]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - crypto/Kconfig
crypto: acomp - add support for lzo via scomp
[mirror_ubuntu-bionic-kernel.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on (MODULE_SIG || !MODULES)
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91 config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96 config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105 config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108
109 config CRYPTO_ACOMP
110 tristate
111 select CRYPTO_ALGAPI
112 select CRYPTO_ACOMP2
113
114 config CRYPTO_RSA
115 tristate "RSA algorithm"
116 select CRYPTO_AKCIPHER
117 select CRYPTO_MANAGER
118 select MPILIB
119 select ASN1
120 help
121 Generic implementation of the RSA public key algorithm.
122
123 config CRYPTO_DH
124 tristate "Diffie-Hellman algorithm"
125 select CRYPTO_KPP
126 select MPILIB
127 help
128 Generic implementation of the Diffie-Hellman algorithm.
129
130 config CRYPTO_ECDH
131 tristate "ECDH algorithm"
132 select CRYTPO_KPP
133 help
134 Generic implementation of the ECDH algorithm
135
136 config CRYPTO_MANAGER
137 tristate "Cryptographic algorithm manager"
138 select CRYPTO_MANAGER2
139 help
140 Create default cryptographic template instantiations such as
141 cbc(aes).
142
143 config CRYPTO_MANAGER2
144 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
145 select CRYPTO_AEAD2
146 select CRYPTO_HASH2
147 select CRYPTO_BLKCIPHER2
148 select CRYPTO_AKCIPHER2
149 select CRYPTO_KPP2
150 select CRYPTO_ACOMP2
151
152 config CRYPTO_USER
153 tristate "Userspace cryptographic algorithm configuration"
154 depends on NET
155 select CRYPTO_MANAGER
156 help
157 Userspace configuration for cryptographic instantiations such as
158 cbc(aes).
159
160 config CRYPTO_MANAGER_DISABLE_TESTS
161 bool "Disable run-time self tests"
162 default y
163 depends on CRYPTO_MANAGER2
164 help
165 Disable run-time self tests that normally take place at
166 algorithm registration.
167
168 config CRYPTO_GF128MUL
169 tristate "GF(2^128) multiplication functions"
170 help
171 Efficient table driven implementation of multiplications in the
172 field GF(2^128). This is needed by some cypher modes. This
173 option will be selected automatically if you select such a
174 cipher mode. Only select this option by hand if you expect to load
175 an external module that requires these functions.
176
177 config CRYPTO_NULL
178 tristate "Null algorithms"
179 select CRYPTO_NULL2
180 help
181 These are 'Null' algorithms, used by IPsec, which do nothing.
182
183 config CRYPTO_NULL2
184 tristate
185 select CRYPTO_ALGAPI2
186 select CRYPTO_BLKCIPHER2
187 select CRYPTO_HASH2
188
189 config CRYPTO_PCRYPT
190 tristate "Parallel crypto engine"
191 depends on SMP
192 select PADATA
193 select CRYPTO_MANAGER
194 select CRYPTO_AEAD
195 help
196 This converts an arbitrary crypto algorithm into a parallel
197 algorithm that executes in kernel threads.
198
199 config CRYPTO_WORKQUEUE
200 tristate
201
202 config CRYPTO_CRYPTD
203 tristate "Software async crypto daemon"
204 select CRYPTO_BLKCIPHER
205 select CRYPTO_HASH
206 select CRYPTO_MANAGER
207 select CRYPTO_WORKQUEUE
208 help
209 This is a generic software asynchronous crypto daemon that
210 converts an arbitrary synchronous software crypto algorithm
211 into an asynchronous algorithm that executes in a kernel thread.
212
213 config CRYPTO_MCRYPTD
214 tristate "Software async multi-buffer crypto daemon"
215 select CRYPTO_BLKCIPHER
216 select CRYPTO_HASH
217 select CRYPTO_MANAGER
218 select CRYPTO_WORKQUEUE
219 help
220 This is a generic software asynchronous crypto daemon that
221 provides the kernel thread to assist multi-buffer crypto
222 algorithms for submitting jobs and flushing jobs in multi-buffer
223 crypto algorithms. Multi-buffer crypto algorithms are executed
224 in the context of this kernel thread and drivers can post
225 their crypto request asynchronously to be processed by this daemon.
226
227 config CRYPTO_AUTHENC
228 tristate "Authenc support"
229 select CRYPTO_AEAD
230 select CRYPTO_BLKCIPHER
231 select CRYPTO_MANAGER
232 select CRYPTO_HASH
233 select CRYPTO_NULL
234 help
235 Authenc: Combined mode wrapper for IPsec.
236 This is required for IPSec.
237
238 config CRYPTO_TEST
239 tristate "Testing module"
240 depends on m
241 select CRYPTO_MANAGER
242 help
243 Quick & dirty crypto test module.
244
245 config CRYPTO_ABLK_HELPER
246 tristate
247 select CRYPTO_CRYPTD
248
249 config CRYPTO_GLUE_HELPER_X86
250 tristate
251 depends on X86
252 select CRYPTO_ALGAPI
253
254 config CRYPTO_ENGINE
255 tristate
256
257 comment "Authenticated Encryption with Associated Data"
258
259 config CRYPTO_CCM
260 tristate "CCM support"
261 select CRYPTO_CTR
262 select CRYPTO_AEAD
263 help
264 Support for Counter with CBC MAC. Required for IPsec.
265
266 config CRYPTO_GCM
267 tristate "GCM/GMAC support"
268 select CRYPTO_CTR
269 select CRYPTO_AEAD
270 select CRYPTO_GHASH
271 select CRYPTO_NULL
272 help
273 Support for Galois/Counter Mode (GCM) and Galois Message
274 Authentication Code (GMAC). Required for IPSec.
275
276 config CRYPTO_CHACHA20POLY1305
277 tristate "ChaCha20-Poly1305 AEAD support"
278 select CRYPTO_CHACHA20
279 select CRYPTO_POLY1305
280 select CRYPTO_AEAD
281 help
282 ChaCha20-Poly1305 AEAD support, RFC7539.
283
284 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
285 with the Poly1305 authenticator. It is defined in RFC7539 for use in
286 IETF protocols.
287
288 config CRYPTO_SEQIV
289 tristate "Sequence Number IV Generator"
290 select CRYPTO_AEAD
291 select CRYPTO_BLKCIPHER
292 select CRYPTO_NULL
293 select CRYPTO_RNG_DEFAULT
294 help
295 This IV generator generates an IV based on a sequence number by
296 xoring it with a salt. This algorithm is mainly useful for CTR
297
298 config CRYPTO_ECHAINIV
299 tristate "Encrypted Chain IV Generator"
300 select CRYPTO_AEAD
301 select CRYPTO_NULL
302 select CRYPTO_RNG_DEFAULT
303 default m
304 help
305 This IV generator generates an IV based on the encryption of
306 a sequence number xored with a salt. This is the default
307 algorithm for CBC.
308
309 comment "Block modes"
310
311 config CRYPTO_CBC
312 tristate "CBC support"
313 select CRYPTO_BLKCIPHER
314 select CRYPTO_MANAGER
315 help
316 CBC: Cipher Block Chaining mode
317 This block cipher algorithm is required for IPSec.
318
319 config CRYPTO_CTR
320 tristate "CTR support"
321 select CRYPTO_BLKCIPHER
322 select CRYPTO_SEQIV
323 select CRYPTO_MANAGER
324 help
325 CTR: Counter mode
326 This block cipher algorithm is required for IPSec.
327
328 config CRYPTO_CTS
329 tristate "CTS support"
330 select CRYPTO_BLKCIPHER
331 help
332 CTS: Cipher Text Stealing
333 This is the Cipher Text Stealing mode as described by
334 Section 8 of rfc2040 and referenced by rfc3962.
335 (rfc3962 includes errata information in its Appendix A)
336 This mode is required for Kerberos gss mechanism support
337 for AES encryption.
338
339 config CRYPTO_ECB
340 tristate "ECB support"
341 select CRYPTO_BLKCIPHER
342 select CRYPTO_MANAGER
343 help
344 ECB: Electronic CodeBook mode
345 This is the simplest block cipher algorithm. It simply encrypts
346 the input block by block.
347
348 config CRYPTO_LRW
349 tristate "LRW support"
350 select CRYPTO_BLKCIPHER
351 select CRYPTO_MANAGER
352 select CRYPTO_GF128MUL
353 help
354 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
355 narrow block cipher mode for dm-crypt. Use it with cipher
356 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
357 The first 128, 192 or 256 bits in the key are used for AES and the
358 rest is used to tie each cipher block to its logical position.
359
360 config CRYPTO_PCBC
361 tristate "PCBC support"
362 select CRYPTO_BLKCIPHER
363 select CRYPTO_MANAGER
364 help
365 PCBC: Propagating Cipher Block Chaining mode
366 This block cipher algorithm is required for RxRPC.
367
368 config CRYPTO_XTS
369 tristate "XTS support"
370 select CRYPTO_BLKCIPHER
371 select CRYPTO_MANAGER
372 select CRYPTO_GF128MUL
373 help
374 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
375 key size 256, 384 or 512 bits. This implementation currently
376 can't handle a sectorsize which is not a multiple of 16 bytes.
377
378 config CRYPTO_KEYWRAP
379 tristate "Key wrapping support"
380 select CRYPTO_BLKCIPHER
381 help
382 Support for key wrapping (NIST SP800-38F / RFC3394) without
383 padding.
384
385 comment "Hash modes"
386
387 config CRYPTO_CMAC
388 tristate "CMAC support"
389 select CRYPTO_HASH
390 select CRYPTO_MANAGER
391 help
392 Cipher-based Message Authentication Code (CMAC) specified by
393 The National Institute of Standards and Technology (NIST).
394
395 https://tools.ietf.org/html/rfc4493
396 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
397
398 config CRYPTO_HMAC
399 tristate "HMAC support"
400 select CRYPTO_HASH
401 select CRYPTO_MANAGER
402 help
403 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
404 This is required for IPSec.
405
406 config CRYPTO_XCBC
407 tristate "XCBC support"
408 select CRYPTO_HASH
409 select CRYPTO_MANAGER
410 help
411 XCBC: Keyed-Hashing with encryption algorithm
412 http://www.ietf.org/rfc/rfc3566.txt
413 http://csrc.nist.gov/encryption/modes/proposedmodes/
414 xcbc-mac/xcbc-mac-spec.pdf
415
416 config CRYPTO_VMAC
417 tristate "VMAC support"
418 select CRYPTO_HASH
419 select CRYPTO_MANAGER
420 help
421 VMAC is a message authentication algorithm designed for
422 very high speed on 64-bit architectures.
423
424 See also:
425 <http://fastcrypto.org/vmac>
426
427 comment "Digest"
428
429 config CRYPTO_CRC32C
430 tristate "CRC32c CRC algorithm"
431 select CRYPTO_HASH
432 select CRC32
433 help
434 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
435 by iSCSI for header and data digests and by others.
436 See Castagnoli93. Module will be crc32c.
437
438 config CRYPTO_CRC32C_INTEL
439 tristate "CRC32c INTEL hardware acceleration"
440 depends on X86
441 select CRYPTO_HASH
442 help
443 In Intel processor with SSE4.2 supported, the processor will
444 support CRC32C implementation using hardware accelerated CRC32
445 instruction. This option will create 'crc32c-intel' module,
446 which will enable any routine to use the CRC32 instruction to
447 gain performance compared with software implementation.
448 Module will be crc32c-intel.
449
450 config CRYPT_CRC32C_VPMSUM
451 tristate "CRC32c CRC algorithm (powerpc64)"
452 depends on PPC64 && ALTIVEC
453 select CRYPTO_HASH
454 select CRC32
455 help
456 CRC32c algorithm implemented using vector polynomial multiply-sum
457 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
458 and newer processors for improved performance.
459
460
461 config CRYPTO_CRC32C_SPARC64
462 tristate "CRC32c CRC algorithm (SPARC64)"
463 depends on SPARC64
464 select CRYPTO_HASH
465 select CRC32
466 help
467 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
468 when available.
469
470 config CRYPTO_CRC32
471 tristate "CRC32 CRC algorithm"
472 select CRYPTO_HASH
473 select CRC32
474 help
475 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
476 Shash crypto api wrappers to crc32_le function.
477
478 config CRYPTO_CRC32_PCLMUL
479 tristate "CRC32 PCLMULQDQ hardware acceleration"
480 depends on X86
481 select CRYPTO_HASH
482 select CRC32
483 help
484 From Intel Westmere and AMD Bulldozer processor with SSE4.2
485 and PCLMULQDQ supported, the processor will support
486 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
487 instruction. This option will create 'crc32-plcmul' module,
488 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
489 and gain better performance as compared with the table implementation.
490
491 config CRYPTO_CRCT10DIF
492 tristate "CRCT10DIF algorithm"
493 select CRYPTO_HASH
494 help
495 CRC T10 Data Integrity Field computation is being cast as
496 a crypto transform. This allows for faster crc t10 diff
497 transforms to be used if they are available.
498
499 config CRYPTO_CRCT10DIF_PCLMUL
500 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
501 depends on X86 && 64BIT && CRC_T10DIF
502 select CRYPTO_HASH
503 help
504 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
505 CRC T10 DIF PCLMULQDQ computation can be hardware
506 accelerated PCLMULQDQ instruction. This option will create
507 'crct10dif-plcmul' module, which is faster when computing the
508 crct10dif checksum as compared with the generic table implementation.
509
510 config CRYPTO_GHASH
511 tristate "GHASH digest algorithm"
512 select CRYPTO_GF128MUL
513 select CRYPTO_HASH
514 help
515 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
516
517 config CRYPTO_POLY1305
518 tristate "Poly1305 authenticator algorithm"
519 select CRYPTO_HASH
520 help
521 Poly1305 authenticator algorithm, RFC7539.
522
523 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
524 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
525 in IETF protocols. This is the portable C implementation of Poly1305.
526
527 config CRYPTO_POLY1305_X86_64
528 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
529 depends on X86 && 64BIT
530 select CRYPTO_POLY1305
531 help
532 Poly1305 authenticator algorithm, RFC7539.
533
534 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
535 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
536 in IETF protocols. This is the x86_64 assembler implementation using SIMD
537 instructions.
538
539 config CRYPTO_MD4
540 tristate "MD4 digest algorithm"
541 select CRYPTO_HASH
542 help
543 MD4 message digest algorithm (RFC1320).
544
545 config CRYPTO_MD5
546 tristate "MD5 digest algorithm"
547 select CRYPTO_HASH
548 help
549 MD5 message digest algorithm (RFC1321).
550
551 config CRYPTO_MD5_OCTEON
552 tristate "MD5 digest algorithm (OCTEON)"
553 depends on CPU_CAVIUM_OCTEON
554 select CRYPTO_MD5
555 select CRYPTO_HASH
556 help
557 MD5 message digest algorithm (RFC1321) implemented
558 using OCTEON crypto instructions, when available.
559
560 config CRYPTO_MD5_PPC
561 tristate "MD5 digest algorithm (PPC)"
562 depends on PPC
563 select CRYPTO_HASH
564 help
565 MD5 message digest algorithm (RFC1321) implemented
566 in PPC assembler.
567
568 config CRYPTO_MD5_SPARC64
569 tristate "MD5 digest algorithm (SPARC64)"
570 depends on SPARC64
571 select CRYPTO_MD5
572 select CRYPTO_HASH
573 help
574 MD5 message digest algorithm (RFC1321) implemented
575 using sparc64 crypto instructions, when available.
576
577 config CRYPTO_MICHAEL_MIC
578 tristate "Michael MIC keyed digest algorithm"
579 select CRYPTO_HASH
580 help
581 Michael MIC is used for message integrity protection in TKIP
582 (IEEE 802.11i). This algorithm is required for TKIP, but it
583 should not be used for other purposes because of the weakness
584 of the algorithm.
585
586 config CRYPTO_RMD128
587 tristate "RIPEMD-128 digest algorithm"
588 select CRYPTO_HASH
589 help
590 RIPEMD-128 (ISO/IEC 10118-3:2004).
591
592 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
593 be used as a secure replacement for RIPEMD. For other use cases,
594 RIPEMD-160 should be used.
595
596 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
597 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
598
599 config CRYPTO_RMD160
600 tristate "RIPEMD-160 digest algorithm"
601 select CRYPTO_HASH
602 help
603 RIPEMD-160 (ISO/IEC 10118-3:2004).
604
605 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
606 to be used as a secure replacement for the 128-bit hash functions
607 MD4, MD5 and it's predecessor RIPEMD
608 (not to be confused with RIPEMD-128).
609
610 It's speed is comparable to SHA1 and there are no known attacks
611 against RIPEMD-160.
612
613 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
614 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
615
616 config CRYPTO_RMD256
617 tristate "RIPEMD-256 digest algorithm"
618 select CRYPTO_HASH
619 help
620 RIPEMD-256 is an optional extension of RIPEMD-128 with a
621 256 bit hash. It is intended for applications that require
622 longer hash-results, without needing a larger security level
623 (than RIPEMD-128).
624
625 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
626 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
627
628 config CRYPTO_RMD320
629 tristate "RIPEMD-320 digest algorithm"
630 select CRYPTO_HASH
631 help
632 RIPEMD-320 is an optional extension of RIPEMD-160 with a
633 320 bit hash. It is intended for applications that require
634 longer hash-results, without needing a larger security level
635 (than RIPEMD-160).
636
637 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
638 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
639
640 config CRYPTO_SHA1
641 tristate "SHA1 digest algorithm"
642 select CRYPTO_HASH
643 help
644 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
645
646 config CRYPTO_SHA1_SSSE3
647 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
648 depends on X86 && 64BIT
649 select CRYPTO_SHA1
650 select CRYPTO_HASH
651 help
652 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
653 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
654 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
655 when available.
656
657 config CRYPTO_SHA256_SSSE3
658 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
659 depends on X86 && 64BIT
660 select CRYPTO_SHA256
661 select CRYPTO_HASH
662 help
663 SHA-256 secure hash standard (DFIPS 180-2) implemented
664 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
665 Extensions version 1 (AVX1), or Advanced Vector Extensions
666 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
667 Instructions) when available.
668
669 config CRYPTO_SHA512_SSSE3
670 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
671 depends on X86 && 64BIT
672 select CRYPTO_SHA512
673 select CRYPTO_HASH
674 help
675 SHA-512 secure hash standard (DFIPS 180-2) implemented
676 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
677 Extensions version 1 (AVX1), or Advanced Vector Extensions
678 version 2 (AVX2) instructions, when available.
679
680 config CRYPTO_SHA1_OCTEON
681 tristate "SHA1 digest algorithm (OCTEON)"
682 depends on CPU_CAVIUM_OCTEON
683 select CRYPTO_SHA1
684 select CRYPTO_HASH
685 help
686 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
687 using OCTEON crypto instructions, when available.
688
689 config CRYPTO_SHA1_SPARC64
690 tristate "SHA1 digest algorithm (SPARC64)"
691 depends on SPARC64
692 select CRYPTO_SHA1
693 select CRYPTO_HASH
694 help
695 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
696 using sparc64 crypto instructions, when available.
697
698 config CRYPTO_SHA1_PPC
699 tristate "SHA1 digest algorithm (powerpc)"
700 depends on PPC
701 help
702 This is the powerpc hardware accelerated implementation of the
703 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
704
705 config CRYPTO_SHA1_PPC_SPE
706 tristate "SHA1 digest algorithm (PPC SPE)"
707 depends on PPC && SPE
708 help
709 SHA-1 secure hash standard (DFIPS 180-4) implemented
710 using powerpc SPE SIMD instruction set.
711
712 config CRYPTO_SHA1_MB
713 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
714 depends on X86 && 64BIT
715 select CRYPTO_SHA1
716 select CRYPTO_HASH
717 select CRYPTO_MCRYPTD
718 help
719 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
720 using multi-buffer technique. This algorithm computes on
721 multiple data lanes concurrently with SIMD instructions for
722 better throughput. It should not be enabled by default but
723 used when there is significant amount of work to keep the keep
724 the data lanes filled to get performance benefit. If the data
725 lanes remain unfilled, a flush operation will be initiated to
726 process the crypto jobs, adding a slight latency.
727
728 config CRYPTO_SHA256_MB
729 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
730 depends on X86 && 64BIT
731 select CRYPTO_SHA256
732 select CRYPTO_HASH
733 select CRYPTO_MCRYPTD
734 help
735 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
736 using multi-buffer technique. This algorithm computes on
737 multiple data lanes concurrently with SIMD instructions for
738 better throughput. It should not be enabled by default but
739 used when there is significant amount of work to keep the keep
740 the data lanes filled to get performance benefit. If the data
741 lanes remain unfilled, a flush operation will be initiated to
742 process the crypto jobs, adding a slight latency.
743
744 config CRYPTO_SHA512_MB
745 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
746 depends on X86 && 64BIT
747 select CRYPTO_SHA512
748 select CRYPTO_HASH
749 select CRYPTO_MCRYPTD
750 help
751 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
752 using multi-buffer technique. This algorithm computes on
753 multiple data lanes concurrently with SIMD instructions for
754 better throughput. It should not be enabled by default but
755 used when there is significant amount of work to keep the keep
756 the data lanes filled to get performance benefit. If the data
757 lanes remain unfilled, a flush operation will be initiated to
758 process the crypto jobs, adding a slight latency.
759
760 config CRYPTO_SHA256
761 tristate "SHA224 and SHA256 digest algorithm"
762 select CRYPTO_HASH
763 help
764 SHA256 secure hash standard (DFIPS 180-2).
765
766 This version of SHA implements a 256 bit hash with 128 bits of
767 security against collision attacks.
768
769 This code also includes SHA-224, a 224 bit hash with 112 bits
770 of security against collision attacks.
771
772 config CRYPTO_SHA256_PPC_SPE
773 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
774 depends on PPC && SPE
775 select CRYPTO_SHA256
776 select CRYPTO_HASH
777 help
778 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
779 implemented using powerpc SPE SIMD instruction set.
780
781 config CRYPTO_SHA256_OCTEON
782 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
783 depends on CPU_CAVIUM_OCTEON
784 select CRYPTO_SHA256
785 select CRYPTO_HASH
786 help
787 SHA-256 secure hash standard (DFIPS 180-2) implemented
788 using OCTEON crypto instructions, when available.
789
790 config CRYPTO_SHA256_SPARC64
791 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
792 depends on SPARC64
793 select CRYPTO_SHA256
794 select CRYPTO_HASH
795 help
796 SHA-256 secure hash standard (DFIPS 180-2) implemented
797 using sparc64 crypto instructions, when available.
798
799 config CRYPTO_SHA512
800 tristate "SHA384 and SHA512 digest algorithms"
801 select CRYPTO_HASH
802 help
803 SHA512 secure hash standard (DFIPS 180-2).
804
805 This version of SHA implements a 512 bit hash with 256 bits of
806 security against collision attacks.
807
808 This code also includes SHA-384, a 384 bit hash with 192 bits
809 of security against collision attacks.
810
811 config CRYPTO_SHA512_OCTEON
812 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
813 depends on CPU_CAVIUM_OCTEON
814 select CRYPTO_SHA512
815 select CRYPTO_HASH
816 help
817 SHA-512 secure hash standard (DFIPS 180-2) implemented
818 using OCTEON crypto instructions, when available.
819
820 config CRYPTO_SHA512_SPARC64
821 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
822 depends on SPARC64
823 select CRYPTO_SHA512
824 select CRYPTO_HASH
825 help
826 SHA-512 secure hash standard (DFIPS 180-2) implemented
827 using sparc64 crypto instructions, when available.
828
829 config CRYPTO_SHA3
830 tristate "SHA3 digest algorithm"
831 select CRYPTO_HASH
832 help
833 SHA-3 secure hash standard (DFIPS 202). It's based on
834 cryptographic sponge function family called Keccak.
835
836 References:
837 http://keccak.noekeon.org/
838
839 config CRYPTO_TGR192
840 tristate "Tiger digest algorithms"
841 select CRYPTO_HASH
842 help
843 Tiger hash algorithm 192, 160 and 128-bit hashes
844
845 Tiger is a hash function optimized for 64-bit processors while
846 still having decent performance on 32-bit processors.
847 Tiger was developed by Ross Anderson and Eli Biham.
848
849 See also:
850 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
851
852 config CRYPTO_WP512
853 tristate "Whirlpool digest algorithms"
854 select CRYPTO_HASH
855 help
856 Whirlpool hash algorithm 512, 384 and 256-bit hashes
857
858 Whirlpool-512 is part of the NESSIE cryptographic primitives.
859 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
860
861 See also:
862 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
863
864 config CRYPTO_GHASH_CLMUL_NI_INTEL
865 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
866 depends on X86 && 64BIT
867 select CRYPTO_CRYPTD
868 help
869 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
870 The implementation is accelerated by CLMUL-NI of Intel.
871
872 comment "Ciphers"
873
874 config CRYPTO_AES
875 tristate "AES cipher algorithms"
876 select CRYPTO_ALGAPI
877 help
878 AES cipher algorithms (FIPS-197). AES uses the Rijndael
879 algorithm.
880
881 Rijndael appears to be consistently a very good performer in
882 both hardware and software across a wide range of computing
883 environments regardless of its use in feedback or non-feedback
884 modes. Its key setup time is excellent, and its key agility is
885 good. Rijndael's very low memory requirements make it very well
886 suited for restricted-space environments, in which it also
887 demonstrates excellent performance. Rijndael's operations are
888 among the easiest to defend against power and timing attacks.
889
890 The AES specifies three key sizes: 128, 192 and 256 bits
891
892 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
893
894 config CRYPTO_AES_586
895 tristate "AES cipher algorithms (i586)"
896 depends on (X86 || UML_X86) && !64BIT
897 select CRYPTO_ALGAPI
898 select CRYPTO_AES
899 help
900 AES cipher algorithms (FIPS-197). AES uses the Rijndael
901 algorithm.
902
903 Rijndael appears to be consistently a very good performer in
904 both hardware and software across a wide range of computing
905 environments regardless of its use in feedback or non-feedback
906 modes. Its key setup time is excellent, and its key agility is
907 good. Rijndael's very low memory requirements make it very well
908 suited for restricted-space environments, in which it also
909 demonstrates excellent performance. Rijndael's operations are
910 among the easiest to defend against power and timing attacks.
911
912 The AES specifies three key sizes: 128, 192 and 256 bits
913
914 See <http://csrc.nist.gov/encryption/aes/> for more information.
915
916 config CRYPTO_AES_X86_64
917 tristate "AES cipher algorithms (x86_64)"
918 depends on (X86 || UML_X86) && 64BIT
919 select CRYPTO_ALGAPI
920 select CRYPTO_AES
921 help
922 AES cipher algorithms (FIPS-197). AES uses the Rijndael
923 algorithm.
924
925 Rijndael appears to be consistently a very good performer in
926 both hardware and software across a wide range of computing
927 environments regardless of its use in feedback or non-feedback
928 modes. Its key setup time is excellent, and its key agility is
929 good. Rijndael's very low memory requirements make it very well
930 suited for restricted-space environments, in which it also
931 demonstrates excellent performance. Rijndael's operations are
932 among the easiest to defend against power and timing attacks.
933
934 The AES specifies three key sizes: 128, 192 and 256 bits
935
936 See <http://csrc.nist.gov/encryption/aes/> for more information.
937
938 config CRYPTO_AES_NI_INTEL
939 tristate "AES cipher algorithms (AES-NI)"
940 depends on X86
941 select CRYPTO_AES_X86_64 if 64BIT
942 select CRYPTO_AES_586 if !64BIT
943 select CRYPTO_CRYPTD
944 select CRYPTO_ABLK_HELPER
945 select CRYPTO_ALGAPI
946 select CRYPTO_GLUE_HELPER_X86 if 64BIT
947 select CRYPTO_LRW
948 select CRYPTO_XTS
949 help
950 Use Intel AES-NI instructions for AES algorithm.
951
952 AES cipher algorithms (FIPS-197). AES uses the Rijndael
953 algorithm.
954
955 Rijndael appears to be consistently a very good performer in
956 both hardware and software across a wide range of computing
957 environments regardless of its use in feedback or non-feedback
958 modes. Its key setup time is excellent, and its key agility is
959 good. Rijndael's very low memory requirements make it very well
960 suited for restricted-space environments, in which it also
961 demonstrates excellent performance. Rijndael's operations are
962 among the easiest to defend against power and timing attacks.
963
964 The AES specifies three key sizes: 128, 192 and 256 bits
965
966 See <http://csrc.nist.gov/encryption/aes/> for more information.
967
968 In addition to AES cipher algorithm support, the acceleration
969 for some popular block cipher mode is supported too, including
970 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
971 acceleration for CTR.
972
973 config CRYPTO_AES_SPARC64
974 tristate "AES cipher algorithms (SPARC64)"
975 depends on SPARC64
976 select CRYPTO_CRYPTD
977 select CRYPTO_ALGAPI
978 help
979 Use SPARC64 crypto opcodes for AES algorithm.
980
981 AES cipher algorithms (FIPS-197). AES uses the Rijndael
982 algorithm.
983
984 Rijndael appears to be consistently a very good performer in
985 both hardware and software across a wide range of computing
986 environments regardless of its use in feedback or non-feedback
987 modes. Its key setup time is excellent, and its key agility is
988 good. Rijndael's very low memory requirements make it very well
989 suited for restricted-space environments, in which it also
990 demonstrates excellent performance. Rijndael's operations are
991 among the easiest to defend against power and timing attacks.
992
993 The AES specifies three key sizes: 128, 192 and 256 bits
994
995 See <http://csrc.nist.gov/encryption/aes/> for more information.
996
997 In addition to AES cipher algorithm support, the acceleration
998 for some popular block cipher mode is supported too, including
999 ECB and CBC.
1000
1001 config CRYPTO_AES_PPC_SPE
1002 tristate "AES cipher algorithms (PPC SPE)"
1003 depends on PPC && SPE
1004 help
1005 AES cipher algorithms (FIPS-197). Additionally the acceleration
1006 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1007 This module should only be used for low power (router) devices
1008 without hardware AES acceleration (e.g. caam crypto). It reduces the
1009 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1010 timining attacks. Nevertheless it might be not as secure as other
1011 architecture specific assembler implementations that work on 1KB
1012 tables or 256 bytes S-boxes.
1013
1014 config CRYPTO_ANUBIS
1015 tristate "Anubis cipher algorithm"
1016 select CRYPTO_ALGAPI
1017 help
1018 Anubis cipher algorithm.
1019
1020 Anubis is a variable key length cipher which can use keys from
1021 128 bits to 320 bits in length. It was evaluated as a entrant
1022 in the NESSIE competition.
1023
1024 See also:
1025 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1026 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1027
1028 config CRYPTO_ARC4
1029 tristate "ARC4 cipher algorithm"
1030 select CRYPTO_BLKCIPHER
1031 help
1032 ARC4 cipher algorithm.
1033
1034 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1035 bits in length. This algorithm is required for driver-based
1036 WEP, but it should not be for other purposes because of the
1037 weakness of the algorithm.
1038
1039 config CRYPTO_BLOWFISH
1040 tristate "Blowfish cipher algorithm"
1041 select CRYPTO_ALGAPI
1042 select CRYPTO_BLOWFISH_COMMON
1043 help
1044 Blowfish cipher algorithm, by Bruce Schneier.
1045
1046 This is a variable key length cipher which can use keys from 32
1047 bits to 448 bits in length. It's fast, simple and specifically
1048 designed for use on "large microprocessors".
1049
1050 See also:
1051 <http://www.schneier.com/blowfish.html>
1052
1053 config CRYPTO_BLOWFISH_COMMON
1054 tristate
1055 help
1056 Common parts of the Blowfish cipher algorithm shared by the
1057 generic c and the assembler implementations.
1058
1059 See also:
1060 <http://www.schneier.com/blowfish.html>
1061
1062 config CRYPTO_BLOWFISH_X86_64
1063 tristate "Blowfish cipher algorithm (x86_64)"
1064 depends on X86 && 64BIT
1065 select CRYPTO_ALGAPI
1066 select CRYPTO_BLOWFISH_COMMON
1067 help
1068 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1069
1070 This is a variable key length cipher which can use keys from 32
1071 bits to 448 bits in length. It's fast, simple and specifically
1072 designed for use on "large microprocessors".
1073
1074 See also:
1075 <http://www.schneier.com/blowfish.html>
1076
1077 config CRYPTO_CAMELLIA
1078 tristate "Camellia cipher algorithms"
1079 depends on CRYPTO
1080 select CRYPTO_ALGAPI
1081 help
1082 Camellia cipher algorithms module.
1083
1084 Camellia is a symmetric key block cipher developed jointly
1085 at NTT and Mitsubishi Electric Corporation.
1086
1087 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1088
1089 See also:
1090 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1091
1092 config CRYPTO_CAMELLIA_X86_64
1093 tristate "Camellia cipher algorithm (x86_64)"
1094 depends on X86 && 64BIT
1095 depends on CRYPTO
1096 select CRYPTO_ALGAPI
1097 select CRYPTO_GLUE_HELPER_X86
1098 select CRYPTO_LRW
1099 select CRYPTO_XTS
1100 help
1101 Camellia cipher algorithm module (x86_64).
1102
1103 Camellia is a symmetric key block cipher developed jointly
1104 at NTT and Mitsubishi Electric Corporation.
1105
1106 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1107
1108 See also:
1109 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1110
1111 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1112 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1113 depends on X86 && 64BIT
1114 depends on CRYPTO
1115 select CRYPTO_ALGAPI
1116 select CRYPTO_CRYPTD
1117 select CRYPTO_ABLK_HELPER
1118 select CRYPTO_GLUE_HELPER_X86
1119 select CRYPTO_CAMELLIA_X86_64
1120 select CRYPTO_LRW
1121 select CRYPTO_XTS
1122 help
1123 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1124
1125 Camellia is a symmetric key block cipher developed jointly
1126 at NTT and Mitsubishi Electric Corporation.
1127
1128 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1129
1130 See also:
1131 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1132
1133 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1134 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1135 depends on X86 && 64BIT
1136 depends on CRYPTO
1137 select CRYPTO_ALGAPI
1138 select CRYPTO_CRYPTD
1139 select CRYPTO_ABLK_HELPER
1140 select CRYPTO_GLUE_HELPER_X86
1141 select CRYPTO_CAMELLIA_X86_64
1142 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1143 select CRYPTO_LRW
1144 select CRYPTO_XTS
1145 help
1146 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1147
1148 Camellia is a symmetric key block cipher developed jointly
1149 at NTT and Mitsubishi Electric Corporation.
1150
1151 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1152
1153 See also:
1154 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1155
1156 config CRYPTO_CAMELLIA_SPARC64
1157 tristate "Camellia cipher algorithm (SPARC64)"
1158 depends on SPARC64
1159 depends on CRYPTO
1160 select CRYPTO_ALGAPI
1161 help
1162 Camellia cipher algorithm module (SPARC64).
1163
1164 Camellia is a symmetric key block cipher developed jointly
1165 at NTT and Mitsubishi Electric Corporation.
1166
1167 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1168
1169 See also:
1170 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1171
1172 config CRYPTO_CAST_COMMON
1173 tristate
1174 help
1175 Common parts of the CAST cipher algorithms shared by the
1176 generic c and the assembler implementations.
1177
1178 config CRYPTO_CAST5
1179 tristate "CAST5 (CAST-128) cipher algorithm"
1180 select CRYPTO_ALGAPI
1181 select CRYPTO_CAST_COMMON
1182 help
1183 The CAST5 encryption algorithm (synonymous with CAST-128) is
1184 described in RFC2144.
1185
1186 config CRYPTO_CAST5_AVX_X86_64
1187 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1188 depends on X86 && 64BIT
1189 select CRYPTO_ALGAPI
1190 select CRYPTO_CRYPTD
1191 select CRYPTO_ABLK_HELPER
1192 select CRYPTO_CAST_COMMON
1193 select CRYPTO_CAST5
1194 help
1195 The CAST5 encryption algorithm (synonymous with CAST-128) is
1196 described in RFC2144.
1197
1198 This module provides the Cast5 cipher algorithm that processes
1199 sixteen blocks parallel using the AVX instruction set.
1200
1201 config CRYPTO_CAST6
1202 tristate "CAST6 (CAST-256) cipher algorithm"
1203 select CRYPTO_ALGAPI
1204 select CRYPTO_CAST_COMMON
1205 help
1206 The CAST6 encryption algorithm (synonymous with CAST-256) is
1207 described in RFC2612.
1208
1209 config CRYPTO_CAST6_AVX_X86_64
1210 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1211 depends on X86 && 64BIT
1212 select CRYPTO_ALGAPI
1213 select CRYPTO_CRYPTD
1214 select CRYPTO_ABLK_HELPER
1215 select CRYPTO_GLUE_HELPER_X86
1216 select CRYPTO_CAST_COMMON
1217 select CRYPTO_CAST6
1218 select CRYPTO_LRW
1219 select CRYPTO_XTS
1220 help
1221 The CAST6 encryption algorithm (synonymous with CAST-256) is
1222 described in RFC2612.
1223
1224 This module provides the Cast6 cipher algorithm that processes
1225 eight blocks parallel using the AVX instruction set.
1226
1227 config CRYPTO_DES
1228 tristate "DES and Triple DES EDE cipher algorithms"
1229 select CRYPTO_ALGAPI
1230 help
1231 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1232
1233 config CRYPTO_DES_SPARC64
1234 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1235 depends on SPARC64
1236 select CRYPTO_ALGAPI
1237 select CRYPTO_DES
1238 help
1239 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1240 optimized using SPARC64 crypto opcodes.
1241
1242 config CRYPTO_DES3_EDE_X86_64
1243 tristate "Triple DES EDE cipher algorithm (x86-64)"
1244 depends on X86 && 64BIT
1245 select CRYPTO_ALGAPI
1246 select CRYPTO_DES
1247 help
1248 Triple DES EDE (FIPS 46-3) algorithm.
1249
1250 This module provides implementation of the Triple DES EDE cipher
1251 algorithm that is optimized for x86-64 processors. Two versions of
1252 algorithm are provided; regular processing one input block and
1253 one that processes three blocks parallel.
1254
1255 config CRYPTO_FCRYPT
1256 tristate "FCrypt cipher algorithm"
1257 select CRYPTO_ALGAPI
1258 select CRYPTO_BLKCIPHER
1259 help
1260 FCrypt algorithm used by RxRPC.
1261
1262 config CRYPTO_KHAZAD
1263 tristate "Khazad cipher algorithm"
1264 select CRYPTO_ALGAPI
1265 help
1266 Khazad cipher algorithm.
1267
1268 Khazad was a finalist in the initial NESSIE competition. It is
1269 an algorithm optimized for 64-bit processors with good performance
1270 on 32-bit processors. Khazad uses an 128 bit key size.
1271
1272 See also:
1273 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1274
1275 config CRYPTO_SALSA20
1276 tristate "Salsa20 stream cipher algorithm"
1277 select CRYPTO_BLKCIPHER
1278 help
1279 Salsa20 stream cipher algorithm.
1280
1281 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1282 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1283
1284 The Salsa20 stream cipher algorithm is designed by Daniel J.
1285 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1286
1287 config CRYPTO_SALSA20_586
1288 tristate "Salsa20 stream cipher algorithm (i586)"
1289 depends on (X86 || UML_X86) && !64BIT
1290 select CRYPTO_BLKCIPHER
1291 help
1292 Salsa20 stream cipher algorithm.
1293
1294 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1295 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1296
1297 The Salsa20 stream cipher algorithm is designed by Daniel J.
1298 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1299
1300 config CRYPTO_SALSA20_X86_64
1301 tristate "Salsa20 stream cipher algorithm (x86_64)"
1302 depends on (X86 || UML_X86) && 64BIT
1303 select CRYPTO_BLKCIPHER
1304 help
1305 Salsa20 stream cipher algorithm.
1306
1307 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1308 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1309
1310 The Salsa20 stream cipher algorithm is designed by Daniel J.
1311 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1312
1313 config CRYPTO_CHACHA20
1314 tristate "ChaCha20 cipher algorithm"
1315 select CRYPTO_BLKCIPHER
1316 help
1317 ChaCha20 cipher algorithm, RFC7539.
1318
1319 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1320 Bernstein and further specified in RFC7539 for use in IETF protocols.
1321 This is the portable C implementation of ChaCha20.
1322
1323 See also:
1324 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1325
1326 config CRYPTO_CHACHA20_X86_64
1327 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1328 depends on X86 && 64BIT
1329 select CRYPTO_BLKCIPHER
1330 select CRYPTO_CHACHA20
1331 help
1332 ChaCha20 cipher algorithm, RFC7539.
1333
1334 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1335 Bernstein and further specified in RFC7539 for use in IETF protocols.
1336 This is the x86_64 assembler implementation using SIMD instructions.
1337
1338 See also:
1339 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1340
1341 config CRYPTO_SEED
1342 tristate "SEED cipher algorithm"
1343 select CRYPTO_ALGAPI
1344 help
1345 SEED cipher algorithm (RFC4269).
1346
1347 SEED is a 128-bit symmetric key block cipher that has been
1348 developed by KISA (Korea Information Security Agency) as a
1349 national standard encryption algorithm of the Republic of Korea.
1350 It is a 16 round block cipher with the key size of 128 bit.
1351
1352 See also:
1353 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1354
1355 config CRYPTO_SERPENT
1356 tristate "Serpent cipher algorithm"
1357 select CRYPTO_ALGAPI
1358 help
1359 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1360
1361 Keys are allowed to be from 0 to 256 bits in length, in steps
1362 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1363 variant of Serpent for compatibility with old kerneli.org code.
1364
1365 See also:
1366 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1367
1368 config CRYPTO_SERPENT_SSE2_X86_64
1369 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1370 depends on X86 && 64BIT
1371 select CRYPTO_ALGAPI
1372 select CRYPTO_CRYPTD
1373 select CRYPTO_ABLK_HELPER
1374 select CRYPTO_GLUE_HELPER_X86
1375 select CRYPTO_SERPENT
1376 select CRYPTO_LRW
1377 select CRYPTO_XTS
1378 help
1379 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1380
1381 Keys are allowed to be from 0 to 256 bits in length, in steps
1382 of 8 bits.
1383
1384 This module provides Serpent cipher algorithm that processes eight
1385 blocks parallel using SSE2 instruction set.
1386
1387 See also:
1388 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1389
1390 config CRYPTO_SERPENT_SSE2_586
1391 tristate "Serpent cipher algorithm (i586/SSE2)"
1392 depends on X86 && !64BIT
1393 select CRYPTO_ALGAPI
1394 select CRYPTO_CRYPTD
1395 select CRYPTO_ABLK_HELPER
1396 select CRYPTO_GLUE_HELPER_X86
1397 select CRYPTO_SERPENT
1398 select CRYPTO_LRW
1399 select CRYPTO_XTS
1400 help
1401 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1402
1403 Keys are allowed to be from 0 to 256 bits in length, in steps
1404 of 8 bits.
1405
1406 This module provides Serpent cipher algorithm that processes four
1407 blocks parallel using SSE2 instruction set.
1408
1409 See also:
1410 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1411
1412 config CRYPTO_SERPENT_AVX_X86_64
1413 tristate "Serpent cipher algorithm (x86_64/AVX)"
1414 depends on X86 && 64BIT
1415 select CRYPTO_ALGAPI
1416 select CRYPTO_CRYPTD
1417 select CRYPTO_ABLK_HELPER
1418 select CRYPTO_GLUE_HELPER_X86
1419 select CRYPTO_SERPENT
1420 select CRYPTO_LRW
1421 select CRYPTO_XTS
1422 help
1423 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1424
1425 Keys are allowed to be from 0 to 256 bits in length, in steps
1426 of 8 bits.
1427
1428 This module provides the Serpent cipher algorithm that processes
1429 eight blocks parallel using the AVX instruction set.
1430
1431 See also:
1432 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1433
1434 config CRYPTO_SERPENT_AVX2_X86_64
1435 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1436 depends on X86 && 64BIT
1437 select CRYPTO_ALGAPI
1438 select CRYPTO_CRYPTD
1439 select CRYPTO_ABLK_HELPER
1440 select CRYPTO_GLUE_HELPER_X86
1441 select CRYPTO_SERPENT
1442 select CRYPTO_SERPENT_AVX_X86_64
1443 select CRYPTO_LRW
1444 select CRYPTO_XTS
1445 help
1446 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1447
1448 Keys are allowed to be from 0 to 256 bits in length, in steps
1449 of 8 bits.
1450
1451 This module provides Serpent cipher algorithm that processes 16
1452 blocks parallel using AVX2 instruction set.
1453
1454 See also:
1455 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1456
1457 config CRYPTO_TEA
1458 tristate "TEA, XTEA and XETA cipher algorithms"
1459 select CRYPTO_ALGAPI
1460 help
1461 TEA cipher algorithm.
1462
1463 Tiny Encryption Algorithm is a simple cipher that uses
1464 many rounds for security. It is very fast and uses
1465 little memory.
1466
1467 Xtendend Tiny Encryption Algorithm is a modification to
1468 the TEA algorithm to address a potential key weakness
1469 in the TEA algorithm.
1470
1471 Xtendend Encryption Tiny Algorithm is a mis-implementation
1472 of the XTEA algorithm for compatibility purposes.
1473
1474 config CRYPTO_TWOFISH
1475 tristate "Twofish cipher algorithm"
1476 select CRYPTO_ALGAPI
1477 select CRYPTO_TWOFISH_COMMON
1478 help
1479 Twofish cipher algorithm.
1480
1481 Twofish was submitted as an AES (Advanced Encryption Standard)
1482 candidate cipher by researchers at CounterPane Systems. It is a
1483 16 round block cipher supporting key sizes of 128, 192, and 256
1484 bits.
1485
1486 See also:
1487 <http://www.schneier.com/twofish.html>
1488
1489 config CRYPTO_TWOFISH_COMMON
1490 tristate
1491 help
1492 Common parts of the Twofish cipher algorithm shared by the
1493 generic c and the assembler implementations.
1494
1495 config CRYPTO_TWOFISH_586
1496 tristate "Twofish cipher algorithms (i586)"
1497 depends on (X86 || UML_X86) && !64BIT
1498 select CRYPTO_ALGAPI
1499 select CRYPTO_TWOFISH_COMMON
1500 help
1501 Twofish cipher algorithm.
1502
1503 Twofish was submitted as an AES (Advanced Encryption Standard)
1504 candidate cipher by researchers at CounterPane Systems. It is a
1505 16 round block cipher supporting key sizes of 128, 192, and 256
1506 bits.
1507
1508 See also:
1509 <http://www.schneier.com/twofish.html>
1510
1511 config CRYPTO_TWOFISH_X86_64
1512 tristate "Twofish cipher algorithm (x86_64)"
1513 depends on (X86 || UML_X86) && 64BIT
1514 select CRYPTO_ALGAPI
1515 select CRYPTO_TWOFISH_COMMON
1516 help
1517 Twofish cipher algorithm (x86_64).
1518
1519 Twofish was submitted as an AES (Advanced Encryption Standard)
1520 candidate cipher by researchers at CounterPane Systems. It is a
1521 16 round block cipher supporting key sizes of 128, 192, and 256
1522 bits.
1523
1524 See also:
1525 <http://www.schneier.com/twofish.html>
1526
1527 config CRYPTO_TWOFISH_X86_64_3WAY
1528 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1529 depends on X86 && 64BIT
1530 select CRYPTO_ALGAPI
1531 select CRYPTO_TWOFISH_COMMON
1532 select CRYPTO_TWOFISH_X86_64
1533 select CRYPTO_GLUE_HELPER_X86
1534 select CRYPTO_LRW
1535 select CRYPTO_XTS
1536 help
1537 Twofish cipher algorithm (x86_64, 3-way parallel).
1538
1539 Twofish was submitted as an AES (Advanced Encryption Standard)
1540 candidate cipher by researchers at CounterPane Systems. It is a
1541 16 round block cipher supporting key sizes of 128, 192, and 256
1542 bits.
1543
1544 This module provides Twofish cipher algorithm that processes three
1545 blocks parallel, utilizing resources of out-of-order CPUs better.
1546
1547 See also:
1548 <http://www.schneier.com/twofish.html>
1549
1550 config CRYPTO_TWOFISH_AVX_X86_64
1551 tristate "Twofish cipher algorithm (x86_64/AVX)"
1552 depends on X86 && 64BIT
1553 select CRYPTO_ALGAPI
1554 select CRYPTO_CRYPTD
1555 select CRYPTO_ABLK_HELPER
1556 select CRYPTO_GLUE_HELPER_X86
1557 select CRYPTO_TWOFISH_COMMON
1558 select CRYPTO_TWOFISH_X86_64
1559 select CRYPTO_TWOFISH_X86_64_3WAY
1560 select CRYPTO_LRW
1561 select CRYPTO_XTS
1562 help
1563 Twofish cipher algorithm (x86_64/AVX).
1564
1565 Twofish was submitted as an AES (Advanced Encryption Standard)
1566 candidate cipher by researchers at CounterPane Systems. It is a
1567 16 round block cipher supporting key sizes of 128, 192, and 256
1568 bits.
1569
1570 This module provides the Twofish cipher algorithm that processes
1571 eight blocks parallel using the AVX Instruction Set.
1572
1573 See also:
1574 <http://www.schneier.com/twofish.html>
1575
1576 comment "Compression"
1577
1578 config CRYPTO_DEFLATE
1579 tristate "Deflate compression algorithm"
1580 select CRYPTO_ALGAPI
1581 select ZLIB_INFLATE
1582 select ZLIB_DEFLATE
1583 help
1584 This is the Deflate algorithm (RFC1951), specified for use in
1585 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1586
1587 You will most probably want this if using IPSec.
1588
1589 config CRYPTO_LZO
1590 tristate "LZO compression algorithm"
1591 select CRYPTO_ALGAPI
1592 select CRYPTO_ACOMP2
1593 select LZO_COMPRESS
1594 select LZO_DECOMPRESS
1595 help
1596 This is the LZO algorithm.
1597
1598 config CRYPTO_842
1599 tristate "842 compression algorithm"
1600 select CRYPTO_ALGAPI
1601 select 842_COMPRESS
1602 select 842_DECOMPRESS
1603 help
1604 This is the 842 algorithm.
1605
1606 config CRYPTO_LZ4
1607 tristate "LZ4 compression algorithm"
1608 select CRYPTO_ALGAPI
1609 select LZ4_COMPRESS
1610 select LZ4_DECOMPRESS
1611 help
1612 This is the LZ4 algorithm.
1613
1614 config CRYPTO_LZ4HC
1615 tristate "LZ4HC compression algorithm"
1616 select CRYPTO_ALGAPI
1617 select LZ4HC_COMPRESS
1618 select LZ4_DECOMPRESS
1619 help
1620 This is the LZ4 high compression mode algorithm.
1621
1622 comment "Random Number Generation"
1623
1624 config CRYPTO_ANSI_CPRNG
1625 tristate "Pseudo Random Number Generation for Cryptographic modules"
1626 select CRYPTO_AES
1627 select CRYPTO_RNG
1628 help
1629 This option enables the generic pseudo random number generator
1630 for cryptographic modules. Uses the Algorithm specified in
1631 ANSI X9.31 A.2.4. Note that this option must be enabled if
1632 CRYPTO_FIPS is selected
1633
1634 menuconfig CRYPTO_DRBG_MENU
1635 tristate "NIST SP800-90A DRBG"
1636 help
1637 NIST SP800-90A compliant DRBG. In the following submenu, one or
1638 more of the DRBG types must be selected.
1639
1640 if CRYPTO_DRBG_MENU
1641
1642 config CRYPTO_DRBG_HMAC
1643 bool
1644 default y
1645 select CRYPTO_HMAC
1646 select CRYPTO_SHA256
1647
1648 config CRYPTO_DRBG_HASH
1649 bool "Enable Hash DRBG"
1650 select CRYPTO_SHA256
1651 help
1652 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1653
1654 config CRYPTO_DRBG_CTR
1655 bool "Enable CTR DRBG"
1656 select CRYPTO_AES
1657 depends on CRYPTO_CTR
1658 help
1659 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1660
1661 config CRYPTO_DRBG
1662 tristate
1663 default CRYPTO_DRBG_MENU
1664 select CRYPTO_RNG
1665 select CRYPTO_JITTERENTROPY
1666
1667 endif # if CRYPTO_DRBG_MENU
1668
1669 config CRYPTO_JITTERENTROPY
1670 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1671 select CRYPTO_RNG
1672 help
1673 The Jitterentropy RNG is a noise that is intended
1674 to provide seed to another RNG. The RNG does not
1675 perform any cryptographic whitening of the generated
1676 random numbers. This Jitterentropy RNG registers with
1677 the kernel crypto API and can be used by any caller.
1678
1679 config CRYPTO_USER_API
1680 tristate
1681
1682 config CRYPTO_USER_API_HASH
1683 tristate "User-space interface for hash algorithms"
1684 depends on NET
1685 select CRYPTO_HASH
1686 select CRYPTO_USER_API
1687 help
1688 This option enables the user-spaces interface for hash
1689 algorithms.
1690
1691 config CRYPTO_USER_API_SKCIPHER
1692 tristate "User-space interface for symmetric key cipher algorithms"
1693 depends on NET
1694 select CRYPTO_BLKCIPHER
1695 select CRYPTO_USER_API
1696 help
1697 This option enables the user-spaces interface for symmetric
1698 key cipher algorithms.
1699
1700 config CRYPTO_USER_API_RNG
1701 tristate "User-space interface for random number generator algorithms"
1702 depends on NET
1703 select CRYPTO_RNG
1704 select CRYPTO_USER_API
1705 help
1706 This option enables the user-spaces interface for random
1707 number generator algorithms.
1708
1709 config CRYPTO_USER_API_AEAD
1710 tristate "User-space interface for AEAD cipher algorithms"
1711 depends on NET
1712 select CRYPTO_AEAD
1713 select CRYPTO_USER_API
1714 help
1715 This option enables the user-spaces interface for AEAD
1716 cipher algorithms.
1717
1718 config CRYPTO_HASH_INFO
1719 bool
1720
1721 source "drivers/crypto/Kconfig"
1722 source crypto/asymmetric_keys/Kconfig
1723 source certs/Kconfig
1724
1725 endif # if CRYPTO