]> git.proxmox.com Git - mirror_qemu.git/blob - cpus.c
kvm: Set cpu_single_env only once
[mirror_qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "main-loop.h"
38
39 #ifndef _WIN32
40 #include "compatfd.h"
41 #endif
42
43 #ifdef CONFIG_LINUX
44
45 #include <sys/prctl.h>
46
47 #ifndef PR_MCE_KILL
48 #define PR_MCE_KILL 33
49 #endif
50
51 #ifndef PR_MCE_KILL_SET
52 #define PR_MCE_KILL_SET 1
53 #endif
54
55 #ifndef PR_MCE_KILL_EARLY
56 #define PR_MCE_KILL_EARLY 1
57 #endif
58
59 #endif /* CONFIG_LINUX */
60
61 static CPUState *next_cpu;
62
63 /***********************************************************/
64 /* guest cycle counter */
65
66 /* Conversion factor from emulated instructions to virtual clock ticks. */
67 static int icount_time_shift;
68 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
69 #define MAX_ICOUNT_SHIFT 10
70 /* Compensate for varying guest execution speed. */
71 static int64_t qemu_icount_bias;
72 static QEMUTimer *icount_rt_timer;
73 static QEMUTimer *icount_vm_timer;
74 static QEMUTimer *icount_warp_timer;
75 static int64_t vm_clock_warp_start;
76 static int64_t qemu_icount;
77
78 typedef struct TimersState {
79 int64_t cpu_ticks_prev;
80 int64_t cpu_ticks_offset;
81 int64_t cpu_clock_offset;
82 int32_t cpu_ticks_enabled;
83 int64_t dummy;
84 } TimersState;
85
86 TimersState timers_state;
87
88 /* Return the virtual CPU time, based on the instruction counter. */
89 int64_t cpu_get_icount(void)
90 {
91 int64_t icount;
92 CPUState *env = cpu_single_env;
93
94 icount = qemu_icount;
95 if (env) {
96 if (!can_do_io(env)) {
97 fprintf(stderr, "Bad clock read\n");
98 }
99 icount -= (env->icount_decr.u16.low + env->icount_extra);
100 }
101 return qemu_icount_bias + (icount << icount_time_shift);
102 }
103
104 /* return the host CPU cycle counter and handle stop/restart */
105 int64_t cpu_get_ticks(void)
106 {
107 if (use_icount) {
108 return cpu_get_icount();
109 }
110 if (!timers_state.cpu_ticks_enabled) {
111 return timers_state.cpu_ticks_offset;
112 } else {
113 int64_t ticks;
114 ticks = cpu_get_real_ticks();
115 if (timers_state.cpu_ticks_prev > ticks) {
116 /* Note: non increasing ticks may happen if the host uses
117 software suspend */
118 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
119 }
120 timers_state.cpu_ticks_prev = ticks;
121 return ticks + timers_state.cpu_ticks_offset;
122 }
123 }
124
125 /* return the host CPU monotonic timer and handle stop/restart */
126 int64_t cpu_get_clock(void)
127 {
128 int64_t ti;
129 if (!timers_state.cpu_ticks_enabled) {
130 return timers_state.cpu_clock_offset;
131 } else {
132 ti = get_clock();
133 return ti + timers_state.cpu_clock_offset;
134 }
135 }
136
137 /* enable cpu_get_ticks() */
138 void cpu_enable_ticks(void)
139 {
140 if (!timers_state.cpu_ticks_enabled) {
141 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
142 timers_state.cpu_clock_offset -= get_clock();
143 timers_state.cpu_ticks_enabled = 1;
144 }
145 }
146
147 /* disable cpu_get_ticks() : the clock is stopped. You must not call
148 cpu_get_ticks() after that. */
149 void cpu_disable_ticks(void)
150 {
151 if (timers_state.cpu_ticks_enabled) {
152 timers_state.cpu_ticks_offset = cpu_get_ticks();
153 timers_state.cpu_clock_offset = cpu_get_clock();
154 timers_state.cpu_ticks_enabled = 0;
155 }
156 }
157
158 /* Correlation between real and virtual time is always going to be
159 fairly approximate, so ignore small variation.
160 When the guest is idle real and virtual time will be aligned in
161 the IO wait loop. */
162 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
163
164 static void icount_adjust(void)
165 {
166 int64_t cur_time;
167 int64_t cur_icount;
168 int64_t delta;
169 static int64_t last_delta;
170 /* If the VM is not running, then do nothing. */
171 if (!runstate_is_running()) {
172 return;
173 }
174 cur_time = cpu_get_clock();
175 cur_icount = qemu_get_clock_ns(vm_clock);
176 delta = cur_icount - cur_time;
177 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
178 if (delta > 0
179 && last_delta + ICOUNT_WOBBLE < delta * 2
180 && icount_time_shift > 0) {
181 /* The guest is getting too far ahead. Slow time down. */
182 icount_time_shift--;
183 }
184 if (delta < 0
185 && last_delta - ICOUNT_WOBBLE > delta * 2
186 && icount_time_shift < MAX_ICOUNT_SHIFT) {
187 /* The guest is getting too far behind. Speed time up. */
188 icount_time_shift++;
189 }
190 last_delta = delta;
191 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
192 }
193
194 static void icount_adjust_rt(void *opaque)
195 {
196 qemu_mod_timer(icount_rt_timer,
197 qemu_get_clock_ms(rt_clock) + 1000);
198 icount_adjust();
199 }
200
201 static void icount_adjust_vm(void *opaque)
202 {
203 qemu_mod_timer(icount_vm_timer,
204 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
205 icount_adjust();
206 }
207
208 static int64_t qemu_icount_round(int64_t count)
209 {
210 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
211 }
212
213 static void icount_warp_rt(void *opaque)
214 {
215 if (vm_clock_warp_start == -1) {
216 return;
217 }
218
219 if (runstate_is_running()) {
220 int64_t clock = qemu_get_clock_ns(rt_clock);
221 int64_t warp_delta = clock - vm_clock_warp_start;
222 if (use_icount == 1) {
223 qemu_icount_bias += warp_delta;
224 } else {
225 /*
226 * In adaptive mode, do not let the vm_clock run too
227 * far ahead of real time.
228 */
229 int64_t cur_time = cpu_get_clock();
230 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
231 int64_t delta = cur_time - cur_icount;
232 qemu_icount_bias += MIN(warp_delta, delta);
233 }
234 if (qemu_clock_expired(vm_clock)) {
235 qemu_notify_event();
236 }
237 }
238 vm_clock_warp_start = -1;
239 }
240
241 void qemu_clock_warp(QEMUClock *clock)
242 {
243 int64_t deadline;
244
245 /*
246 * There are too many global variables to make the "warp" behavior
247 * applicable to other clocks. But a clock argument removes the
248 * need for if statements all over the place.
249 */
250 if (clock != vm_clock || !use_icount) {
251 return;
252 }
253
254 /*
255 * If the CPUs have been sleeping, advance the vm_clock timer now. This
256 * ensures that the deadline for the timer is computed correctly below.
257 * This also makes sure that the insn counter is synchronized before the
258 * CPU starts running, in case the CPU is woken by an event other than
259 * the earliest vm_clock timer.
260 */
261 icount_warp_rt(NULL);
262 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
263 qemu_del_timer(icount_warp_timer);
264 return;
265 }
266
267 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
268 deadline = qemu_clock_deadline(vm_clock);
269 if (deadline > 0) {
270 /*
271 * Ensure the vm_clock proceeds even when the virtual CPU goes to
272 * sleep. Otherwise, the CPU might be waiting for a future timer
273 * interrupt to wake it up, but the interrupt never comes because
274 * the vCPU isn't running any insns and thus doesn't advance the
275 * vm_clock.
276 *
277 * An extreme solution for this problem would be to never let VCPUs
278 * sleep in icount mode if there is a pending vm_clock timer; rather
279 * time could just advance to the next vm_clock event. Instead, we
280 * do stop VCPUs and only advance vm_clock after some "real" time,
281 * (related to the time left until the next event) has passed. This
282 * rt_clock timer will do this. This avoids that the warps are too
283 * visible externally---for example, you will not be sending network
284 * packets continuously instead of every 100ms.
285 */
286 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
287 } else {
288 qemu_notify_event();
289 }
290 }
291
292 static const VMStateDescription vmstate_timers = {
293 .name = "timer",
294 .version_id = 2,
295 .minimum_version_id = 1,
296 .minimum_version_id_old = 1,
297 .fields = (VMStateField[]) {
298 VMSTATE_INT64(cpu_ticks_offset, TimersState),
299 VMSTATE_INT64(dummy, TimersState),
300 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
301 VMSTATE_END_OF_LIST()
302 }
303 };
304
305 void configure_icount(const char *option)
306 {
307 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
308 if (!option) {
309 return;
310 }
311
312 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
313 if (strcmp(option, "auto") != 0) {
314 icount_time_shift = strtol(option, NULL, 0);
315 use_icount = 1;
316 return;
317 }
318
319 use_icount = 2;
320
321 /* 125MIPS seems a reasonable initial guess at the guest speed.
322 It will be corrected fairly quickly anyway. */
323 icount_time_shift = 3;
324
325 /* Have both realtime and virtual time triggers for speed adjustment.
326 The realtime trigger catches emulated time passing too slowly,
327 the virtual time trigger catches emulated time passing too fast.
328 Realtime triggers occur even when idle, so use them less frequently
329 than VM triggers. */
330 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
331 qemu_mod_timer(icount_rt_timer,
332 qemu_get_clock_ms(rt_clock) + 1000);
333 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
334 qemu_mod_timer(icount_vm_timer,
335 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
336 }
337
338 /***********************************************************/
339 void hw_error(const char *fmt, ...)
340 {
341 va_list ap;
342 CPUState *env;
343
344 va_start(ap, fmt);
345 fprintf(stderr, "qemu: hardware error: ");
346 vfprintf(stderr, fmt, ap);
347 fprintf(stderr, "\n");
348 for(env = first_cpu; env != NULL; env = env->next_cpu) {
349 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
350 #ifdef TARGET_I386
351 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
352 #else
353 cpu_dump_state(env, stderr, fprintf, 0);
354 #endif
355 }
356 va_end(ap);
357 abort();
358 }
359
360 void cpu_synchronize_all_states(void)
361 {
362 CPUState *cpu;
363
364 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
365 cpu_synchronize_state(cpu);
366 }
367 }
368
369 void cpu_synchronize_all_post_reset(void)
370 {
371 CPUState *cpu;
372
373 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
374 cpu_synchronize_post_reset(cpu);
375 }
376 }
377
378 void cpu_synchronize_all_post_init(void)
379 {
380 CPUState *cpu;
381
382 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
383 cpu_synchronize_post_init(cpu);
384 }
385 }
386
387 int cpu_is_stopped(CPUState *env)
388 {
389 return !runstate_is_running() || env->stopped;
390 }
391
392 static void do_vm_stop(RunState state)
393 {
394 if (runstate_is_running()) {
395 cpu_disable_ticks();
396 pause_all_vcpus();
397 runstate_set(state);
398 vm_state_notify(0, state);
399 bdrv_drain_all();
400 bdrv_flush_all();
401 monitor_protocol_event(QEVENT_STOP, NULL);
402 }
403 }
404
405 static int cpu_can_run(CPUState *env)
406 {
407 if (env->stop) {
408 return 0;
409 }
410 if (env->stopped || !runstate_is_running()) {
411 return 0;
412 }
413 return 1;
414 }
415
416 static bool cpu_thread_is_idle(CPUState *env)
417 {
418 if (env->stop || env->queued_work_first) {
419 return false;
420 }
421 if (env->stopped || !runstate_is_running()) {
422 return true;
423 }
424 if (!env->halted || qemu_cpu_has_work(env) ||
425 (kvm_enabled() && kvm_irqchip_in_kernel())) {
426 return false;
427 }
428 return true;
429 }
430
431 bool all_cpu_threads_idle(void)
432 {
433 CPUState *env;
434
435 for (env = first_cpu; env != NULL; env = env->next_cpu) {
436 if (!cpu_thread_is_idle(env)) {
437 return false;
438 }
439 }
440 return true;
441 }
442
443 static void cpu_handle_guest_debug(CPUState *env)
444 {
445 gdb_set_stop_cpu(env);
446 qemu_system_debug_request();
447 env->stopped = 1;
448 }
449
450 static void cpu_signal(int sig)
451 {
452 if (cpu_single_env) {
453 cpu_exit(cpu_single_env);
454 }
455 exit_request = 1;
456 }
457
458 #ifdef CONFIG_LINUX
459 static void sigbus_reraise(void)
460 {
461 sigset_t set;
462 struct sigaction action;
463
464 memset(&action, 0, sizeof(action));
465 action.sa_handler = SIG_DFL;
466 if (!sigaction(SIGBUS, &action, NULL)) {
467 raise(SIGBUS);
468 sigemptyset(&set);
469 sigaddset(&set, SIGBUS);
470 sigprocmask(SIG_UNBLOCK, &set, NULL);
471 }
472 perror("Failed to re-raise SIGBUS!\n");
473 abort();
474 }
475
476 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
477 void *ctx)
478 {
479 if (kvm_on_sigbus(siginfo->ssi_code,
480 (void *)(intptr_t)siginfo->ssi_addr)) {
481 sigbus_reraise();
482 }
483 }
484
485 static void qemu_init_sigbus(void)
486 {
487 struct sigaction action;
488
489 memset(&action, 0, sizeof(action));
490 action.sa_flags = SA_SIGINFO;
491 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
492 sigaction(SIGBUS, &action, NULL);
493
494 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
495 }
496
497 static void qemu_kvm_eat_signals(CPUState *env)
498 {
499 struct timespec ts = { 0, 0 };
500 siginfo_t siginfo;
501 sigset_t waitset;
502 sigset_t chkset;
503 int r;
504
505 sigemptyset(&waitset);
506 sigaddset(&waitset, SIG_IPI);
507 sigaddset(&waitset, SIGBUS);
508
509 do {
510 r = sigtimedwait(&waitset, &siginfo, &ts);
511 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
512 perror("sigtimedwait");
513 exit(1);
514 }
515
516 switch (r) {
517 case SIGBUS:
518 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
519 sigbus_reraise();
520 }
521 break;
522 default:
523 break;
524 }
525
526 r = sigpending(&chkset);
527 if (r == -1) {
528 perror("sigpending");
529 exit(1);
530 }
531 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
532 }
533
534 #else /* !CONFIG_LINUX */
535
536 static void qemu_init_sigbus(void)
537 {
538 }
539
540 static void qemu_kvm_eat_signals(CPUState *env)
541 {
542 }
543 #endif /* !CONFIG_LINUX */
544
545 #ifndef _WIN32
546 static void dummy_signal(int sig)
547 {
548 }
549
550 static void qemu_kvm_init_cpu_signals(CPUState *env)
551 {
552 int r;
553 sigset_t set;
554 struct sigaction sigact;
555
556 memset(&sigact, 0, sizeof(sigact));
557 sigact.sa_handler = dummy_signal;
558 sigaction(SIG_IPI, &sigact, NULL);
559
560 pthread_sigmask(SIG_BLOCK, NULL, &set);
561 sigdelset(&set, SIG_IPI);
562 sigdelset(&set, SIGBUS);
563 r = kvm_set_signal_mask(env, &set);
564 if (r) {
565 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
566 exit(1);
567 }
568 }
569
570 static void qemu_tcg_init_cpu_signals(void)
571 {
572 sigset_t set;
573 struct sigaction sigact;
574
575 memset(&sigact, 0, sizeof(sigact));
576 sigact.sa_handler = cpu_signal;
577 sigaction(SIG_IPI, &sigact, NULL);
578
579 sigemptyset(&set);
580 sigaddset(&set, SIG_IPI);
581 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
582 }
583
584 #else /* _WIN32 */
585 static void qemu_kvm_init_cpu_signals(CPUState *env)
586 {
587 abort();
588 }
589
590 static void qemu_tcg_init_cpu_signals(void)
591 {
592 }
593 #endif /* _WIN32 */
594
595 QemuMutex qemu_global_mutex;
596 static QemuCond qemu_io_proceeded_cond;
597 static bool iothread_requesting_mutex;
598
599 static QemuThread io_thread;
600
601 static QemuThread *tcg_cpu_thread;
602 static QemuCond *tcg_halt_cond;
603
604 /* cpu creation */
605 static QemuCond qemu_cpu_cond;
606 /* system init */
607 static QemuCond qemu_pause_cond;
608 static QemuCond qemu_work_cond;
609
610 void qemu_init_cpu_loop(void)
611 {
612 qemu_init_sigbus();
613 qemu_cond_init(&qemu_cpu_cond);
614 qemu_cond_init(&qemu_pause_cond);
615 qemu_cond_init(&qemu_work_cond);
616 qemu_cond_init(&qemu_io_proceeded_cond);
617 qemu_mutex_init(&qemu_global_mutex);
618
619 qemu_thread_get_self(&io_thread);
620 }
621
622 void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
623 {
624 struct qemu_work_item wi;
625
626 if (qemu_cpu_is_self(env)) {
627 func(data);
628 return;
629 }
630
631 wi.func = func;
632 wi.data = data;
633 if (!env->queued_work_first) {
634 env->queued_work_first = &wi;
635 } else {
636 env->queued_work_last->next = &wi;
637 }
638 env->queued_work_last = &wi;
639 wi.next = NULL;
640 wi.done = false;
641
642 qemu_cpu_kick(env);
643 while (!wi.done) {
644 CPUState *self_env = cpu_single_env;
645
646 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
647 cpu_single_env = self_env;
648 }
649 }
650
651 static void flush_queued_work(CPUState *env)
652 {
653 struct qemu_work_item *wi;
654
655 if (!env->queued_work_first) {
656 return;
657 }
658
659 while ((wi = env->queued_work_first)) {
660 env->queued_work_first = wi->next;
661 wi->func(wi->data);
662 wi->done = true;
663 }
664 env->queued_work_last = NULL;
665 qemu_cond_broadcast(&qemu_work_cond);
666 }
667
668 static void qemu_wait_io_event_common(CPUState *env)
669 {
670 if (env->stop) {
671 env->stop = 0;
672 env->stopped = 1;
673 qemu_cond_signal(&qemu_pause_cond);
674 }
675 flush_queued_work(env);
676 env->thread_kicked = false;
677 }
678
679 static void qemu_tcg_wait_io_event(void)
680 {
681 CPUState *env;
682
683 while (all_cpu_threads_idle()) {
684 /* Start accounting real time to the virtual clock if the CPUs
685 are idle. */
686 qemu_clock_warp(vm_clock);
687 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
688 }
689
690 while (iothread_requesting_mutex) {
691 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
692 }
693
694 for (env = first_cpu; env != NULL; env = env->next_cpu) {
695 qemu_wait_io_event_common(env);
696 }
697 }
698
699 static void qemu_kvm_wait_io_event(CPUState *env)
700 {
701 while (cpu_thread_is_idle(env)) {
702 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
703 }
704
705 qemu_kvm_eat_signals(env);
706 qemu_wait_io_event_common(env);
707 }
708
709 static void *qemu_kvm_cpu_thread_fn(void *arg)
710 {
711 CPUState *env = arg;
712 int r;
713
714 qemu_mutex_lock(&qemu_global_mutex);
715 qemu_thread_get_self(env->thread);
716 env->thread_id = qemu_get_thread_id();
717 cpu_single_env = env;
718
719 r = kvm_init_vcpu(env);
720 if (r < 0) {
721 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
722 exit(1);
723 }
724
725 qemu_kvm_init_cpu_signals(env);
726
727 /* signal CPU creation */
728 env->created = 1;
729 qemu_cond_signal(&qemu_cpu_cond);
730
731 while (1) {
732 if (cpu_can_run(env)) {
733 r = kvm_cpu_exec(env);
734 if (r == EXCP_DEBUG) {
735 cpu_handle_guest_debug(env);
736 }
737 }
738 qemu_kvm_wait_io_event(env);
739 }
740
741 return NULL;
742 }
743
744 static void tcg_exec_all(void);
745
746 static void *qemu_tcg_cpu_thread_fn(void *arg)
747 {
748 CPUState *env = arg;
749
750 qemu_tcg_init_cpu_signals();
751 qemu_thread_get_self(env->thread);
752
753 /* signal CPU creation */
754 qemu_mutex_lock(&qemu_global_mutex);
755 for (env = first_cpu; env != NULL; env = env->next_cpu) {
756 env->thread_id = qemu_get_thread_id();
757 env->created = 1;
758 }
759 qemu_cond_signal(&qemu_cpu_cond);
760
761 /* wait for initial kick-off after machine start */
762 while (first_cpu->stopped) {
763 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
764 }
765
766 while (1) {
767 tcg_exec_all();
768 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
769 qemu_notify_event();
770 }
771 qemu_tcg_wait_io_event();
772 }
773
774 return NULL;
775 }
776
777 static void qemu_cpu_kick_thread(CPUState *env)
778 {
779 #ifndef _WIN32
780 int err;
781
782 err = pthread_kill(env->thread->thread, SIG_IPI);
783 if (err) {
784 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
785 exit(1);
786 }
787 #else /* _WIN32 */
788 if (!qemu_cpu_is_self(env)) {
789 SuspendThread(env->hThread);
790 cpu_signal(0);
791 ResumeThread(env->hThread);
792 }
793 #endif
794 }
795
796 void qemu_cpu_kick(void *_env)
797 {
798 CPUState *env = _env;
799
800 qemu_cond_broadcast(env->halt_cond);
801 if (kvm_enabled() && !env->thread_kicked) {
802 qemu_cpu_kick_thread(env);
803 env->thread_kicked = true;
804 }
805 }
806
807 void qemu_cpu_kick_self(void)
808 {
809 #ifndef _WIN32
810 assert(cpu_single_env);
811
812 if (!cpu_single_env->thread_kicked) {
813 qemu_cpu_kick_thread(cpu_single_env);
814 cpu_single_env->thread_kicked = true;
815 }
816 #else
817 abort();
818 #endif
819 }
820
821 int qemu_cpu_is_self(void *_env)
822 {
823 CPUState *env = _env;
824
825 return qemu_thread_is_self(env->thread);
826 }
827
828 void qemu_mutex_lock_iothread(void)
829 {
830 if (kvm_enabled()) {
831 qemu_mutex_lock(&qemu_global_mutex);
832 } else {
833 iothread_requesting_mutex = true;
834 if (qemu_mutex_trylock(&qemu_global_mutex)) {
835 qemu_cpu_kick_thread(first_cpu);
836 qemu_mutex_lock(&qemu_global_mutex);
837 }
838 iothread_requesting_mutex = false;
839 qemu_cond_broadcast(&qemu_io_proceeded_cond);
840 }
841 }
842
843 void qemu_mutex_unlock_iothread(void)
844 {
845 qemu_mutex_unlock(&qemu_global_mutex);
846 }
847
848 static int all_vcpus_paused(void)
849 {
850 CPUState *penv = first_cpu;
851
852 while (penv) {
853 if (!penv->stopped) {
854 return 0;
855 }
856 penv = (CPUState *)penv->next_cpu;
857 }
858
859 return 1;
860 }
861
862 void pause_all_vcpus(void)
863 {
864 CPUState *penv = first_cpu;
865
866 qemu_clock_enable(vm_clock, false);
867 while (penv) {
868 penv->stop = 1;
869 qemu_cpu_kick(penv);
870 penv = (CPUState *)penv->next_cpu;
871 }
872
873 while (!all_vcpus_paused()) {
874 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
875 penv = first_cpu;
876 while (penv) {
877 qemu_cpu_kick(penv);
878 penv = (CPUState *)penv->next_cpu;
879 }
880 }
881 }
882
883 void resume_all_vcpus(void)
884 {
885 CPUState *penv = first_cpu;
886
887 qemu_clock_enable(vm_clock, true);
888 while (penv) {
889 penv->stop = 0;
890 penv->stopped = 0;
891 qemu_cpu_kick(penv);
892 penv = (CPUState *)penv->next_cpu;
893 }
894 }
895
896 static void qemu_tcg_init_vcpu(void *_env)
897 {
898 CPUState *env = _env;
899
900 /* share a single thread for all cpus with TCG */
901 if (!tcg_cpu_thread) {
902 env->thread = g_malloc0(sizeof(QemuThread));
903 env->halt_cond = g_malloc0(sizeof(QemuCond));
904 qemu_cond_init(env->halt_cond);
905 tcg_halt_cond = env->halt_cond;
906 qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
907 QEMU_THREAD_JOINABLE);
908 #ifdef _WIN32
909 env->hThread = qemu_thread_get_handle(env->thread);
910 #endif
911 while (env->created == 0) {
912 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
913 }
914 tcg_cpu_thread = env->thread;
915 } else {
916 env->thread = tcg_cpu_thread;
917 env->halt_cond = tcg_halt_cond;
918 }
919 }
920
921 static void qemu_kvm_start_vcpu(CPUState *env)
922 {
923 env->thread = g_malloc0(sizeof(QemuThread));
924 env->halt_cond = g_malloc0(sizeof(QemuCond));
925 qemu_cond_init(env->halt_cond);
926 qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
927 QEMU_THREAD_JOINABLE);
928 while (env->created == 0) {
929 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
930 }
931 }
932
933 void qemu_init_vcpu(void *_env)
934 {
935 CPUState *env = _env;
936
937 env->nr_cores = smp_cores;
938 env->nr_threads = smp_threads;
939 env->stopped = 1;
940 if (kvm_enabled()) {
941 qemu_kvm_start_vcpu(env);
942 } else {
943 qemu_tcg_init_vcpu(env);
944 }
945 }
946
947 void cpu_stop_current(void)
948 {
949 if (cpu_single_env) {
950 cpu_single_env->stop = 0;
951 cpu_single_env->stopped = 1;
952 cpu_exit(cpu_single_env);
953 qemu_cond_signal(&qemu_pause_cond);
954 }
955 }
956
957 void vm_stop(RunState state)
958 {
959 if (!qemu_thread_is_self(&io_thread)) {
960 qemu_system_vmstop_request(state);
961 /*
962 * FIXME: should not return to device code in case
963 * vm_stop() has been requested.
964 */
965 cpu_stop_current();
966 return;
967 }
968 do_vm_stop(state);
969 }
970
971 /* does a state transition even if the VM is already stopped,
972 current state is forgotten forever */
973 void vm_stop_force_state(RunState state)
974 {
975 if (runstate_is_running()) {
976 vm_stop(state);
977 } else {
978 runstate_set(state);
979 }
980 }
981
982 static int tcg_cpu_exec(CPUState *env)
983 {
984 int ret;
985 #ifdef CONFIG_PROFILER
986 int64_t ti;
987 #endif
988
989 #ifdef CONFIG_PROFILER
990 ti = profile_getclock();
991 #endif
992 if (use_icount) {
993 int64_t count;
994 int decr;
995 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
996 env->icount_decr.u16.low = 0;
997 env->icount_extra = 0;
998 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
999 qemu_icount += count;
1000 decr = (count > 0xffff) ? 0xffff : count;
1001 count -= decr;
1002 env->icount_decr.u16.low = decr;
1003 env->icount_extra = count;
1004 }
1005 ret = cpu_exec(env);
1006 #ifdef CONFIG_PROFILER
1007 qemu_time += profile_getclock() - ti;
1008 #endif
1009 if (use_icount) {
1010 /* Fold pending instructions back into the
1011 instruction counter, and clear the interrupt flag. */
1012 qemu_icount -= (env->icount_decr.u16.low
1013 + env->icount_extra);
1014 env->icount_decr.u32 = 0;
1015 env->icount_extra = 0;
1016 }
1017 return ret;
1018 }
1019
1020 static void tcg_exec_all(void)
1021 {
1022 int r;
1023
1024 /* Account partial waits to the vm_clock. */
1025 qemu_clock_warp(vm_clock);
1026
1027 if (next_cpu == NULL) {
1028 next_cpu = first_cpu;
1029 }
1030 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1031 CPUState *env = next_cpu;
1032
1033 qemu_clock_enable(vm_clock,
1034 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1035
1036 if (cpu_can_run(env)) {
1037 r = tcg_cpu_exec(env);
1038 if (r == EXCP_DEBUG) {
1039 cpu_handle_guest_debug(env);
1040 break;
1041 }
1042 } else if (env->stop || env->stopped) {
1043 break;
1044 }
1045 }
1046 exit_request = 0;
1047 }
1048
1049 void set_numa_modes(void)
1050 {
1051 CPUState *env;
1052 int i;
1053
1054 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1055 for (i = 0; i < nb_numa_nodes; i++) {
1056 if (node_cpumask[i] & (1 << env->cpu_index)) {
1057 env->numa_node = i;
1058 }
1059 }
1060 }
1061 }
1062
1063 void set_cpu_log(const char *optarg)
1064 {
1065 int mask;
1066 const CPULogItem *item;
1067
1068 mask = cpu_str_to_log_mask(optarg);
1069 if (!mask) {
1070 printf("Log items (comma separated):\n");
1071 for (item = cpu_log_items; item->mask != 0; item++) {
1072 printf("%-10s %s\n", item->name, item->help);
1073 }
1074 exit(1);
1075 }
1076 cpu_set_log(mask);
1077 }
1078
1079 void set_cpu_log_filename(const char *optarg)
1080 {
1081 cpu_set_log_filename(optarg);
1082 }
1083
1084 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1085 {
1086 /* XXX: implement xxx_cpu_list for targets that still miss it */
1087 #if defined(cpu_list_id)
1088 cpu_list_id(f, cpu_fprintf, optarg);
1089 #elif defined(cpu_list)
1090 cpu_list(f, cpu_fprintf); /* deprecated */
1091 #endif
1092 }
1093
1094 CpuInfoList *qmp_query_cpus(Error **errp)
1095 {
1096 CpuInfoList *head = NULL, *cur_item = NULL;
1097 CPUState *env;
1098
1099 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1100 CpuInfoList *info;
1101
1102 cpu_synchronize_state(env);
1103
1104 info = g_malloc0(sizeof(*info));
1105 info->value = g_malloc0(sizeof(*info->value));
1106 info->value->CPU = env->cpu_index;
1107 info->value->current = (env == first_cpu);
1108 info->value->halted = env->halted;
1109 info->value->thread_id = env->thread_id;
1110 #if defined(TARGET_I386)
1111 info->value->has_pc = true;
1112 info->value->pc = env->eip + env->segs[R_CS].base;
1113 #elif defined(TARGET_PPC)
1114 info->value->has_nip = true;
1115 info->value->nip = env->nip;
1116 #elif defined(TARGET_SPARC)
1117 info->value->has_pc = true;
1118 info->value->pc = env->pc;
1119 info->value->has_npc = true;
1120 info->value->npc = env->npc;
1121 #elif defined(TARGET_MIPS)
1122 info->value->has_PC = true;
1123 info->value->PC = env->active_tc.PC;
1124 #endif
1125
1126 /* XXX: waiting for the qapi to support GSList */
1127 if (!cur_item) {
1128 head = cur_item = info;
1129 } else {
1130 cur_item->next = info;
1131 cur_item = info;
1132 }
1133 }
1134
1135 return head;
1136 }
1137
1138 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1139 bool has_cpu, int64_t cpu_index, Error **errp)
1140 {
1141 FILE *f;
1142 uint32_t l;
1143 CPUState *env;
1144 uint8_t buf[1024];
1145
1146 if (!has_cpu) {
1147 cpu_index = 0;
1148 }
1149
1150 for (env = first_cpu; env; env = env->next_cpu) {
1151 if (cpu_index == env->cpu_index) {
1152 break;
1153 }
1154 }
1155
1156 if (env == NULL) {
1157 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1158 "a CPU number");
1159 return;
1160 }
1161
1162 f = fopen(filename, "wb");
1163 if (!f) {
1164 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1165 return;
1166 }
1167
1168 while (size != 0) {
1169 l = sizeof(buf);
1170 if (l > size)
1171 l = size;
1172 cpu_memory_rw_debug(env, addr, buf, l, 0);
1173 if (fwrite(buf, 1, l, f) != l) {
1174 error_set(errp, QERR_IO_ERROR);
1175 goto exit;
1176 }
1177 addr += l;
1178 size -= l;
1179 }
1180
1181 exit:
1182 fclose(f);
1183 }
1184
1185 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1186 Error **errp)
1187 {
1188 FILE *f;
1189 uint32_t l;
1190 uint8_t buf[1024];
1191
1192 f = fopen(filename, "wb");
1193 if (!f) {
1194 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1195 return;
1196 }
1197
1198 while (size != 0) {
1199 l = sizeof(buf);
1200 if (l > size)
1201 l = size;
1202 cpu_physical_memory_rw(addr, buf, l, 0);
1203 if (fwrite(buf, 1, l, f) != l) {
1204 error_set(errp, QERR_IO_ERROR);
1205 goto exit;
1206 }
1207 addr += l;
1208 size -= l;
1209 }
1210
1211 exit:
1212 fclose(f);
1213 }
1214
1215 void qmp_inject_nmi(Error **errp)
1216 {
1217 #if defined(TARGET_I386)
1218 CPUState *env;
1219
1220 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1221 if (!env->apic_state) {
1222 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1223 } else {
1224 apic_deliver_nmi(env->apic_state);
1225 }
1226 }
1227 #else
1228 error_set(errp, QERR_UNSUPPORTED);
1229 #endif
1230 }