239 #else
2240 info->value->arch = CPU_INFO_ARCH_OTHER;
2241 #endif
2242 info->value->has_props = !!mc->cpu_index_to_instance_props;
2243 if (info->value->has_props) {
2244 CpuInstanceProperties *props;
2245 props = g_malloc0(sizeof(*props));
2246 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2247 info->value->props = props;
2248 }
2249
2250 /* XXX: waiting for the qapi to support GSList */
2251 if (!cur_item) {
2252 head = cur_item = info;
2253 } else {
2254 cur_item->next = info;
2255 cur_item = info;
2256 }
2257 }
2258
2259 return head;
2260 }
2261
2262 static CpuInfoArch sysemu_target_to_cpuinfo_arch(SysEmuTarget target)
2263 {
2264 /*
2265 * The @SysEmuTarget -> @CpuInfoArch mapping below is based on the
2266 * TARGET_ARCH -> TARGET_BASE_ARCH mapping in the "configure" script.
2267 */
2268 switch (target) {
2269 case SYS_EMU_TARGET_I386:
2270 case SYS_EMU_TARGET_X86_64:
2271 return CPU_INFO_ARCH_X86;
2272
2273 case SYS_EMU_TARGET_PPC:
2274 case SYS_EMU_TARGET_PPC64:
2275 return CPU_INFO_ARCH_PPC;
2276
2277 case SYS_EMU_TARGET_SPARC:
2278 case SYS_EMU_TARGET_SPARC64:
2279 return CPU_INFO_ARCH_SPARC;
2280
2281 case SYS_EMU_TARGET_MIPS:
2282 case SYS_EMU_TARGET_MIPSEL:
2283 case SYS_EMU_TARGET_MIPS64:
2284 case SYS_EMU_TARGET_MIPS64EL:
2285 return CPU_INFO_ARCH_MIPS;
2286
2287 case SYS_EMU_TARGET_TRICORE:
2288 return CPU_INFO_ARCH_TRICORE;
2289
2290 case SYS_EMU_TARGET_S390X:
2291 return CPU_INFO_ARCH_S390;
2292
2293 case SYS_EMU_TARGET_RISCV32:
2294 case SYS_EMU_TARGET_RISCV64:
2295 return CPU_INFO_ARCH_RISCV;
2296
2297 default:
2298 return CPU_INFO_ARCH_OTHER;
2299 }
2300 }
2301
2302 static void cpustate_to_cpuinfo_s390(CpuInfoS390 *info, const CPUState *cpu)
2303 {
2304 #ifdef TARGET_S390X
2305 S390CPU *s390_cpu = S390_CPU(cpu);
2306 CPUS390XState *env = &s390_cpu->env;
2307
2308 info->cpu_state = env->cpu_state;
2309 #else
2310 abort();
2311 #endif
2312 }
2313
2314 /*
2315 * fast means: we NEVER interrupt vCPU threads to retrieve
2316 * information from KVM.
2317 */
2318 CpuInfoFastList *qmp_query_cpus_fast(Error **errp)
2319 {
2320 MachineState *ms = MACHINE(qdev_get_machine());
2321 MachineClass *mc = MACHINE_GET_CLASS(ms);
2322 CpuInfoFastList *head = NULL, *cur_item = NULL;
2323 SysEmuTarget target = qapi_enum_parse(&SysEmuTarget_lookup, TARGET_NAME,
2324 -1, &error_abort);
2325 CPUState *cpu;
2326
2327 CPU_FOREACH(cpu) {
2328 CpuInfoFastList *info = g_malloc0(sizeof(*info));
2329 info->value = g_malloc0(sizeof(*info->value));
2330
2331 info->value->cpu_index = cpu->cpu_index;
2332 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2333 info->value->thread_id = cpu->thread_id;
2334
2335 info->value->has_props = !!mc->cpu_index_to_instance_props;
2336 if (info->value->has_props) {
2337 CpuInstanceProperties *props;
2338 props = g_malloc0(sizeof(*props));
2339 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2340 info->value->props = props;
2341 }
2342
2343 info->value->arch = sysemu_target_to_cpuinfo_arch(target);
2344 info->value->target = target;
2345 if (target == SYS_EMU_TARGET_S390X) {
2346 cpustate_to_cpuinfo_s390(&info->value->u.s390x, cpu);
2347 }
2348
2349 if (!cur_item) {
2350 head = cur_item = info;
2351 } else {
2352 cur_item->next = info;
2353 cur_item = info;
2354 }
2355 }
2356
2357 return head;
2358 }
2359
2360 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2361 bool has_cpu, int64_t cpu_index, Error **errp)
2362 {
2363 FILE *f;
2364 uint32_t l;
2365 CPUState *cpu;
2366 uint8_t buf[1024];
2367 int64_t orig_addr = addr, orig_size = size;
2368
2369 if (!has_cpu) {
2370 cpu_index = 0;
2371 }
2372
2373 cpu = qemu_get_cpu(cpu_index);
2374 if (cpu == NULL) {
2375 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2376 "a CPU number");
2377 return;
2378 }
2379
2380 f = fopen(filename, "wb");
2381 if (!f) {
2382 error_setg_file_open(errp, errno, filename);
2383 return;
2384 }
2385
2386 while (size != 0) {
2387 l = sizeof(buf);
2388 if (l > size)
2389 l = size;
2390 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2391 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2392 " specified", orig_addr, orig_size);
2393 goto exit;
2394 }
2395 if (fwrite(buf, 1, l, f) != l) {
2396 error_setg(errp, QERR_IO_ERROR);
2397 goto exit;
2398 }
2399 addr += l;
2400 size -= l;
2401 }
2402
2403 exit:
2404 fclose(f);
2405 }
2406
2407 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2408 Error **errp)
2409 {
2410 FILE *f;
2411 uint32_t l;
2412 uint8_t buf[1024];
2413
2414 f = fopen(filename, "wb");
2415 if (!f) {
2416 error_setg_file_open(errp, errno, filename);
2417 return;
2418 }
2419
2420 while (size != 0) {
2421 l = sizeof(buf);
2422 if (l > size)
2423 l = size;
2424 cpu_physical_memory_read(addr, buf, l);
2425 if (fwrite(buf, 1, l, f) != l) {
2426 error_setg(errp, QERR_IO_ERROR);
2427 goto exit;
2428 }
2429 addr += l;
2430 size -= l;
2431 }
2432
2433 exit:
2434 fclose(f);
2435 }
2436
2437 void qmp_inject_nmi(Error **errp)
2438 {
2439 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2440 }
2441
2442 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2443 {
2444 if (!use_icount) {
2445 return;
2446 }
2447
2448 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
2449 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2450 if (icount_align_option) {
2451 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
2452 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
2453 } else {
2454 cpu_fprintf(f, "Max guest delay NA\n");
2455 cpu_fprintf(f, "Max guest advance NA\n");
2456 }
2457 }