]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - crypto/Kconfig
Merge tag 'regulator-v3.19-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51
52 config CRYPTO_BLKCIPHER
53 tristate
54 select CRYPTO_BLKCIPHER2
55 select CRYPTO_ALGAPI
56
57 config CRYPTO_BLKCIPHER2
58 tristate
59 select CRYPTO_ALGAPI2
60 select CRYPTO_RNG2
61 select CRYPTO_WORKQUEUE
62
63 config CRYPTO_HASH
64 tristate
65 select CRYPTO_HASH2
66 select CRYPTO_ALGAPI
67
68 config CRYPTO_HASH2
69 tristate
70 select CRYPTO_ALGAPI2
71
72 config CRYPTO_RNG
73 tristate
74 select CRYPTO_RNG2
75 select CRYPTO_ALGAPI
76
77 config CRYPTO_RNG2
78 tristate
79 select CRYPTO_ALGAPI2
80
81 config CRYPTO_PCOMP
82 tristate
83 select CRYPTO_PCOMP2
84 select CRYPTO_ALGAPI
85
86 config CRYPTO_PCOMP2
87 tristate
88 select CRYPTO_ALGAPI2
89
90 config CRYPTO_MANAGER
91 tristate "Cryptographic algorithm manager"
92 select CRYPTO_MANAGER2
93 help
94 Create default cryptographic template instantiations such as
95 cbc(aes).
96
97 config CRYPTO_MANAGER2
98 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
99 select CRYPTO_AEAD2
100 select CRYPTO_HASH2
101 select CRYPTO_BLKCIPHER2
102 select CRYPTO_PCOMP2
103
104 config CRYPTO_USER
105 tristate "Userspace cryptographic algorithm configuration"
106 depends on NET
107 select CRYPTO_MANAGER
108 help
109 Userspace configuration for cryptographic instantiations such as
110 cbc(aes).
111
112 config CRYPTO_MANAGER_DISABLE_TESTS
113 bool "Disable run-time self tests"
114 default y
115 depends on CRYPTO_MANAGER2
116 help
117 Disable run-time self tests that normally take place at
118 algorithm registration.
119
120 config CRYPTO_GF128MUL
121 tristate "GF(2^128) multiplication functions"
122 help
123 Efficient table driven implementation of multiplications in the
124 field GF(2^128). This is needed by some cypher modes. This
125 option will be selected automatically if you select such a
126 cipher mode. Only select this option by hand if you expect to load
127 an external module that requires these functions.
128
129 config CRYPTO_NULL
130 tristate "Null algorithms"
131 select CRYPTO_ALGAPI
132 select CRYPTO_BLKCIPHER
133 select CRYPTO_HASH
134 help
135 These are 'Null' algorithms, used by IPsec, which do nothing.
136
137 config CRYPTO_PCRYPT
138 tristate "Parallel crypto engine"
139 depends on SMP
140 select PADATA
141 select CRYPTO_MANAGER
142 select CRYPTO_AEAD
143 help
144 This converts an arbitrary crypto algorithm into a parallel
145 algorithm that executes in kernel threads.
146
147 config CRYPTO_WORKQUEUE
148 tristate
149
150 config CRYPTO_CRYPTD
151 tristate "Software async crypto daemon"
152 select CRYPTO_BLKCIPHER
153 select CRYPTO_HASH
154 select CRYPTO_MANAGER
155 select CRYPTO_WORKQUEUE
156 help
157 This is a generic software asynchronous crypto daemon that
158 converts an arbitrary synchronous software crypto algorithm
159 into an asynchronous algorithm that executes in a kernel thread.
160
161 config CRYPTO_MCRYPTD
162 tristate "Software async multi-buffer crypto daemon"
163 select CRYPTO_BLKCIPHER
164 select CRYPTO_HASH
165 select CRYPTO_MANAGER
166 select CRYPTO_WORKQUEUE
167 help
168 This is a generic software asynchronous crypto daemon that
169 provides the kernel thread to assist multi-buffer crypto
170 algorithms for submitting jobs and flushing jobs in multi-buffer
171 crypto algorithms. Multi-buffer crypto algorithms are executed
172 in the context of this kernel thread and drivers can post
173 their crypto request asynchronously to be processed by this daemon.
174
175 config CRYPTO_AUTHENC
176 tristate "Authenc support"
177 select CRYPTO_AEAD
178 select CRYPTO_BLKCIPHER
179 select CRYPTO_MANAGER
180 select CRYPTO_HASH
181 help
182 Authenc: Combined mode wrapper for IPsec.
183 This is required for IPSec.
184
185 config CRYPTO_TEST
186 tristate "Testing module"
187 depends on m
188 select CRYPTO_MANAGER
189 help
190 Quick & dirty crypto test module.
191
192 config CRYPTO_ABLK_HELPER
193 tristate
194 select CRYPTO_CRYPTD
195
196 config CRYPTO_GLUE_HELPER_X86
197 tristate
198 depends on X86
199 select CRYPTO_ALGAPI
200
201 comment "Authenticated Encryption with Associated Data"
202
203 config CRYPTO_CCM
204 tristate "CCM support"
205 select CRYPTO_CTR
206 select CRYPTO_AEAD
207 help
208 Support for Counter with CBC MAC. Required for IPsec.
209
210 config CRYPTO_GCM
211 tristate "GCM/GMAC support"
212 select CRYPTO_CTR
213 select CRYPTO_AEAD
214 select CRYPTO_GHASH
215 select CRYPTO_NULL
216 help
217 Support for Galois/Counter Mode (GCM) and Galois Message
218 Authentication Code (GMAC). Required for IPSec.
219
220 config CRYPTO_SEQIV
221 tristate "Sequence Number IV Generator"
222 select CRYPTO_AEAD
223 select CRYPTO_BLKCIPHER
224 select CRYPTO_RNG
225 help
226 This IV generator generates an IV based on a sequence number by
227 xoring it with a salt. This algorithm is mainly useful for CTR
228
229 comment "Block modes"
230
231 config CRYPTO_CBC
232 tristate "CBC support"
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 help
236 CBC: Cipher Block Chaining mode
237 This block cipher algorithm is required for IPSec.
238
239 config CRYPTO_CTR
240 tristate "CTR support"
241 select CRYPTO_BLKCIPHER
242 select CRYPTO_SEQIV
243 select CRYPTO_MANAGER
244 help
245 CTR: Counter mode
246 This block cipher algorithm is required for IPSec.
247
248 config CRYPTO_CTS
249 tristate "CTS support"
250 select CRYPTO_BLKCIPHER
251 help
252 CTS: Cipher Text Stealing
253 This is the Cipher Text Stealing mode as described by
254 Section 8 of rfc2040 and referenced by rfc3962.
255 (rfc3962 includes errata information in its Appendix A)
256 This mode is required for Kerberos gss mechanism support
257 for AES encryption.
258
259 config CRYPTO_ECB
260 tristate "ECB support"
261 select CRYPTO_BLKCIPHER
262 select CRYPTO_MANAGER
263 help
264 ECB: Electronic CodeBook mode
265 This is the simplest block cipher algorithm. It simply encrypts
266 the input block by block.
267
268 config CRYPTO_LRW
269 tristate "LRW support"
270 select CRYPTO_BLKCIPHER
271 select CRYPTO_MANAGER
272 select CRYPTO_GF128MUL
273 help
274 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
275 narrow block cipher mode for dm-crypt. Use it with cipher
276 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
277 The first 128, 192 or 256 bits in the key are used for AES and the
278 rest is used to tie each cipher block to its logical position.
279
280 config CRYPTO_PCBC
281 tristate "PCBC support"
282 select CRYPTO_BLKCIPHER
283 select CRYPTO_MANAGER
284 help
285 PCBC: Propagating Cipher Block Chaining mode
286 This block cipher algorithm is required for RxRPC.
287
288 config CRYPTO_XTS
289 tristate "XTS support"
290 select CRYPTO_BLKCIPHER
291 select CRYPTO_MANAGER
292 select CRYPTO_GF128MUL
293 help
294 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
295 key size 256, 384 or 512 bits. This implementation currently
296 can't handle a sectorsize which is not a multiple of 16 bytes.
297
298 comment "Hash modes"
299
300 config CRYPTO_CMAC
301 tristate "CMAC support"
302 select CRYPTO_HASH
303 select CRYPTO_MANAGER
304 help
305 Cipher-based Message Authentication Code (CMAC) specified by
306 The National Institute of Standards and Technology (NIST).
307
308 https://tools.ietf.org/html/rfc4493
309 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
310
311 config CRYPTO_HMAC
312 tristate "HMAC support"
313 select CRYPTO_HASH
314 select CRYPTO_MANAGER
315 help
316 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
317 This is required for IPSec.
318
319 config CRYPTO_XCBC
320 tristate "XCBC support"
321 select CRYPTO_HASH
322 select CRYPTO_MANAGER
323 help
324 XCBC: Keyed-Hashing with encryption algorithm
325 http://www.ietf.org/rfc/rfc3566.txt
326 http://csrc.nist.gov/encryption/modes/proposedmodes/
327 xcbc-mac/xcbc-mac-spec.pdf
328
329 config CRYPTO_VMAC
330 tristate "VMAC support"
331 select CRYPTO_HASH
332 select CRYPTO_MANAGER
333 help
334 VMAC is a message authentication algorithm designed for
335 very high speed on 64-bit architectures.
336
337 See also:
338 <http://fastcrypto.org/vmac>
339
340 comment "Digest"
341
342 config CRYPTO_CRC32C
343 tristate "CRC32c CRC algorithm"
344 select CRYPTO_HASH
345 select CRC32
346 help
347 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
348 by iSCSI for header and data digests and by others.
349 See Castagnoli93. Module will be crc32c.
350
351 config CRYPTO_CRC32C_INTEL
352 tristate "CRC32c INTEL hardware acceleration"
353 depends on X86
354 select CRYPTO_HASH
355 help
356 In Intel processor with SSE4.2 supported, the processor will
357 support CRC32C implementation using hardware accelerated CRC32
358 instruction. This option will create 'crc32c-intel' module,
359 which will enable any routine to use the CRC32 instruction to
360 gain performance compared with software implementation.
361 Module will be crc32c-intel.
362
363 config CRYPTO_CRC32C_SPARC64
364 tristate "CRC32c CRC algorithm (SPARC64)"
365 depends on SPARC64
366 select CRYPTO_HASH
367 select CRC32
368 help
369 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
370 when available.
371
372 config CRYPTO_CRC32
373 tristate "CRC32 CRC algorithm"
374 select CRYPTO_HASH
375 select CRC32
376 help
377 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
378 Shash crypto api wrappers to crc32_le function.
379
380 config CRYPTO_CRC32_PCLMUL
381 tristate "CRC32 PCLMULQDQ hardware acceleration"
382 depends on X86
383 select CRYPTO_HASH
384 select CRC32
385 help
386 From Intel Westmere and AMD Bulldozer processor with SSE4.2
387 and PCLMULQDQ supported, the processor will support
388 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
389 instruction. This option will create 'crc32-plcmul' module,
390 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
391 and gain better performance as compared with the table implementation.
392
393 config CRYPTO_CRCT10DIF
394 tristate "CRCT10DIF algorithm"
395 select CRYPTO_HASH
396 help
397 CRC T10 Data Integrity Field computation is being cast as
398 a crypto transform. This allows for faster crc t10 diff
399 transforms to be used if they are available.
400
401 config CRYPTO_CRCT10DIF_PCLMUL
402 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
403 depends on X86 && 64BIT && CRC_T10DIF
404 select CRYPTO_HASH
405 help
406 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
407 CRC T10 DIF PCLMULQDQ computation can be hardware
408 accelerated PCLMULQDQ instruction. This option will create
409 'crct10dif-plcmul' module, which is faster when computing the
410 crct10dif checksum as compared with the generic table implementation.
411
412 config CRYPTO_GHASH
413 tristate "GHASH digest algorithm"
414 select CRYPTO_GF128MUL
415 help
416 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
417
418 config CRYPTO_MD4
419 tristate "MD4 digest algorithm"
420 select CRYPTO_HASH
421 help
422 MD4 message digest algorithm (RFC1320).
423
424 config CRYPTO_MD5
425 tristate "MD5 digest algorithm"
426 select CRYPTO_HASH
427 help
428 MD5 message digest algorithm (RFC1321).
429
430 config CRYPTO_MD5_SPARC64
431 tristate "MD5 digest algorithm (SPARC64)"
432 depends on SPARC64
433 select CRYPTO_MD5
434 select CRYPTO_HASH
435 help
436 MD5 message digest algorithm (RFC1321) implemented
437 using sparc64 crypto instructions, when available.
438
439 config CRYPTO_MICHAEL_MIC
440 tristate "Michael MIC keyed digest algorithm"
441 select CRYPTO_HASH
442 help
443 Michael MIC is used for message integrity protection in TKIP
444 (IEEE 802.11i). This algorithm is required for TKIP, but it
445 should not be used for other purposes because of the weakness
446 of the algorithm.
447
448 config CRYPTO_RMD128
449 tristate "RIPEMD-128 digest algorithm"
450 select CRYPTO_HASH
451 help
452 RIPEMD-128 (ISO/IEC 10118-3:2004).
453
454 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
455 be used as a secure replacement for RIPEMD. For other use cases,
456 RIPEMD-160 should be used.
457
458 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
459 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
460
461 config CRYPTO_RMD160
462 tristate "RIPEMD-160 digest algorithm"
463 select CRYPTO_HASH
464 help
465 RIPEMD-160 (ISO/IEC 10118-3:2004).
466
467 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
468 to be used as a secure replacement for the 128-bit hash functions
469 MD4, MD5 and it's predecessor RIPEMD
470 (not to be confused with RIPEMD-128).
471
472 It's speed is comparable to SHA1 and there are no known attacks
473 against RIPEMD-160.
474
475 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
476 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
477
478 config CRYPTO_RMD256
479 tristate "RIPEMD-256 digest algorithm"
480 select CRYPTO_HASH
481 help
482 RIPEMD-256 is an optional extension of RIPEMD-128 with a
483 256 bit hash. It is intended for applications that require
484 longer hash-results, without needing a larger security level
485 (than RIPEMD-128).
486
487 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
488 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
489
490 config CRYPTO_RMD320
491 tristate "RIPEMD-320 digest algorithm"
492 select CRYPTO_HASH
493 help
494 RIPEMD-320 is an optional extension of RIPEMD-160 with a
495 320 bit hash. It is intended for applications that require
496 longer hash-results, without needing a larger security level
497 (than RIPEMD-160).
498
499 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
500 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
501
502 config CRYPTO_SHA1
503 tristate "SHA1 digest algorithm"
504 select CRYPTO_HASH
505 help
506 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
507
508 config CRYPTO_SHA1_SSSE3
509 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
510 depends on X86 && 64BIT
511 select CRYPTO_SHA1
512 select CRYPTO_HASH
513 help
514 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
515 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
516 Extensions (AVX/AVX2), when available.
517
518 config CRYPTO_SHA256_SSSE3
519 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
520 depends on X86 && 64BIT
521 select CRYPTO_SHA256
522 select CRYPTO_HASH
523 help
524 SHA-256 secure hash standard (DFIPS 180-2) implemented
525 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
526 Extensions version 1 (AVX1), or Advanced Vector Extensions
527 version 2 (AVX2) instructions, when available.
528
529 config CRYPTO_SHA512_SSSE3
530 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
531 depends on X86 && 64BIT
532 select CRYPTO_SHA512
533 select CRYPTO_HASH
534 help
535 SHA-512 secure hash standard (DFIPS 180-2) implemented
536 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
537 Extensions version 1 (AVX1), or Advanced Vector Extensions
538 version 2 (AVX2) instructions, when available.
539
540 config CRYPTO_SHA1_SPARC64
541 tristate "SHA1 digest algorithm (SPARC64)"
542 depends on SPARC64
543 select CRYPTO_SHA1
544 select CRYPTO_HASH
545 help
546 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
547 using sparc64 crypto instructions, when available.
548
549 config CRYPTO_SHA1_ARM
550 tristate "SHA1 digest algorithm (ARM-asm)"
551 depends on ARM
552 select CRYPTO_SHA1
553 select CRYPTO_HASH
554 help
555 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
556 using optimized ARM assembler.
557
558 config CRYPTO_SHA1_ARM_NEON
559 tristate "SHA1 digest algorithm (ARM NEON)"
560 depends on ARM && KERNEL_MODE_NEON
561 select CRYPTO_SHA1_ARM
562 select CRYPTO_SHA1
563 select CRYPTO_HASH
564 help
565 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
566 using optimized ARM NEON assembly, when NEON instructions are
567 available.
568
569 config CRYPTO_SHA1_PPC
570 tristate "SHA1 digest algorithm (powerpc)"
571 depends on PPC
572 help
573 This is the powerpc hardware accelerated implementation of the
574 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
575
576 config CRYPTO_SHA1_MB
577 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
578 depends on X86 && 64BIT
579 select CRYPTO_SHA1
580 select CRYPTO_HASH
581 select CRYPTO_MCRYPTD
582 help
583 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
584 using multi-buffer technique. This algorithm computes on
585 multiple data lanes concurrently with SIMD instructions for
586 better throughput. It should not be enabled by default but
587 used when there is significant amount of work to keep the keep
588 the data lanes filled to get performance benefit. If the data
589 lanes remain unfilled, a flush operation will be initiated to
590 process the crypto jobs, adding a slight latency.
591
592 config CRYPTO_SHA256
593 tristate "SHA224 and SHA256 digest algorithm"
594 select CRYPTO_HASH
595 help
596 SHA256 secure hash standard (DFIPS 180-2).
597
598 This version of SHA implements a 256 bit hash with 128 bits of
599 security against collision attacks.
600
601 This code also includes SHA-224, a 224 bit hash with 112 bits
602 of security against collision attacks.
603
604 config CRYPTO_SHA256_SPARC64
605 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
606 depends on SPARC64
607 select CRYPTO_SHA256
608 select CRYPTO_HASH
609 help
610 SHA-256 secure hash standard (DFIPS 180-2) implemented
611 using sparc64 crypto instructions, when available.
612
613 config CRYPTO_SHA512
614 tristate "SHA384 and SHA512 digest algorithms"
615 select CRYPTO_HASH
616 help
617 SHA512 secure hash standard (DFIPS 180-2).
618
619 This version of SHA implements a 512 bit hash with 256 bits of
620 security against collision attacks.
621
622 This code also includes SHA-384, a 384 bit hash with 192 bits
623 of security against collision attacks.
624
625 config CRYPTO_SHA512_SPARC64
626 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
627 depends on SPARC64
628 select CRYPTO_SHA512
629 select CRYPTO_HASH
630 help
631 SHA-512 secure hash standard (DFIPS 180-2) implemented
632 using sparc64 crypto instructions, when available.
633
634 config CRYPTO_SHA512_ARM_NEON
635 tristate "SHA384 and SHA512 digest algorithm (ARM NEON)"
636 depends on ARM && KERNEL_MODE_NEON
637 select CRYPTO_SHA512
638 select CRYPTO_HASH
639 help
640 SHA-512 secure hash standard (DFIPS 180-2) implemented
641 using ARM NEON instructions, when available.
642
643 This version of SHA implements a 512 bit hash with 256 bits of
644 security against collision attacks.
645
646 This code also includes SHA-384, a 384 bit hash with 192 bits
647 of security against collision attacks.
648
649 config CRYPTO_TGR192
650 tristate "Tiger digest algorithms"
651 select CRYPTO_HASH
652 help
653 Tiger hash algorithm 192, 160 and 128-bit hashes
654
655 Tiger is a hash function optimized for 64-bit processors while
656 still having decent performance on 32-bit processors.
657 Tiger was developed by Ross Anderson and Eli Biham.
658
659 See also:
660 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
661
662 config CRYPTO_WP512
663 tristate "Whirlpool digest algorithms"
664 select CRYPTO_HASH
665 help
666 Whirlpool hash algorithm 512, 384 and 256-bit hashes
667
668 Whirlpool-512 is part of the NESSIE cryptographic primitives.
669 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
670
671 See also:
672 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
673
674 config CRYPTO_GHASH_CLMUL_NI_INTEL
675 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
676 depends on X86 && 64BIT
677 select CRYPTO_CRYPTD
678 help
679 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
680 The implementation is accelerated by CLMUL-NI of Intel.
681
682 comment "Ciphers"
683
684 config CRYPTO_AES
685 tristate "AES cipher algorithms"
686 select CRYPTO_ALGAPI
687 help
688 AES cipher algorithms (FIPS-197). AES uses the Rijndael
689 algorithm.
690
691 Rijndael appears to be consistently a very good performer in
692 both hardware and software across a wide range of computing
693 environments regardless of its use in feedback or non-feedback
694 modes. Its key setup time is excellent, and its key agility is
695 good. Rijndael's very low memory requirements make it very well
696 suited for restricted-space environments, in which it also
697 demonstrates excellent performance. Rijndael's operations are
698 among the easiest to defend against power and timing attacks.
699
700 The AES specifies three key sizes: 128, 192 and 256 bits
701
702 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
703
704 config CRYPTO_AES_586
705 tristate "AES cipher algorithms (i586)"
706 depends on (X86 || UML_X86) && !64BIT
707 select CRYPTO_ALGAPI
708 select CRYPTO_AES
709 help
710 AES cipher algorithms (FIPS-197). AES uses the Rijndael
711 algorithm.
712
713 Rijndael appears to be consistently a very good performer in
714 both hardware and software across a wide range of computing
715 environments regardless of its use in feedback or non-feedback
716 modes. Its key setup time is excellent, and its key agility is
717 good. Rijndael's very low memory requirements make it very well
718 suited for restricted-space environments, in which it also
719 demonstrates excellent performance. Rijndael's operations are
720 among the easiest to defend against power and timing attacks.
721
722 The AES specifies three key sizes: 128, 192 and 256 bits
723
724 See <http://csrc.nist.gov/encryption/aes/> for more information.
725
726 config CRYPTO_AES_X86_64
727 tristate "AES cipher algorithms (x86_64)"
728 depends on (X86 || UML_X86) && 64BIT
729 select CRYPTO_ALGAPI
730 select CRYPTO_AES
731 help
732 AES cipher algorithms (FIPS-197). AES uses the Rijndael
733 algorithm.
734
735 Rijndael appears to be consistently a very good performer in
736 both hardware and software across a wide range of computing
737 environments regardless of its use in feedback or non-feedback
738 modes. Its key setup time is excellent, and its key agility is
739 good. Rijndael's very low memory requirements make it very well
740 suited for restricted-space environments, in which it also
741 demonstrates excellent performance. Rijndael's operations are
742 among the easiest to defend against power and timing attacks.
743
744 The AES specifies three key sizes: 128, 192 and 256 bits
745
746 See <http://csrc.nist.gov/encryption/aes/> for more information.
747
748 config CRYPTO_AES_NI_INTEL
749 tristate "AES cipher algorithms (AES-NI)"
750 depends on X86
751 select CRYPTO_AES_X86_64 if 64BIT
752 select CRYPTO_AES_586 if !64BIT
753 select CRYPTO_CRYPTD
754 select CRYPTO_ABLK_HELPER
755 select CRYPTO_ALGAPI
756 select CRYPTO_GLUE_HELPER_X86 if 64BIT
757 select CRYPTO_LRW
758 select CRYPTO_XTS
759 help
760 Use Intel AES-NI instructions for AES algorithm.
761
762 AES cipher algorithms (FIPS-197). AES uses the Rijndael
763 algorithm.
764
765 Rijndael appears to be consistently a very good performer in
766 both hardware and software across a wide range of computing
767 environments regardless of its use in feedback or non-feedback
768 modes. Its key setup time is excellent, and its key agility is
769 good. Rijndael's very low memory requirements make it very well
770 suited for restricted-space environments, in which it also
771 demonstrates excellent performance. Rijndael's operations are
772 among the easiest to defend against power and timing attacks.
773
774 The AES specifies three key sizes: 128, 192 and 256 bits
775
776 See <http://csrc.nist.gov/encryption/aes/> for more information.
777
778 In addition to AES cipher algorithm support, the acceleration
779 for some popular block cipher mode is supported too, including
780 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
781 acceleration for CTR.
782
783 config CRYPTO_AES_SPARC64
784 tristate "AES cipher algorithms (SPARC64)"
785 depends on SPARC64
786 select CRYPTO_CRYPTD
787 select CRYPTO_ALGAPI
788 help
789 Use SPARC64 crypto opcodes for AES algorithm.
790
791 AES cipher algorithms (FIPS-197). AES uses the Rijndael
792 algorithm.
793
794 Rijndael appears to be consistently a very good performer in
795 both hardware and software across a wide range of computing
796 environments regardless of its use in feedback or non-feedback
797 modes. Its key setup time is excellent, and its key agility is
798 good. Rijndael's very low memory requirements make it very well
799 suited for restricted-space environments, in which it also
800 demonstrates excellent performance. Rijndael's operations are
801 among the easiest to defend against power and timing attacks.
802
803 The AES specifies three key sizes: 128, 192 and 256 bits
804
805 See <http://csrc.nist.gov/encryption/aes/> for more information.
806
807 In addition to AES cipher algorithm support, the acceleration
808 for some popular block cipher mode is supported too, including
809 ECB and CBC.
810
811 config CRYPTO_AES_ARM
812 tristate "AES cipher algorithms (ARM-asm)"
813 depends on ARM
814 select CRYPTO_ALGAPI
815 select CRYPTO_AES
816 help
817 Use optimized AES assembler routines for ARM platforms.
818
819 AES cipher algorithms (FIPS-197). AES uses the Rijndael
820 algorithm.
821
822 Rijndael appears to be consistently a very good performer in
823 both hardware and software across a wide range of computing
824 environments regardless of its use in feedback or non-feedback
825 modes. Its key setup time is excellent, and its key agility is
826 good. Rijndael's very low memory requirements make it very well
827 suited for restricted-space environments, in which it also
828 demonstrates excellent performance. Rijndael's operations are
829 among the easiest to defend against power and timing attacks.
830
831 The AES specifies three key sizes: 128, 192 and 256 bits
832
833 See <http://csrc.nist.gov/encryption/aes/> for more information.
834
835 config CRYPTO_AES_ARM_BS
836 tristate "Bit sliced AES using NEON instructions"
837 depends on ARM && KERNEL_MODE_NEON
838 select CRYPTO_ALGAPI
839 select CRYPTO_AES_ARM
840 select CRYPTO_ABLK_HELPER
841 help
842 Use a faster and more secure NEON based implementation of AES in CBC,
843 CTR and XTS modes
844
845 Bit sliced AES gives around 45% speedup on Cortex-A15 for CTR mode
846 and for XTS mode encryption, CBC and XTS mode decryption speedup is
847 around 25%. (CBC encryption speed is not affected by this driver.)
848 This implementation does not rely on any lookup tables so it is
849 believed to be invulnerable to cache timing attacks.
850
851 config CRYPTO_ANUBIS
852 tristate "Anubis cipher algorithm"
853 select CRYPTO_ALGAPI
854 help
855 Anubis cipher algorithm.
856
857 Anubis is a variable key length cipher which can use keys from
858 128 bits to 320 bits in length. It was evaluated as a entrant
859 in the NESSIE competition.
860
861 See also:
862 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
863 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
864
865 config CRYPTO_ARC4
866 tristate "ARC4 cipher algorithm"
867 select CRYPTO_BLKCIPHER
868 help
869 ARC4 cipher algorithm.
870
871 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
872 bits in length. This algorithm is required for driver-based
873 WEP, but it should not be for other purposes because of the
874 weakness of the algorithm.
875
876 config CRYPTO_BLOWFISH
877 tristate "Blowfish cipher algorithm"
878 select CRYPTO_ALGAPI
879 select CRYPTO_BLOWFISH_COMMON
880 help
881 Blowfish cipher algorithm, by Bruce Schneier.
882
883 This is a variable key length cipher which can use keys from 32
884 bits to 448 bits in length. It's fast, simple and specifically
885 designed for use on "large microprocessors".
886
887 See also:
888 <http://www.schneier.com/blowfish.html>
889
890 config CRYPTO_BLOWFISH_COMMON
891 tristate
892 help
893 Common parts of the Blowfish cipher algorithm shared by the
894 generic c and the assembler implementations.
895
896 See also:
897 <http://www.schneier.com/blowfish.html>
898
899 config CRYPTO_BLOWFISH_X86_64
900 tristate "Blowfish cipher algorithm (x86_64)"
901 depends on X86 && 64BIT
902 select CRYPTO_ALGAPI
903 select CRYPTO_BLOWFISH_COMMON
904 help
905 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
906
907 This is a variable key length cipher which can use keys from 32
908 bits to 448 bits in length. It's fast, simple and specifically
909 designed for use on "large microprocessors".
910
911 See also:
912 <http://www.schneier.com/blowfish.html>
913
914 config CRYPTO_CAMELLIA
915 tristate "Camellia cipher algorithms"
916 depends on CRYPTO
917 select CRYPTO_ALGAPI
918 help
919 Camellia cipher algorithms module.
920
921 Camellia is a symmetric key block cipher developed jointly
922 at NTT and Mitsubishi Electric Corporation.
923
924 The Camellia specifies three key sizes: 128, 192 and 256 bits.
925
926 See also:
927 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
928
929 config CRYPTO_CAMELLIA_X86_64
930 tristate "Camellia cipher algorithm (x86_64)"
931 depends on X86 && 64BIT
932 depends on CRYPTO
933 select CRYPTO_ALGAPI
934 select CRYPTO_GLUE_HELPER_X86
935 select CRYPTO_LRW
936 select CRYPTO_XTS
937 help
938 Camellia cipher algorithm module (x86_64).
939
940 Camellia is a symmetric key block cipher developed jointly
941 at NTT and Mitsubishi Electric Corporation.
942
943 The Camellia specifies three key sizes: 128, 192 and 256 bits.
944
945 See also:
946 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
947
948 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
949 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
950 depends on X86 && 64BIT
951 depends on CRYPTO
952 select CRYPTO_ALGAPI
953 select CRYPTO_CRYPTD
954 select CRYPTO_ABLK_HELPER
955 select CRYPTO_GLUE_HELPER_X86
956 select CRYPTO_CAMELLIA_X86_64
957 select CRYPTO_LRW
958 select CRYPTO_XTS
959 help
960 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
961
962 Camellia is a symmetric key block cipher developed jointly
963 at NTT and Mitsubishi Electric Corporation.
964
965 The Camellia specifies three key sizes: 128, 192 and 256 bits.
966
967 See also:
968 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
969
970 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
971 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
972 depends on X86 && 64BIT
973 depends on CRYPTO
974 select CRYPTO_ALGAPI
975 select CRYPTO_CRYPTD
976 select CRYPTO_ABLK_HELPER
977 select CRYPTO_GLUE_HELPER_X86
978 select CRYPTO_CAMELLIA_X86_64
979 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
980 select CRYPTO_LRW
981 select CRYPTO_XTS
982 help
983 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
984
985 Camellia is a symmetric key block cipher developed jointly
986 at NTT and Mitsubishi Electric Corporation.
987
988 The Camellia specifies three key sizes: 128, 192 and 256 bits.
989
990 See also:
991 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
992
993 config CRYPTO_CAMELLIA_SPARC64
994 tristate "Camellia cipher algorithm (SPARC64)"
995 depends on SPARC64
996 depends on CRYPTO
997 select CRYPTO_ALGAPI
998 help
999 Camellia cipher algorithm module (SPARC64).
1000
1001 Camellia is a symmetric key block cipher developed jointly
1002 at NTT and Mitsubishi Electric Corporation.
1003
1004 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1005
1006 See also:
1007 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1008
1009 config CRYPTO_CAST_COMMON
1010 tristate
1011 help
1012 Common parts of the CAST cipher algorithms shared by the
1013 generic c and the assembler implementations.
1014
1015 config CRYPTO_CAST5
1016 tristate "CAST5 (CAST-128) cipher algorithm"
1017 select CRYPTO_ALGAPI
1018 select CRYPTO_CAST_COMMON
1019 help
1020 The CAST5 encryption algorithm (synonymous with CAST-128) is
1021 described in RFC2144.
1022
1023 config CRYPTO_CAST5_AVX_X86_64
1024 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1025 depends on X86 && 64BIT
1026 select CRYPTO_ALGAPI
1027 select CRYPTO_CRYPTD
1028 select CRYPTO_ABLK_HELPER
1029 select CRYPTO_CAST_COMMON
1030 select CRYPTO_CAST5
1031 help
1032 The CAST5 encryption algorithm (synonymous with CAST-128) is
1033 described in RFC2144.
1034
1035 This module provides the Cast5 cipher algorithm that processes
1036 sixteen blocks parallel using the AVX instruction set.
1037
1038 config CRYPTO_CAST6
1039 tristate "CAST6 (CAST-256) cipher algorithm"
1040 select CRYPTO_ALGAPI
1041 select CRYPTO_CAST_COMMON
1042 help
1043 The CAST6 encryption algorithm (synonymous with CAST-256) is
1044 described in RFC2612.
1045
1046 config CRYPTO_CAST6_AVX_X86_64
1047 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1048 depends on X86 && 64BIT
1049 select CRYPTO_ALGAPI
1050 select CRYPTO_CRYPTD
1051 select CRYPTO_ABLK_HELPER
1052 select CRYPTO_GLUE_HELPER_X86
1053 select CRYPTO_CAST_COMMON
1054 select CRYPTO_CAST6
1055 select CRYPTO_LRW
1056 select CRYPTO_XTS
1057 help
1058 The CAST6 encryption algorithm (synonymous with CAST-256) is
1059 described in RFC2612.
1060
1061 This module provides the Cast6 cipher algorithm that processes
1062 eight blocks parallel using the AVX instruction set.
1063
1064 config CRYPTO_DES
1065 tristate "DES and Triple DES EDE cipher algorithms"
1066 select CRYPTO_ALGAPI
1067 help
1068 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1069
1070 config CRYPTO_DES_SPARC64
1071 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1072 depends on SPARC64
1073 select CRYPTO_ALGAPI
1074 select CRYPTO_DES
1075 help
1076 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1077 optimized using SPARC64 crypto opcodes.
1078
1079 config CRYPTO_DES3_EDE_X86_64
1080 tristate "Triple DES EDE cipher algorithm (x86-64)"
1081 depends on X86 && 64BIT
1082 select CRYPTO_ALGAPI
1083 select CRYPTO_DES
1084 help
1085 Triple DES EDE (FIPS 46-3) algorithm.
1086
1087 This module provides implementation of the Triple DES EDE cipher
1088 algorithm that is optimized for x86-64 processors. Two versions of
1089 algorithm are provided; regular processing one input block and
1090 one that processes three blocks parallel.
1091
1092 config CRYPTO_FCRYPT
1093 tristate "FCrypt cipher algorithm"
1094 select CRYPTO_ALGAPI
1095 select CRYPTO_BLKCIPHER
1096 help
1097 FCrypt algorithm used by RxRPC.
1098
1099 config CRYPTO_KHAZAD
1100 tristate "Khazad cipher algorithm"
1101 select CRYPTO_ALGAPI
1102 help
1103 Khazad cipher algorithm.
1104
1105 Khazad was a finalist in the initial NESSIE competition. It is
1106 an algorithm optimized for 64-bit processors with good performance
1107 on 32-bit processors. Khazad uses an 128 bit key size.
1108
1109 See also:
1110 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1111
1112 config CRYPTO_SALSA20
1113 tristate "Salsa20 stream cipher algorithm"
1114 select CRYPTO_BLKCIPHER
1115 help
1116 Salsa20 stream cipher algorithm.
1117
1118 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1119 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1120
1121 The Salsa20 stream cipher algorithm is designed by Daniel J.
1122 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1123
1124 config CRYPTO_SALSA20_586
1125 tristate "Salsa20 stream cipher algorithm (i586)"
1126 depends on (X86 || UML_X86) && !64BIT
1127 select CRYPTO_BLKCIPHER
1128 help
1129 Salsa20 stream cipher algorithm.
1130
1131 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1132 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1133
1134 The Salsa20 stream cipher algorithm is designed by Daniel J.
1135 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1136
1137 config CRYPTO_SALSA20_X86_64
1138 tristate "Salsa20 stream cipher algorithm (x86_64)"
1139 depends on (X86 || UML_X86) && 64BIT
1140 select CRYPTO_BLKCIPHER
1141 help
1142 Salsa20 stream cipher algorithm.
1143
1144 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1145 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1146
1147 The Salsa20 stream cipher algorithm is designed by Daniel J.
1148 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1149
1150 config CRYPTO_SEED
1151 tristate "SEED cipher algorithm"
1152 select CRYPTO_ALGAPI
1153 help
1154 SEED cipher algorithm (RFC4269).
1155
1156 SEED is a 128-bit symmetric key block cipher that has been
1157 developed by KISA (Korea Information Security Agency) as a
1158 national standard encryption algorithm of the Republic of Korea.
1159 It is a 16 round block cipher with the key size of 128 bit.
1160
1161 See also:
1162 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1163
1164 config CRYPTO_SERPENT
1165 tristate "Serpent cipher algorithm"
1166 select CRYPTO_ALGAPI
1167 help
1168 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1169
1170 Keys are allowed to be from 0 to 256 bits in length, in steps
1171 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1172 variant of Serpent for compatibility with old kerneli.org code.
1173
1174 See also:
1175 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1176
1177 config CRYPTO_SERPENT_SSE2_X86_64
1178 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1179 depends on X86 && 64BIT
1180 select CRYPTO_ALGAPI
1181 select CRYPTO_CRYPTD
1182 select CRYPTO_ABLK_HELPER
1183 select CRYPTO_GLUE_HELPER_X86
1184 select CRYPTO_SERPENT
1185 select CRYPTO_LRW
1186 select CRYPTO_XTS
1187 help
1188 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1189
1190 Keys are allowed to be from 0 to 256 bits in length, in steps
1191 of 8 bits.
1192
1193 This module provides Serpent cipher algorithm that processes eigth
1194 blocks parallel using SSE2 instruction set.
1195
1196 See also:
1197 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1198
1199 config CRYPTO_SERPENT_SSE2_586
1200 tristate "Serpent cipher algorithm (i586/SSE2)"
1201 depends on X86 && !64BIT
1202 select CRYPTO_ALGAPI
1203 select CRYPTO_CRYPTD
1204 select CRYPTO_ABLK_HELPER
1205 select CRYPTO_GLUE_HELPER_X86
1206 select CRYPTO_SERPENT
1207 select CRYPTO_LRW
1208 select CRYPTO_XTS
1209 help
1210 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1211
1212 Keys are allowed to be from 0 to 256 bits in length, in steps
1213 of 8 bits.
1214
1215 This module provides Serpent cipher algorithm that processes four
1216 blocks parallel using SSE2 instruction set.
1217
1218 See also:
1219 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1220
1221 config CRYPTO_SERPENT_AVX_X86_64
1222 tristate "Serpent cipher algorithm (x86_64/AVX)"
1223 depends on X86 && 64BIT
1224 select CRYPTO_ALGAPI
1225 select CRYPTO_CRYPTD
1226 select CRYPTO_ABLK_HELPER
1227 select CRYPTO_GLUE_HELPER_X86
1228 select CRYPTO_SERPENT
1229 select CRYPTO_LRW
1230 select CRYPTO_XTS
1231 help
1232 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1233
1234 Keys are allowed to be from 0 to 256 bits in length, in steps
1235 of 8 bits.
1236
1237 This module provides the Serpent cipher algorithm that processes
1238 eight blocks parallel using the AVX instruction set.
1239
1240 See also:
1241 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1242
1243 config CRYPTO_SERPENT_AVX2_X86_64
1244 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1245 depends on X86 && 64BIT
1246 select CRYPTO_ALGAPI
1247 select CRYPTO_CRYPTD
1248 select CRYPTO_ABLK_HELPER
1249 select CRYPTO_GLUE_HELPER_X86
1250 select CRYPTO_SERPENT
1251 select CRYPTO_SERPENT_AVX_X86_64
1252 select CRYPTO_LRW
1253 select CRYPTO_XTS
1254 help
1255 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1256
1257 Keys are allowed to be from 0 to 256 bits in length, in steps
1258 of 8 bits.
1259
1260 This module provides Serpent cipher algorithm that processes 16
1261 blocks parallel using AVX2 instruction set.
1262
1263 See also:
1264 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1265
1266 config CRYPTO_TEA
1267 tristate "TEA, XTEA and XETA cipher algorithms"
1268 select CRYPTO_ALGAPI
1269 help
1270 TEA cipher algorithm.
1271
1272 Tiny Encryption Algorithm is a simple cipher that uses
1273 many rounds for security. It is very fast and uses
1274 little memory.
1275
1276 Xtendend Tiny Encryption Algorithm is a modification to
1277 the TEA algorithm to address a potential key weakness
1278 in the TEA algorithm.
1279
1280 Xtendend Encryption Tiny Algorithm is a mis-implementation
1281 of the XTEA algorithm for compatibility purposes.
1282
1283 config CRYPTO_TWOFISH
1284 tristate "Twofish cipher algorithm"
1285 select CRYPTO_ALGAPI
1286 select CRYPTO_TWOFISH_COMMON
1287 help
1288 Twofish cipher algorithm.
1289
1290 Twofish was submitted as an AES (Advanced Encryption Standard)
1291 candidate cipher by researchers at CounterPane Systems. It is a
1292 16 round block cipher supporting key sizes of 128, 192, and 256
1293 bits.
1294
1295 See also:
1296 <http://www.schneier.com/twofish.html>
1297
1298 config CRYPTO_TWOFISH_COMMON
1299 tristate
1300 help
1301 Common parts of the Twofish cipher algorithm shared by the
1302 generic c and the assembler implementations.
1303
1304 config CRYPTO_TWOFISH_586
1305 tristate "Twofish cipher algorithms (i586)"
1306 depends on (X86 || UML_X86) && !64BIT
1307 select CRYPTO_ALGAPI
1308 select CRYPTO_TWOFISH_COMMON
1309 help
1310 Twofish cipher algorithm.
1311
1312 Twofish was submitted as an AES (Advanced Encryption Standard)
1313 candidate cipher by researchers at CounterPane Systems. It is a
1314 16 round block cipher supporting key sizes of 128, 192, and 256
1315 bits.
1316
1317 See also:
1318 <http://www.schneier.com/twofish.html>
1319
1320 config CRYPTO_TWOFISH_X86_64
1321 tristate "Twofish cipher algorithm (x86_64)"
1322 depends on (X86 || UML_X86) && 64BIT
1323 select CRYPTO_ALGAPI
1324 select CRYPTO_TWOFISH_COMMON
1325 help
1326 Twofish cipher algorithm (x86_64).
1327
1328 Twofish was submitted as an AES (Advanced Encryption Standard)
1329 candidate cipher by researchers at CounterPane Systems. It is a
1330 16 round block cipher supporting key sizes of 128, 192, and 256
1331 bits.
1332
1333 See also:
1334 <http://www.schneier.com/twofish.html>
1335
1336 config CRYPTO_TWOFISH_X86_64_3WAY
1337 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1338 depends on X86 && 64BIT
1339 select CRYPTO_ALGAPI
1340 select CRYPTO_TWOFISH_COMMON
1341 select CRYPTO_TWOFISH_X86_64
1342 select CRYPTO_GLUE_HELPER_X86
1343 select CRYPTO_LRW
1344 select CRYPTO_XTS
1345 help
1346 Twofish cipher algorithm (x86_64, 3-way parallel).
1347
1348 Twofish was submitted as an AES (Advanced Encryption Standard)
1349 candidate cipher by researchers at CounterPane Systems. It is a
1350 16 round block cipher supporting key sizes of 128, 192, and 256
1351 bits.
1352
1353 This module provides Twofish cipher algorithm that processes three
1354 blocks parallel, utilizing resources of out-of-order CPUs better.
1355
1356 See also:
1357 <http://www.schneier.com/twofish.html>
1358
1359 config CRYPTO_TWOFISH_AVX_X86_64
1360 tristate "Twofish cipher algorithm (x86_64/AVX)"
1361 depends on X86 && 64BIT
1362 select CRYPTO_ALGAPI
1363 select CRYPTO_CRYPTD
1364 select CRYPTO_ABLK_HELPER
1365 select CRYPTO_GLUE_HELPER_X86
1366 select CRYPTO_TWOFISH_COMMON
1367 select CRYPTO_TWOFISH_X86_64
1368 select CRYPTO_TWOFISH_X86_64_3WAY
1369 select CRYPTO_LRW
1370 select CRYPTO_XTS
1371 help
1372 Twofish cipher algorithm (x86_64/AVX).
1373
1374 Twofish was submitted as an AES (Advanced Encryption Standard)
1375 candidate cipher by researchers at CounterPane Systems. It is a
1376 16 round block cipher supporting key sizes of 128, 192, and 256
1377 bits.
1378
1379 This module provides the Twofish cipher algorithm that processes
1380 eight blocks parallel using the AVX Instruction Set.
1381
1382 See also:
1383 <http://www.schneier.com/twofish.html>
1384
1385 comment "Compression"
1386
1387 config CRYPTO_DEFLATE
1388 tristate "Deflate compression algorithm"
1389 select CRYPTO_ALGAPI
1390 select ZLIB_INFLATE
1391 select ZLIB_DEFLATE
1392 help
1393 This is the Deflate algorithm (RFC1951), specified for use in
1394 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1395
1396 You will most probably want this if using IPSec.
1397
1398 config CRYPTO_ZLIB
1399 tristate "Zlib compression algorithm"
1400 select CRYPTO_PCOMP
1401 select ZLIB_INFLATE
1402 select ZLIB_DEFLATE
1403 select NLATTR
1404 help
1405 This is the zlib algorithm.
1406
1407 config CRYPTO_LZO
1408 tristate "LZO compression algorithm"
1409 select CRYPTO_ALGAPI
1410 select LZO_COMPRESS
1411 select LZO_DECOMPRESS
1412 help
1413 This is the LZO algorithm.
1414
1415 config CRYPTO_842
1416 tristate "842 compression algorithm"
1417 depends on CRYPTO_DEV_NX_COMPRESS
1418 # 842 uses lzo if the hardware becomes unavailable
1419 select LZO_COMPRESS
1420 select LZO_DECOMPRESS
1421 help
1422 This is the 842 algorithm.
1423
1424 config CRYPTO_LZ4
1425 tristate "LZ4 compression algorithm"
1426 select CRYPTO_ALGAPI
1427 select LZ4_COMPRESS
1428 select LZ4_DECOMPRESS
1429 help
1430 This is the LZ4 algorithm.
1431
1432 config CRYPTO_LZ4HC
1433 tristate "LZ4HC compression algorithm"
1434 select CRYPTO_ALGAPI
1435 select LZ4HC_COMPRESS
1436 select LZ4_DECOMPRESS
1437 help
1438 This is the LZ4 high compression mode algorithm.
1439
1440 comment "Random Number Generation"
1441
1442 config CRYPTO_ANSI_CPRNG
1443 tristate "Pseudo Random Number Generation for Cryptographic modules"
1444 default m
1445 select CRYPTO_AES
1446 select CRYPTO_RNG
1447 help
1448 This option enables the generic pseudo random number generator
1449 for cryptographic modules. Uses the Algorithm specified in
1450 ANSI X9.31 A.2.4. Note that this option must be enabled if
1451 CRYPTO_FIPS is selected
1452
1453 menuconfig CRYPTO_DRBG_MENU
1454 tristate "NIST SP800-90A DRBG"
1455 help
1456 NIST SP800-90A compliant DRBG. In the following submenu, one or
1457 more of the DRBG types must be selected.
1458
1459 if CRYPTO_DRBG_MENU
1460
1461 config CRYPTO_DRBG_HMAC
1462 bool "Enable HMAC DRBG"
1463 default y
1464 select CRYPTO_HMAC
1465 help
1466 Enable the HMAC DRBG variant as defined in NIST SP800-90A.
1467
1468 config CRYPTO_DRBG_HASH
1469 bool "Enable Hash DRBG"
1470 select CRYPTO_HASH
1471 help
1472 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1473
1474 config CRYPTO_DRBG_CTR
1475 bool "Enable CTR DRBG"
1476 select CRYPTO_AES
1477 help
1478 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1479
1480 config CRYPTO_DRBG
1481 tristate
1482 default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR)
1483 select CRYPTO_RNG
1484
1485 endif # if CRYPTO_DRBG_MENU
1486
1487 config CRYPTO_USER_API
1488 tristate
1489
1490 config CRYPTO_USER_API_HASH
1491 tristate "User-space interface for hash algorithms"
1492 depends on NET
1493 select CRYPTO_HASH
1494 select CRYPTO_USER_API
1495 help
1496 This option enables the user-spaces interface for hash
1497 algorithms.
1498
1499 config CRYPTO_USER_API_SKCIPHER
1500 tristate "User-space interface for symmetric key cipher algorithms"
1501 depends on NET
1502 select CRYPTO_BLKCIPHER
1503 select CRYPTO_USER_API
1504 help
1505 This option enables the user-spaces interface for symmetric
1506 key cipher algorithms.
1507
1508 config CRYPTO_HASH_INFO
1509 bool
1510
1511 source "drivers/crypto/Kconfig"
1512 source crypto/asymmetric_keys/Kconfig
1513
1514 endif # if CRYPTO