]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - crypto/Kconfig
mtd: maps: physmap: Store gpio_values correctly
[mirror_ubuntu-hirsute-kernel.git] / crypto / Kconfig
1 # SPDX-License-Identifier: GPL-2.0
2 #
3 # Generic algorithms support
4 #
5 config XOR_BLOCKS
6 tristate
7
8 #
9 # async_tx api: hardware offloaded memory transfer/transform support
10 #
11 source "crypto/async_tx/Kconfig"
12
13 #
14 # Cryptographic API Configuration
15 #
16 menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21 if CRYPTO
22
23 comment "Crypto core or helper"
24
25 config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35 config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41 config CRYPTO_ALGAPI2
42 tristate
43
44 config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49 config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55 config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60 config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66 config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71 config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75 config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80 config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84 config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88 config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92 config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97 config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101 config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106 config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109 select SGL_ALLOC
110
111 config CRYPTO_ACOMP
112 tristate
113 select CRYPTO_ALGAPI
114 select CRYPTO_ACOMP2
115
116 config CRYPTO_RSA
117 tristate "RSA algorithm"
118 select CRYPTO_AKCIPHER
119 select CRYPTO_MANAGER
120 select MPILIB
121 select ASN1
122 help
123 Generic implementation of the RSA public key algorithm.
124
125 config CRYPTO_DH
126 tristate "Diffie-Hellman algorithm"
127 select CRYPTO_KPP
128 select MPILIB
129 help
130 Generic implementation of the Diffie-Hellman algorithm.
131
132 config CRYPTO_ECDH
133 tristate "ECDH algorithm"
134 select CRYPTO_KPP
135 select CRYPTO_RNG_DEFAULT
136 help
137 Generic implementation of the ECDH algorithm
138
139 config CRYPTO_MANAGER
140 tristate "Cryptographic algorithm manager"
141 select CRYPTO_MANAGER2
142 help
143 Create default cryptographic template instantiations such as
144 cbc(aes).
145
146 config CRYPTO_MANAGER2
147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148 select CRYPTO_AEAD2
149 select CRYPTO_HASH2
150 select CRYPTO_BLKCIPHER2
151 select CRYPTO_AKCIPHER2
152 select CRYPTO_KPP2
153 select CRYPTO_ACOMP2
154
155 config CRYPTO_USER
156 tristate "Userspace cryptographic algorithm configuration"
157 depends on NET
158 select CRYPTO_MANAGER
159 help
160 Userspace configuration for cryptographic instantiations such as
161 cbc(aes).
162
163 config CRYPTO_MANAGER_DISABLE_TESTS
164 bool "Disable run-time self tests"
165 default y
166 depends on CRYPTO_MANAGER2
167 help
168 Disable run-time self tests that normally take place at
169 algorithm registration.
170
171 config CRYPTO_MANAGER_EXTRA_TESTS
172 bool "Enable extra run-time crypto self tests"
173 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
174 help
175 Enable extra run-time self tests of registered crypto algorithms,
176 including randomized fuzz tests.
177
178 This is intended for developer use only, as these tests take much
179 longer to run than the normal self tests.
180
181 config CRYPTO_GF128MUL
182 tristate "GF(2^128) multiplication functions"
183 help
184 Efficient table driven implementation of multiplications in the
185 field GF(2^128). This is needed by some cypher modes. This
186 option will be selected automatically if you select such a
187 cipher mode. Only select this option by hand if you expect to load
188 an external module that requires these functions.
189
190 config CRYPTO_NULL
191 tristate "Null algorithms"
192 select CRYPTO_NULL2
193 help
194 These are 'Null' algorithms, used by IPsec, which do nothing.
195
196 config CRYPTO_NULL2
197 tristate
198 select CRYPTO_ALGAPI2
199 select CRYPTO_BLKCIPHER2
200 select CRYPTO_HASH2
201
202 config CRYPTO_PCRYPT
203 tristate "Parallel crypto engine"
204 depends on SMP
205 select PADATA
206 select CRYPTO_MANAGER
207 select CRYPTO_AEAD
208 help
209 This converts an arbitrary crypto algorithm into a parallel
210 algorithm that executes in kernel threads.
211
212 config CRYPTO_WORKQUEUE
213 tristate
214
215 config CRYPTO_CRYPTD
216 tristate "Software async crypto daemon"
217 select CRYPTO_BLKCIPHER
218 select CRYPTO_HASH
219 select CRYPTO_MANAGER
220 select CRYPTO_WORKQUEUE
221 help
222 This is a generic software asynchronous crypto daemon that
223 converts an arbitrary synchronous software crypto algorithm
224 into an asynchronous algorithm that executes in a kernel thread.
225
226 config CRYPTO_AUTHENC
227 tristate "Authenc support"
228 select CRYPTO_AEAD
229 select CRYPTO_BLKCIPHER
230 select CRYPTO_MANAGER
231 select CRYPTO_HASH
232 select CRYPTO_NULL
233 help
234 Authenc: Combined mode wrapper for IPsec.
235 This is required for IPSec.
236
237 config CRYPTO_TEST
238 tristate "Testing module"
239 depends on m
240 select CRYPTO_MANAGER
241 help
242 Quick & dirty crypto test module.
243
244 config CRYPTO_SIMD
245 tristate
246 select CRYPTO_CRYPTD
247
248 config CRYPTO_GLUE_HELPER_X86
249 tristate
250 depends on X86
251 select CRYPTO_BLKCIPHER
252
253 config CRYPTO_ENGINE
254 tristate
255
256 comment "Authenticated Encryption with Associated Data"
257
258 config CRYPTO_CCM
259 tristate "CCM support"
260 select CRYPTO_CTR
261 select CRYPTO_HASH
262 select CRYPTO_AEAD
263 help
264 Support for Counter with CBC MAC. Required for IPsec.
265
266 config CRYPTO_GCM
267 tristate "GCM/GMAC support"
268 select CRYPTO_CTR
269 select CRYPTO_AEAD
270 select CRYPTO_GHASH
271 select CRYPTO_NULL
272 help
273 Support for Galois/Counter Mode (GCM) and Galois Message
274 Authentication Code (GMAC). Required for IPSec.
275
276 config CRYPTO_CHACHA20POLY1305
277 tristate "ChaCha20-Poly1305 AEAD support"
278 select CRYPTO_CHACHA20
279 select CRYPTO_POLY1305
280 select CRYPTO_AEAD
281 help
282 ChaCha20-Poly1305 AEAD support, RFC7539.
283
284 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
285 with the Poly1305 authenticator. It is defined in RFC7539 for use in
286 IETF protocols.
287
288 config CRYPTO_AEGIS128
289 tristate "AEGIS-128 AEAD algorithm"
290 select CRYPTO_AEAD
291 select CRYPTO_AES # for AES S-box tables
292 help
293 Support for the AEGIS-128 dedicated AEAD algorithm.
294
295 config CRYPTO_AEGIS128L
296 tristate "AEGIS-128L AEAD algorithm"
297 select CRYPTO_AEAD
298 select CRYPTO_AES # for AES S-box tables
299 help
300 Support for the AEGIS-128L dedicated AEAD algorithm.
301
302 config CRYPTO_AEGIS256
303 tristate "AEGIS-256 AEAD algorithm"
304 select CRYPTO_AEAD
305 select CRYPTO_AES # for AES S-box tables
306 help
307 Support for the AEGIS-256 dedicated AEAD algorithm.
308
309 config CRYPTO_AEGIS128_AESNI_SSE2
310 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
311 depends on X86 && 64BIT
312 select CRYPTO_AEAD
313 select CRYPTO_CRYPTD
314 help
315 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
316
317 config CRYPTO_AEGIS128L_AESNI_SSE2
318 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
319 depends on X86 && 64BIT
320 select CRYPTO_AEAD
321 select CRYPTO_CRYPTD
322 help
323 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
324
325 config CRYPTO_AEGIS256_AESNI_SSE2
326 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
327 depends on X86 && 64BIT
328 select CRYPTO_AEAD
329 select CRYPTO_CRYPTD
330 help
331 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
332
333 config CRYPTO_MORUS640
334 tristate "MORUS-640 AEAD algorithm"
335 select CRYPTO_AEAD
336 help
337 Support for the MORUS-640 dedicated AEAD algorithm.
338
339 config CRYPTO_MORUS640_GLUE
340 tristate
341 depends on X86
342 select CRYPTO_AEAD
343 select CRYPTO_CRYPTD
344 help
345 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
346 algorithm.
347
348 config CRYPTO_MORUS640_SSE2
349 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
350 depends on X86 && 64BIT
351 select CRYPTO_AEAD
352 select CRYPTO_MORUS640_GLUE
353 help
354 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
355
356 config CRYPTO_MORUS1280
357 tristate "MORUS-1280 AEAD algorithm"
358 select CRYPTO_AEAD
359 help
360 Support for the MORUS-1280 dedicated AEAD algorithm.
361
362 config CRYPTO_MORUS1280_GLUE
363 tristate
364 depends on X86
365 select CRYPTO_AEAD
366 select CRYPTO_CRYPTD
367 help
368 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
369 algorithm.
370
371 config CRYPTO_MORUS1280_SSE2
372 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
373 depends on X86 && 64BIT
374 select CRYPTO_AEAD
375 select CRYPTO_MORUS1280_GLUE
376 help
377 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
378 algorithm.
379
380 config CRYPTO_MORUS1280_AVX2
381 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
382 depends on X86 && 64BIT
383 select CRYPTO_AEAD
384 select CRYPTO_MORUS1280_GLUE
385 help
386 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
387 algorithm.
388
389 config CRYPTO_SEQIV
390 tristate "Sequence Number IV Generator"
391 select CRYPTO_AEAD
392 select CRYPTO_BLKCIPHER
393 select CRYPTO_NULL
394 select CRYPTO_RNG_DEFAULT
395 help
396 This IV generator generates an IV based on a sequence number by
397 xoring it with a salt. This algorithm is mainly useful for CTR
398
399 config CRYPTO_ECHAINIV
400 tristate "Encrypted Chain IV Generator"
401 select CRYPTO_AEAD
402 select CRYPTO_NULL
403 select CRYPTO_RNG_DEFAULT
404 default m
405 help
406 This IV generator generates an IV based on the encryption of
407 a sequence number xored with a salt. This is the default
408 algorithm for CBC.
409
410 comment "Block modes"
411
412 config CRYPTO_CBC
413 tristate "CBC support"
414 select CRYPTO_BLKCIPHER
415 select CRYPTO_MANAGER
416 help
417 CBC: Cipher Block Chaining mode
418 This block cipher algorithm is required for IPSec.
419
420 config CRYPTO_CFB
421 tristate "CFB support"
422 select CRYPTO_BLKCIPHER
423 select CRYPTO_MANAGER
424 help
425 CFB: Cipher FeedBack mode
426 This block cipher algorithm is required for TPM2 Cryptography.
427
428 config CRYPTO_CTR
429 tristate "CTR support"
430 select CRYPTO_BLKCIPHER
431 select CRYPTO_SEQIV
432 select CRYPTO_MANAGER
433 help
434 CTR: Counter mode
435 This block cipher algorithm is required for IPSec.
436
437 config CRYPTO_CTS
438 tristate "CTS support"
439 select CRYPTO_BLKCIPHER
440 help
441 CTS: Cipher Text Stealing
442 This is the Cipher Text Stealing mode as described by
443 Section 8 of rfc2040 and referenced by rfc3962
444 (rfc3962 includes errata information in its Appendix A) or
445 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
446 This mode is required for Kerberos gss mechanism support
447 for AES encryption.
448
449 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
450
451 config CRYPTO_ECB
452 tristate "ECB support"
453 select CRYPTO_BLKCIPHER
454 select CRYPTO_MANAGER
455 help
456 ECB: Electronic CodeBook mode
457 This is the simplest block cipher algorithm. It simply encrypts
458 the input block by block.
459
460 config CRYPTO_LRW
461 tristate "LRW support"
462 select CRYPTO_BLKCIPHER
463 select CRYPTO_MANAGER
464 select CRYPTO_GF128MUL
465 help
466 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
467 narrow block cipher mode for dm-crypt. Use it with cipher
468 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
469 The first 128, 192 or 256 bits in the key are used for AES and the
470 rest is used to tie each cipher block to its logical position.
471
472 config CRYPTO_OFB
473 tristate "OFB support"
474 select CRYPTO_BLKCIPHER
475 select CRYPTO_MANAGER
476 help
477 OFB: the Output Feedback mode makes a block cipher into a synchronous
478 stream cipher. It generates keystream blocks, which are then XORed
479 with the plaintext blocks to get the ciphertext. Flipping a bit in the
480 ciphertext produces a flipped bit in the plaintext at the same
481 location. This property allows many error correcting codes to function
482 normally even when applied before encryption.
483
484 config CRYPTO_PCBC
485 tristate "PCBC support"
486 select CRYPTO_BLKCIPHER
487 select CRYPTO_MANAGER
488 help
489 PCBC: Propagating Cipher Block Chaining mode
490 This block cipher algorithm is required for RxRPC.
491
492 config CRYPTO_XTS
493 tristate "XTS support"
494 select CRYPTO_BLKCIPHER
495 select CRYPTO_MANAGER
496 select CRYPTO_ECB
497 help
498 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
499 key size 256, 384 or 512 bits. This implementation currently
500 can't handle a sectorsize which is not a multiple of 16 bytes.
501
502 config CRYPTO_KEYWRAP
503 tristate "Key wrapping support"
504 select CRYPTO_BLKCIPHER
505 help
506 Support for key wrapping (NIST SP800-38F / RFC3394) without
507 padding.
508
509 config CRYPTO_NHPOLY1305
510 tristate
511 select CRYPTO_HASH
512 select CRYPTO_POLY1305
513
514 config CRYPTO_NHPOLY1305_SSE2
515 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
516 depends on X86 && 64BIT
517 select CRYPTO_NHPOLY1305
518 help
519 SSE2 optimized implementation of the hash function used by the
520 Adiantum encryption mode.
521
522 config CRYPTO_NHPOLY1305_AVX2
523 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
524 depends on X86 && 64BIT
525 select CRYPTO_NHPOLY1305
526 help
527 AVX2 optimized implementation of the hash function used by the
528 Adiantum encryption mode.
529
530 config CRYPTO_ADIANTUM
531 tristate "Adiantum support"
532 select CRYPTO_CHACHA20
533 select CRYPTO_POLY1305
534 select CRYPTO_NHPOLY1305
535 help
536 Adiantum is a tweakable, length-preserving encryption mode
537 designed for fast and secure disk encryption, especially on
538 CPUs without dedicated crypto instructions. It encrypts
539 each sector using the XChaCha12 stream cipher, two passes of
540 an ε-almost-∆-universal hash function, and an invocation of
541 the AES-256 block cipher on a single 16-byte block. On CPUs
542 without AES instructions, Adiantum is much faster than
543 AES-XTS.
544
545 Adiantum's security is provably reducible to that of its
546 underlying stream and block ciphers, subject to a security
547 bound. Unlike XTS, Adiantum is a true wide-block encryption
548 mode, so it actually provides an even stronger notion of
549 security than XTS, subject to the security bound.
550
551 If unsure, say N.
552
553 comment "Hash modes"
554
555 config CRYPTO_CMAC
556 tristate "CMAC support"
557 select CRYPTO_HASH
558 select CRYPTO_MANAGER
559 help
560 Cipher-based Message Authentication Code (CMAC) specified by
561 The National Institute of Standards and Technology (NIST).
562
563 https://tools.ietf.org/html/rfc4493
564 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
565
566 config CRYPTO_HMAC
567 tristate "HMAC support"
568 select CRYPTO_HASH
569 select CRYPTO_MANAGER
570 help
571 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
572 This is required for IPSec.
573
574 config CRYPTO_XCBC
575 tristate "XCBC support"
576 select CRYPTO_HASH
577 select CRYPTO_MANAGER
578 help
579 XCBC: Keyed-Hashing with encryption algorithm
580 http://www.ietf.org/rfc/rfc3566.txt
581 http://csrc.nist.gov/encryption/modes/proposedmodes/
582 xcbc-mac/xcbc-mac-spec.pdf
583
584 config CRYPTO_VMAC
585 tristate "VMAC support"
586 select CRYPTO_HASH
587 select CRYPTO_MANAGER
588 help
589 VMAC is a message authentication algorithm designed for
590 very high speed on 64-bit architectures.
591
592 See also:
593 <http://fastcrypto.org/vmac>
594
595 comment "Digest"
596
597 config CRYPTO_CRC32C
598 tristate "CRC32c CRC algorithm"
599 select CRYPTO_HASH
600 select CRC32
601 help
602 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
603 by iSCSI for header and data digests and by others.
604 See Castagnoli93. Module will be crc32c.
605
606 config CRYPTO_CRC32C_INTEL
607 tristate "CRC32c INTEL hardware acceleration"
608 depends on X86
609 select CRYPTO_HASH
610 help
611 In Intel processor with SSE4.2 supported, the processor will
612 support CRC32C implementation using hardware accelerated CRC32
613 instruction. This option will create 'crc32c-intel' module,
614 which will enable any routine to use the CRC32 instruction to
615 gain performance compared with software implementation.
616 Module will be crc32c-intel.
617
618 config CRYPTO_CRC32C_VPMSUM
619 tristate "CRC32c CRC algorithm (powerpc64)"
620 depends on PPC64 && ALTIVEC
621 select CRYPTO_HASH
622 select CRC32
623 help
624 CRC32c algorithm implemented using vector polynomial multiply-sum
625 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
626 and newer processors for improved performance.
627
628
629 config CRYPTO_CRC32C_SPARC64
630 tristate "CRC32c CRC algorithm (SPARC64)"
631 depends on SPARC64
632 select CRYPTO_HASH
633 select CRC32
634 help
635 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
636 when available.
637
638 config CRYPTO_CRC32
639 tristate "CRC32 CRC algorithm"
640 select CRYPTO_HASH
641 select CRC32
642 help
643 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
644 Shash crypto api wrappers to crc32_le function.
645
646 config CRYPTO_CRC32_PCLMUL
647 tristate "CRC32 PCLMULQDQ hardware acceleration"
648 depends on X86
649 select CRYPTO_HASH
650 select CRC32
651 help
652 From Intel Westmere and AMD Bulldozer processor with SSE4.2
653 and PCLMULQDQ supported, the processor will support
654 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
655 instruction. This option will create 'crc32-pclmul' module,
656 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
657 and gain better performance as compared with the table implementation.
658
659 config CRYPTO_CRC32_MIPS
660 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
661 depends on MIPS_CRC_SUPPORT
662 select CRYPTO_HASH
663 help
664 CRC32c and CRC32 CRC algorithms implemented using mips crypto
665 instructions, when available.
666
667
668 config CRYPTO_CRCT10DIF
669 tristate "CRCT10DIF algorithm"
670 select CRYPTO_HASH
671 help
672 CRC T10 Data Integrity Field computation is being cast as
673 a crypto transform. This allows for faster crc t10 diff
674 transforms to be used if they are available.
675
676 config CRYPTO_CRCT10DIF_PCLMUL
677 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
678 depends on X86 && 64BIT && CRC_T10DIF
679 select CRYPTO_HASH
680 help
681 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
682 CRC T10 DIF PCLMULQDQ computation can be hardware
683 accelerated PCLMULQDQ instruction. This option will create
684 'crct10dif-pclmul' module, which is faster when computing the
685 crct10dif checksum as compared with the generic table implementation.
686
687 config CRYPTO_CRCT10DIF_VPMSUM
688 tristate "CRC32T10DIF powerpc64 hardware acceleration"
689 depends on PPC64 && ALTIVEC && CRC_T10DIF
690 select CRYPTO_HASH
691 help
692 CRC10T10DIF algorithm implemented using vector polynomial
693 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
694 POWER8 and newer processors for improved performance.
695
696 config CRYPTO_VPMSUM_TESTER
697 tristate "Powerpc64 vpmsum hardware acceleration tester"
698 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
699 help
700 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
701 POWER8 vpmsum instructions.
702 Unless you are testing these algorithms, you don't need this.
703
704 config CRYPTO_GHASH
705 tristate "GHASH digest algorithm"
706 select CRYPTO_GF128MUL
707 select CRYPTO_HASH
708 help
709 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
710
711 config CRYPTO_POLY1305
712 tristate "Poly1305 authenticator algorithm"
713 select CRYPTO_HASH
714 help
715 Poly1305 authenticator algorithm, RFC7539.
716
717 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
718 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
719 in IETF protocols. This is the portable C implementation of Poly1305.
720
721 config CRYPTO_POLY1305_X86_64
722 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
723 depends on X86 && 64BIT
724 select CRYPTO_POLY1305
725 help
726 Poly1305 authenticator algorithm, RFC7539.
727
728 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
729 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
730 in IETF protocols. This is the x86_64 assembler implementation using SIMD
731 instructions.
732
733 config CRYPTO_MD4
734 tristate "MD4 digest algorithm"
735 select CRYPTO_HASH
736 help
737 MD4 message digest algorithm (RFC1320).
738
739 config CRYPTO_MD5
740 tristate "MD5 digest algorithm"
741 select CRYPTO_HASH
742 help
743 MD5 message digest algorithm (RFC1321).
744
745 config CRYPTO_MD5_OCTEON
746 tristate "MD5 digest algorithm (OCTEON)"
747 depends on CPU_CAVIUM_OCTEON
748 select CRYPTO_MD5
749 select CRYPTO_HASH
750 help
751 MD5 message digest algorithm (RFC1321) implemented
752 using OCTEON crypto instructions, when available.
753
754 config CRYPTO_MD5_PPC
755 tristate "MD5 digest algorithm (PPC)"
756 depends on PPC
757 select CRYPTO_HASH
758 help
759 MD5 message digest algorithm (RFC1321) implemented
760 in PPC assembler.
761
762 config CRYPTO_MD5_SPARC64
763 tristate "MD5 digest algorithm (SPARC64)"
764 depends on SPARC64
765 select CRYPTO_MD5
766 select CRYPTO_HASH
767 help
768 MD5 message digest algorithm (RFC1321) implemented
769 using sparc64 crypto instructions, when available.
770
771 config CRYPTO_MICHAEL_MIC
772 tristate "Michael MIC keyed digest algorithm"
773 select CRYPTO_HASH
774 help
775 Michael MIC is used for message integrity protection in TKIP
776 (IEEE 802.11i). This algorithm is required for TKIP, but it
777 should not be used for other purposes because of the weakness
778 of the algorithm.
779
780 config CRYPTO_RMD128
781 tristate "RIPEMD-128 digest algorithm"
782 select CRYPTO_HASH
783 help
784 RIPEMD-128 (ISO/IEC 10118-3:2004).
785
786 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
787 be used as a secure replacement for RIPEMD. For other use cases,
788 RIPEMD-160 should be used.
789
790 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
791 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
792
793 config CRYPTO_RMD160
794 tristate "RIPEMD-160 digest algorithm"
795 select CRYPTO_HASH
796 help
797 RIPEMD-160 (ISO/IEC 10118-3:2004).
798
799 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
800 to be used as a secure replacement for the 128-bit hash functions
801 MD4, MD5 and it's predecessor RIPEMD
802 (not to be confused with RIPEMD-128).
803
804 It's speed is comparable to SHA1 and there are no known attacks
805 against RIPEMD-160.
806
807 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
808 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
809
810 config CRYPTO_RMD256
811 tristate "RIPEMD-256 digest algorithm"
812 select CRYPTO_HASH
813 help
814 RIPEMD-256 is an optional extension of RIPEMD-128 with a
815 256 bit hash. It is intended for applications that require
816 longer hash-results, without needing a larger security level
817 (than RIPEMD-128).
818
819 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
820 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
821
822 config CRYPTO_RMD320
823 tristate "RIPEMD-320 digest algorithm"
824 select CRYPTO_HASH
825 help
826 RIPEMD-320 is an optional extension of RIPEMD-160 with a
827 320 bit hash. It is intended for applications that require
828 longer hash-results, without needing a larger security level
829 (than RIPEMD-160).
830
831 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
832 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
833
834 config CRYPTO_SHA1
835 tristate "SHA1 digest algorithm"
836 select CRYPTO_HASH
837 help
838 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
839
840 config CRYPTO_SHA1_SSSE3
841 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
842 depends on X86 && 64BIT
843 select CRYPTO_SHA1
844 select CRYPTO_HASH
845 help
846 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
847 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
848 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
849 when available.
850
851 config CRYPTO_SHA256_SSSE3
852 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
853 depends on X86 && 64BIT
854 select CRYPTO_SHA256
855 select CRYPTO_HASH
856 help
857 SHA-256 secure hash standard (DFIPS 180-2) implemented
858 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
859 Extensions version 1 (AVX1), or Advanced Vector Extensions
860 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
861 Instructions) when available.
862
863 config CRYPTO_SHA512_SSSE3
864 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
865 depends on X86 && 64BIT
866 select CRYPTO_SHA512
867 select CRYPTO_HASH
868 help
869 SHA-512 secure hash standard (DFIPS 180-2) implemented
870 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
871 Extensions version 1 (AVX1), or Advanced Vector Extensions
872 version 2 (AVX2) instructions, when available.
873
874 config CRYPTO_SHA1_OCTEON
875 tristate "SHA1 digest algorithm (OCTEON)"
876 depends on CPU_CAVIUM_OCTEON
877 select CRYPTO_SHA1
878 select CRYPTO_HASH
879 help
880 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
881 using OCTEON crypto instructions, when available.
882
883 config CRYPTO_SHA1_SPARC64
884 tristate "SHA1 digest algorithm (SPARC64)"
885 depends on SPARC64
886 select CRYPTO_SHA1
887 select CRYPTO_HASH
888 help
889 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
890 using sparc64 crypto instructions, when available.
891
892 config CRYPTO_SHA1_PPC
893 tristate "SHA1 digest algorithm (powerpc)"
894 depends on PPC
895 help
896 This is the powerpc hardware accelerated implementation of the
897 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
898
899 config CRYPTO_SHA1_PPC_SPE
900 tristate "SHA1 digest algorithm (PPC SPE)"
901 depends on PPC && SPE
902 help
903 SHA-1 secure hash standard (DFIPS 180-4) implemented
904 using powerpc SPE SIMD instruction set.
905
906 config CRYPTO_SHA256
907 tristate "SHA224 and SHA256 digest algorithm"
908 select CRYPTO_HASH
909 help
910 SHA256 secure hash standard (DFIPS 180-2).
911
912 This version of SHA implements a 256 bit hash with 128 bits of
913 security against collision attacks.
914
915 This code also includes SHA-224, a 224 bit hash with 112 bits
916 of security against collision attacks.
917
918 config CRYPTO_SHA256_PPC_SPE
919 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
920 depends on PPC && SPE
921 select CRYPTO_SHA256
922 select CRYPTO_HASH
923 help
924 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
925 implemented using powerpc SPE SIMD instruction set.
926
927 config CRYPTO_SHA256_OCTEON
928 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
929 depends on CPU_CAVIUM_OCTEON
930 select CRYPTO_SHA256
931 select CRYPTO_HASH
932 help
933 SHA-256 secure hash standard (DFIPS 180-2) implemented
934 using OCTEON crypto instructions, when available.
935
936 config CRYPTO_SHA256_SPARC64
937 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
938 depends on SPARC64
939 select CRYPTO_SHA256
940 select CRYPTO_HASH
941 help
942 SHA-256 secure hash standard (DFIPS 180-2) implemented
943 using sparc64 crypto instructions, when available.
944
945 config CRYPTO_SHA512
946 tristate "SHA384 and SHA512 digest algorithms"
947 select CRYPTO_HASH
948 help
949 SHA512 secure hash standard (DFIPS 180-2).
950
951 This version of SHA implements a 512 bit hash with 256 bits of
952 security against collision attacks.
953
954 This code also includes SHA-384, a 384 bit hash with 192 bits
955 of security against collision attacks.
956
957 config CRYPTO_SHA512_OCTEON
958 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
959 depends on CPU_CAVIUM_OCTEON
960 select CRYPTO_SHA512
961 select CRYPTO_HASH
962 help
963 SHA-512 secure hash standard (DFIPS 180-2) implemented
964 using OCTEON crypto instructions, when available.
965
966 config CRYPTO_SHA512_SPARC64
967 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
968 depends on SPARC64
969 select CRYPTO_SHA512
970 select CRYPTO_HASH
971 help
972 SHA-512 secure hash standard (DFIPS 180-2) implemented
973 using sparc64 crypto instructions, when available.
974
975 config CRYPTO_SHA3
976 tristate "SHA3 digest algorithm"
977 select CRYPTO_HASH
978 help
979 SHA-3 secure hash standard (DFIPS 202). It's based on
980 cryptographic sponge function family called Keccak.
981
982 References:
983 http://keccak.noekeon.org/
984
985 config CRYPTO_SM3
986 tristate "SM3 digest algorithm"
987 select CRYPTO_HASH
988 help
989 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
990 It is part of the Chinese Commercial Cryptography suite.
991
992 References:
993 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
994 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
995
996 config CRYPTO_STREEBOG
997 tristate "Streebog Hash Function"
998 select CRYPTO_HASH
999 help
1000 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1001 cryptographic standard algorithms (called GOST algorithms).
1002 This setting enables two hash algorithms with 256 and 512 bits output.
1003
1004 References:
1005 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1006 https://tools.ietf.org/html/rfc6986
1007
1008 config CRYPTO_TGR192
1009 tristate "Tiger digest algorithms"
1010 select CRYPTO_HASH
1011 help
1012 Tiger hash algorithm 192, 160 and 128-bit hashes
1013
1014 Tiger is a hash function optimized for 64-bit processors while
1015 still having decent performance on 32-bit processors.
1016 Tiger was developed by Ross Anderson and Eli Biham.
1017
1018 See also:
1019 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1020
1021 config CRYPTO_WP512
1022 tristate "Whirlpool digest algorithms"
1023 select CRYPTO_HASH
1024 help
1025 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1026
1027 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1028 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1029
1030 See also:
1031 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1032
1033 config CRYPTO_GHASH_CLMUL_NI_INTEL
1034 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
1035 depends on X86 && 64BIT
1036 select CRYPTO_CRYPTD
1037 help
1038 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
1039 The implementation is accelerated by CLMUL-NI of Intel.
1040
1041 comment "Ciphers"
1042
1043 config CRYPTO_AES
1044 tristate "AES cipher algorithms"
1045 select CRYPTO_ALGAPI
1046 help
1047 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1048 algorithm.
1049
1050 Rijndael appears to be consistently a very good performer in
1051 both hardware and software across a wide range of computing
1052 environments regardless of its use in feedback or non-feedback
1053 modes. Its key setup time is excellent, and its key agility is
1054 good. Rijndael's very low memory requirements make it very well
1055 suited for restricted-space environments, in which it also
1056 demonstrates excellent performance. Rijndael's operations are
1057 among the easiest to defend against power and timing attacks.
1058
1059 The AES specifies three key sizes: 128, 192 and 256 bits
1060
1061 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1062
1063 config CRYPTO_AES_TI
1064 tristate "Fixed time AES cipher"
1065 select CRYPTO_ALGAPI
1066 help
1067 This is a generic implementation of AES that attempts to eliminate
1068 data dependent latencies as much as possible without affecting
1069 performance too much. It is intended for use by the generic CCM
1070 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1071 solely on encryption (although decryption is supported as well, but
1072 with a more dramatic performance hit)
1073
1074 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1075 8 for decryption), this implementation only uses just two S-boxes of
1076 256 bytes each, and attempts to eliminate data dependent latencies by
1077 prefetching the entire table into the cache at the start of each
1078 block. Interrupts are also disabled to avoid races where cachelines
1079 are evicted when the CPU is interrupted to do something else.
1080
1081 config CRYPTO_AES_586
1082 tristate "AES cipher algorithms (i586)"
1083 depends on (X86 || UML_X86) && !64BIT
1084 select CRYPTO_ALGAPI
1085 select CRYPTO_AES
1086 help
1087 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1088 algorithm.
1089
1090 Rijndael appears to be consistently a very good performer in
1091 both hardware and software across a wide range of computing
1092 environments regardless of its use in feedback or non-feedback
1093 modes. Its key setup time is excellent, and its key agility is
1094 good. Rijndael's very low memory requirements make it very well
1095 suited for restricted-space environments, in which it also
1096 demonstrates excellent performance. Rijndael's operations are
1097 among the easiest to defend against power and timing attacks.
1098
1099 The AES specifies three key sizes: 128, 192 and 256 bits
1100
1101 See <http://csrc.nist.gov/encryption/aes/> for more information.
1102
1103 config CRYPTO_AES_X86_64
1104 tristate "AES cipher algorithms (x86_64)"
1105 depends on (X86 || UML_X86) && 64BIT
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_AES
1108 help
1109 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1110 algorithm.
1111
1112 Rijndael appears to be consistently a very good performer in
1113 both hardware and software across a wide range of computing
1114 environments regardless of its use in feedback or non-feedback
1115 modes. Its key setup time is excellent, and its key agility is
1116 good. Rijndael's very low memory requirements make it very well
1117 suited for restricted-space environments, in which it also
1118 demonstrates excellent performance. Rijndael's operations are
1119 among the easiest to defend against power and timing attacks.
1120
1121 The AES specifies three key sizes: 128, 192 and 256 bits
1122
1123 See <http://csrc.nist.gov/encryption/aes/> for more information.
1124
1125 config CRYPTO_AES_NI_INTEL
1126 tristate "AES cipher algorithms (AES-NI)"
1127 depends on X86
1128 select CRYPTO_AEAD
1129 select CRYPTO_AES_X86_64 if 64BIT
1130 select CRYPTO_AES_586 if !64BIT
1131 select CRYPTO_ALGAPI
1132 select CRYPTO_BLKCIPHER
1133 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1134 select CRYPTO_SIMD
1135 help
1136 Use Intel AES-NI instructions for AES algorithm.
1137
1138 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1139 algorithm.
1140
1141 Rijndael appears to be consistently a very good performer in
1142 both hardware and software across a wide range of computing
1143 environments regardless of its use in feedback or non-feedback
1144 modes. Its key setup time is excellent, and its key agility is
1145 good. Rijndael's very low memory requirements make it very well
1146 suited for restricted-space environments, in which it also
1147 demonstrates excellent performance. Rijndael's operations are
1148 among the easiest to defend against power and timing attacks.
1149
1150 The AES specifies three key sizes: 128, 192 and 256 bits
1151
1152 See <http://csrc.nist.gov/encryption/aes/> for more information.
1153
1154 In addition to AES cipher algorithm support, the acceleration
1155 for some popular block cipher mode is supported too, including
1156 ECB, CBC, LRW, XTS. The 64 bit version has additional
1157 acceleration for CTR.
1158
1159 config CRYPTO_AES_SPARC64
1160 tristate "AES cipher algorithms (SPARC64)"
1161 depends on SPARC64
1162 select CRYPTO_CRYPTD
1163 select CRYPTO_ALGAPI
1164 help
1165 Use SPARC64 crypto opcodes for AES algorithm.
1166
1167 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1168 algorithm.
1169
1170 Rijndael appears to be consistently a very good performer in
1171 both hardware and software across a wide range of computing
1172 environments regardless of its use in feedback or non-feedback
1173 modes. Its key setup time is excellent, and its key agility is
1174 good. Rijndael's very low memory requirements make it very well
1175 suited for restricted-space environments, in which it also
1176 demonstrates excellent performance. Rijndael's operations are
1177 among the easiest to defend against power and timing attacks.
1178
1179 The AES specifies three key sizes: 128, 192 and 256 bits
1180
1181 See <http://csrc.nist.gov/encryption/aes/> for more information.
1182
1183 In addition to AES cipher algorithm support, the acceleration
1184 for some popular block cipher mode is supported too, including
1185 ECB and CBC.
1186
1187 config CRYPTO_AES_PPC_SPE
1188 tristate "AES cipher algorithms (PPC SPE)"
1189 depends on PPC && SPE
1190 help
1191 AES cipher algorithms (FIPS-197). Additionally the acceleration
1192 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1193 This module should only be used for low power (router) devices
1194 without hardware AES acceleration (e.g. caam crypto). It reduces the
1195 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1196 timining attacks. Nevertheless it might be not as secure as other
1197 architecture specific assembler implementations that work on 1KB
1198 tables or 256 bytes S-boxes.
1199
1200 config CRYPTO_ANUBIS
1201 tristate "Anubis cipher algorithm"
1202 select CRYPTO_ALGAPI
1203 help
1204 Anubis cipher algorithm.
1205
1206 Anubis is a variable key length cipher which can use keys from
1207 128 bits to 320 bits in length. It was evaluated as a entrant
1208 in the NESSIE competition.
1209
1210 See also:
1211 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1212 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1213
1214 config CRYPTO_ARC4
1215 tristate "ARC4 cipher algorithm"
1216 select CRYPTO_BLKCIPHER
1217 help
1218 ARC4 cipher algorithm.
1219
1220 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1221 bits in length. This algorithm is required for driver-based
1222 WEP, but it should not be for other purposes because of the
1223 weakness of the algorithm.
1224
1225 config CRYPTO_BLOWFISH
1226 tristate "Blowfish cipher algorithm"
1227 select CRYPTO_ALGAPI
1228 select CRYPTO_BLOWFISH_COMMON
1229 help
1230 Blowfish cipher algorithm, by Bruce Schneier.
1231
1232 This is a variable key length cipher which can use keys from 32
1233 bits to 448 bits in length. It's fast, simple and specifically
1234 designed for use on "large microprocessors".
1235
1236 See also:
1237 <http://www.schneier.com/blowfish.html>
1238
1239 config CRYPTO_BLOWFISH_COMMON
1240 tristate
1241 help
1242 Common parts of the Blowfish cipher algorithm shared by the
1243 generic c and the assembler implementations.
1244
1245 See also:
1246 <http://www.schneier.com/blowfish.html>
1247
1248 config CRYPTO_BLOWFISH_X86_64
1249 tristate "Blowfish cipher algorithm (x86_64)"
1250 depends on X86 && 64BIT
1251 select CRYPTO_BLKCIPHER
1252 select CRYPTO_BLOWFISH_COMMON
1253 help
1254 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1255
1256 This is a variable key length cipher which can use keys from 32
1257 bits to 448 bits in length. It's fast, simple and specifically
1258 designed for use on "large microprocessors".
1259
1260 See also:
1261 <http://www.schneier.com/blowfish.html>
1262
1263 config CRYPTO_CAMELLIA
1264 tristate "Camellia cipher algorithms"
1265 depends on CRYPTO
1266 select CRYPTO_ALGAPI
1267 help
1268 Camellia cipher algorithms module.
1269
1270 Camellia is a symmetric key block cipher developed jointly
1271 at NTT and Mitsubishi Electric Corporation.
1272
1273 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1274
1275 See also:
1276 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1277
1278 config CRYPTO_CAMELLIA_X86_64
1279 tristate "Camellia cipher algorithm (x86_64)"
1280 depends on X86 && 64BIT
1281 depends on CRYPTO
1282 select CRYPTO_BLKCIPHER
1283 select CRYPTO_GLUE_HELPER_X86
1284 help
1285 Camellia cipher algorithm module (x86_64).
1286
1287 Camellia is a symmetric key block cipher developed jointly
1288 at NTT and Mitsubishi Electric Corporation.
1289
1290 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1291
1292 See also:
1293 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1294
1295 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1296 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1297 depends on X86 && 64BIT
1298 depends on CRYPTO
1299 select CRYPTO_BLKCIPHER
1300 select CRYPTO_CAMELLIA_X86_64
1301 select CRYPTO_GLUE_HELPER_X86
1302 select CRYPTO_SIMD
1303 select CRYPTO_XTS
1304 help
1305 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1306
1307 Camellia is a symmetric key block cipher developed jointly
1308 at NTT and Mitsubishi Electric Corporation.
1309
1310 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1311
1312 See also:
1313 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1314
1315 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1316 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1317 depends on X86 && 64BIT
1318 depends on CRYPTO
1319 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1320 help
1321 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1322
1323 Camellia is a symmetric key block cipher developed jointly
1324 at NTT and Mitsubishi Electric Corporation.
1325
1326 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1327
1328 See also:
1329 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1330
1331 config CRYPTO_CAMELLIA_SPARC64
1332 tristate "Camellia cipher algorithm (SPARC64)"
1333 depends on SPARC64
1334 depends on CRYPTO
1335 select CRYPTO_ALGAPI
1336 help
1337 Camellia cipher algorithm module (SPARC64).
1338
1339 Camellia is a symmetric key block cipher developed jointly
1340 at NTT and Mitsubishi Electric Corporation.
1341
1342 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1343
1344 See also:
1345 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1346
1347 config CRYPTO_CAST_COMMON
1348 tristate
1349 help
1350 Common parts of the CAST cipher algorithms shared by the
1351 generic c and the assembler implementations.
1352
1353 config CRYPTO_CAST5
1354 tristate "CAST5 (CAST-128) cipher algorithm"
1355 select CRYPTO_ALGAPI
1356 select CRYPTO_CAST_COMMON
1357 help
1358 The CAST5 encryption algorithm (synonymous with CAST-128) is
1359 described in RFC2144.
1360
1361 config CRYPTO_CAST5_AVX_X86_64
1362 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1363 depends on X86 && 64BIT
1364 select CRYPTO_BLKCIPHER
1365 select CRYPTO_CAST5
1366 select CRYPTO_CAST_COMMON
1367 select CRYPTO_SIMD
1368 help
1369 The CAST5 encryption algorithm (synonymous with CAST-128) is
1370 described in RFC2144.
1371
1372 This module provides the Cast5 cipher algorithm that processes
1373 sixteen blocks parallel using the AVX instruction set.
1374
1375 config CRYPTO_CAST6
1376 tristate "CAST6 (CAST-256) cipher algorithm"
1377 select CRYPTO_ALGAPI
1378 select CRYPTO_CAST_COMMON
1379 help
1380 The CAST6 encryption algorithm (synonymous with CAST-256) is
1381 described in RFC2612.
1382
1383 config CRYPTO_CAST6_AVX_X86_64
1384 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1385 depends on X86 && 64BIT
1386 select CRYPTO_BLKCIPHER
1387 select CRYPTO_CAST6
1388 select CRYPTO_CAST_COMMON
1389 select CRYPTO_GLUE_HELPER_X86
1390 select CRYPTO_SIMD
1391 select CRYPTO_XTS
1392 help
1393 The CAST6 encryption algorithm (synonymous with CAST-256) is
1394 described in RFC2612.
1395
1396 This module provides the Cast6 cipher algorithm that processes
1397 eight blocks parallel using the AVX instruction set.
1398
1399 config CRYPTO_DES
1400 tristate "DES and Triple DES EDE cipher algorithms"
1401 select CRYPTO_ALGAPI
1402 help
1403 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1404
1405 config CRYPTO_DES_SPARC64
1406 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1407 depends on SPARC64
1408 select CRYPTO_ALGAPI
1409 select CRYPTO_DES
1410 help
1411 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1412 optimized using SPARC64 crypto opcodes.
1413
1414 config CRYPTO_DES3_EDE_X86_64
1415 tristate "Triple DES EDE cipher algorithm (x86-64)"
1416 depends on X86 && 64BIT
1417 select CRYPTO_BLKCIPHER
1418 select CRYPTO_DES
1419 help
1420 Triple DES EDE (FIPS 46-3) algorithm.
1421
1422 This module provides implementation of the Triple DES EDE cipher
1423 algorithm that is optimized for x86-64 processors. Two versions of
1424 algorithm are provided; regular processing one input block and
1425 one that processes three blocks parallel.
1426
1427 config CRYPTO_FCRYPT
1428 tristate "FCrypt cipher algorithm"
1429 select CRYPTO_ALGAPI
1430 select CRYPTO_BLKCIPHER
1431 help
1432 FCrypt algorithm used by RxRPC.
1433
1434 config CRYPTO_KHAZAD
1435 tristate "Khazad cipher algorithm"
1436 select CRYPTO_ALGAPI
1437 help
1438 Khazad cipher algorithm.
1439
1440 Khazad was a finalist in the initial NESSIE competition. It is
1441 an algorithm optimized for 64-bit processors with good performance
1442 on 32-bit processors. Khazad uses an 128 bit key size.
1443
1444 See also:
1445 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1446
1447 config CRYPTO_SALSA20
1448 tristate "Salsa20 stream cipher algorithm"
1449 select CRYPTO_BLKCIPHER
1450 help
1451 Salsa20 stream cipher algorithm.
1452
1453 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1454 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1455
1456 The Salsa20 stream cipher algorithm is designed by Daniel J.
1457 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1458
1459 config CRYPTO_CHACHA20
1460 tristate "ChaCha stream cipher algorithms"
1461 select CRYPTO_BLKCIPHER
1462 help
1463 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1464
1465 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1466 Bernstein and further specified in RFC7539 for use in IETF protocols.
1467 This is the portable C implementation of ChaCha20. See also:
1468 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1469
1470 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1471 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1472 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1473 while provably retaining ChaCha20's security. See also:
1474 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1475
1476 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1477 reduced security margin but increased performance. It can be needed
1478 in some performance-sensitive scenarios.
1479
1480 config CRYPTO_CHACHA20_X86_64
1481 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1482 depends on X86 && 64BIT
1483 select CRYPTO_BLKCIPHER
1484 select CRYPTO_CHACHA20
1485 help
1486 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1487 XChaCha20, and XChaCha12 stream ciphers.
1488
1489 config CRYPTO_SEED
1490 tristate "SEED cipher algorithm"
1491 select CRYPTO_ALGAPI
1492 help
1493 SEED cipher algorithm (RFC4269).
1494
1495 SEED is a 128-bit symmetric key block cipher that has been
1496 developed by KISA (Korea Information Security Agency) as a
1497 national standard encryption algorithm of the Republic of Korea.
1498 It is a 16 round block cipher with the key size of 128 bit.
1499
1500 See also:
1501 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1502
1503 config CRYPTO_SERPENT
1504 tristate "Serpent cipher algorithm"
1505 select CRYPTO_ALGAPI
1506 help
1507 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1508
1509 Keys are allowed to be from 0 to 256 bits in length, in steps
1510 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1511 variant of Serpent for compatibility with old kerneli.org code.
1512
1513 See also:
1514 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1515
1516 config CRYPTO_SERPENT_SSE2_X86_64
1517 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1518 depends on X86 && 64BIT
1519 select CRYPTO_BLKCIPHER
1520 select CRYPTO_GLUE_HELPER_X86
1521 select CRYPTO_SERPENT
1522 select CRYPTO_SIMD
1523 help
1524 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1525
1526 Keys are allowed to be from 0 to 256 bits in length, in steps
1527 of 8 bits.
1528
1529 This module provides Serpent cipher algorithm that processes eight
1530 blocks parallel using SSE2 instruction set.
1531
1532 See also:
1533 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1534
1535 config CRYPTO_SERPENT_SSE2_586
1536 tristate "Serpent cipher algorithm (i586/SSE2)"
1537 depends on X86 && !64BIT
1538 select CRYPTO_BLKCIPHER
1539 select CRYPTO_GLUE_HELPER_X86
1540 select CRYPTO_SERPENT
1541 select CRYPTO_SIMD
1542 help
1543 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1544
1545 Keys are allowed to be from 0 to 256 bits in length, in steps
1546 of 8 bits.
1547
1548 This module provides Serpent cipher algorithm that processes four
1549 blocks parallel using SSE2 instruction set.
1550
1551 See also:
1552 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1553
1554 config CRYPTO_SERPENT_AVX_X86_64
1555 tristate "Serpent cipher algorithm (x86_64/AVX)"
1556 depends on X86 && 64BIT
1557 select CRYPTO_BLKCIPHER
1558 select CRYPTO_GLUE_HELPER_X86
1559 select CRYPTO_SERPENT
1560 select CRYPTO_SIMD
1561 select CRYPTO_XTS
1562 help
1563 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1564
1565 Keys are allowed to be from 0 to 256 bits in length, in steps
1566 of 8 bits.
1567
1568 This module provides the Serpent cipher algorithm that processes
1569 eight blocks parallel using the AVX instruction set.
1570
1571 See also:
1572 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1573
1574 config CRYPTO_SERPENT_AVX2_X86_64
1575 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1576 depends on X86 && 64BIT
1577 select CRYPTO_SERPENT_AVX_X86_64
1578 help
1579 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1580
1581 Keys are allowed to be from 0 to 256 bits in length, in steps
1582 of 8 bits.
1583
1584 This module provides Serpent cipher algorithm that processes 16
1585 blocks parallel using AVX2 instruction set.
1586
1587 See also:
1588 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1589
1590 config CRYPTO_SM4
1591 tristate "SM4 cipher algorithm"
1592 select CRYPTO_ALGAPI
1593 help
1594 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1595
1596 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1597 Organization of State Commercial Administration of China (OSCCA)
1598 as an authorized cryptographic algorithms for the use within China.
1599
1600 SMS4 was originally created for use in protecting wireless
1601 networks, and is mandated in the Chinese National Standard for
1602 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1603 (GB.15629.11-2003).
1604
1605 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1606 standardized through TC 260 of the Standardization Administration
1607 of the People's Republic of China (SAC).
1608
1609 The input, output, and key of SMS4 are each 128 bits.
1610
1611 See also: <https://eprint.iacr.org/2008/329.pdf>
1612
1613 If unsure, say N.
1614
1615 config CRYPTO_TEA
1616 tristate "TEA, XTEA and XETA cipher algorithms"
1617 select CRYPTO_ALGAPI
1618 help
1619 TEA cipher algorithm.
1620
1621 Tiny Encryption Algorithm is a simple cipher that uses
1622 many rounds for security. It is very fast and uses
1623 little memory.
1624
1625 Xtendend Tiny Encryption Algorithm is a modification to
1626 the TEA algorithm to address a potential key weakness
1627 in the TEA algorithm.
1628
1629 Xtendend Encryption Tiny Algorithm is a mis-implementation
1630 of the XTEA algorithm for compatibility purposes.
1631
1632 config CRYPTO_TWOFISH
1633 tristate "Twofish cipher algorithm"
1634 select CRYPTO_ALGAPI
1635 select CRYPTO_TWOFISH_COMMON
1636 help
1637 Twofish cipher algorithm.
1638
1639 Twofish was submitted as an AES (Advanced Encryption Standard)
1640 candidate cipher by researchers at CounterPane Systems. It is a
1641 16 round block cipher supporting key sizes of 128, 192, and 256
1642 bits.
1643
1644 See also:
1645 <http://www.schneier.com/twofish.html>
1646
1647 config CRYPTO_TWOFISH_COMMON
1648 tristate
1649 help
1650 Common parts of the Twofish cipher algorithm shared by the
1651 generic c and the assembler implementations.
1652
1653 config CRYPTO_TWOFISH_586
1654 tristate "Twofish cipher algorithms (i586)"
1655 depends on (X86 || UML_X86) && !64BIT
1656 select CRYPTO_ALGAPI
1657 select CRYPTO_TWOFISH_COMMON
1658 help
1659 Twofish cipher algorithm.
1660
1661 Twofish was submitted as an AES (Advanced Encryption Standard)
1662 candidate cipher by researchers at CounterPane Systems. It is a
1663 16 round block cipher supporting key sizes of 128, 192, and 256
1664 bits.
1665
1666 See also:
1667 <http://www.schneier.com/twofish.html>
1668
1669 config CRYPTO_TWOFISH_X86_64
1670 tristate "Twofish cipher algorithm (x86_64)"
1671 depends on (X86 || UML_X86) && 64BIT
1672 select CRYPTO_ALGAPI
1673 select CRYPTO_TWOFISH_COMMON
1674 help
1675 Twofish cipher algorithm (x86_64).
1676
1677 Twofish was submitted as an AES (Advanced Encryption Standard)
1678 candidate cipher by researchers at CounterPane Systems. It is a
1679 16 round block cipher supporting key sizes of 128, 192, and 256
1680 bits.
1681
1682 See also:
1683 <http://www.schneier.com/twofish.html>
1684
1685 config CRYPTO_TWOFISH_X86_64_3WAY
1686 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1687 depends on X86 && 64BIT
1688 select CRYPTO_BLKCIPHER
1689 select CRYPTO_TWOFISH_COMMON
1690 select CRYPTO_TWOFISH_X86_64
1691 select CRYPTO_GLUE_HELPER_X86
1692 help
1693 Twofish cipher algorithm (x86_64, 3-way parallel).
1694
1695 Twofish was submitted as an AES (Advanced Encryption Standard)
1696 candidate cipher by researchers at CounterPane Systems. It is a
1697 16 round block cipher supporting key sizes of 128, 192, and 256
1698 bits.
1699
1700 This module provides Twofish cipher algorithm that processes three
1701 blocks parallel, utilizing resources of out-of-order CPUs better.
1702
1703 See also:
1704 <http://www.schneier.com/twofish.html>
1705
1706 config CRYPTO_TWOFISH_AVX_X86_64
1707 tristate "Twofish cipher algorithm (x86_64/AVX)"
1708 depends on X86 && 64BIT
1709 select CRYPTO_BLKCIPHER
1710 select CRYPTO_GLUE_HELPER_X86
1711 select CRYPTO_SIMD
1712 select CRYPTO_TWOFISH_COMMON
1713 select CRYPTO_TWOFISH_X86_64
1714 select CRYPTO_TWOFISH_X86_64_3WAY
1715 help
1716 Twofish cipher algorithm (x86_64/AVX).
1717
1718 Twofish was submitted as an AES (Advanced Encryption Standard)
1719 candidate cipher by researchers at CounterPane Systems. It is a
1720 16 round block cipher supporting key sizes of 128, 192, and 256
1721 bits.
1722
1723 This module provides the Twofish cipher algorithm that processes
1724 eight blocks parallel using the AVX Instruction Set.
1725
1726 See also:
1727 <http://www.schneier.com/twofish.html>
1728
1729 comment "Compression"
1730
1731 config CRYPTO_DEFLATE
1732 tristate "Deflate compression algorithm"
1733 select CRYPTO_ALGAPI
1734 select CRYPTO_ACOMP2
1735 select ZLIB_INFLATE
1736 select ZLIB_DEFLATE
1737 help
1738 This is the Deflate algorithm (RFC1951), specified for use in
1739 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1740
1741 You will most probably want this if using IPSec.
1742
1743 config CRYPTO_LZO
1744 tristate "LZO compression algorithm"
1745 select CRYPTO_ALGAPI
1746 select CRYPTO_ACOMP2
1747 select LZO_COMPRESS
1748 select LZO_DECOMPRESS
1749 help
1750 This is the LZO algorithm.
1751
1752 config CRYPTO_842
1753 tristate "842 compression algorithm"
1754 select CRYPTO_ALGAPI
1755 select CRYPTO_ACOMP2
1756 select 842_COMPRESS
1757 select 842_DECOMPRESS
1758 help
1759 This is the 842 algorithm.
1760
1761 config CRYPTO_LZ4
1762 tristate "LZ4 compression algorithm"
1763 select CRYPTO_ALGAPI
1764 select CRYPTO_ACOMP2
1765 select LZ4_COMPRESS
1766 select LZ4_DECOMPRESS
1767 help
1768 This is the LZ4 algorithm.
1769
1770 config CRYPTO_LZ4HC
1771 tristate "LZ4HC compression algorithm"
1772 select CRYPTO_ALGAPI
1773 select CRYPTO_ACOMP2
1774 select LZ4HC_COMPRESS
1775 select LZ4_DECOMPRESS
1776 help
1777 This is the LZ4 high compression mode algorithm.
1778
1779 config CRYPTO_ZSTD
1780 tristate "Zstd compression algorithm"
1781 select CRYPTO_ALGAPI
1782 select CRYPTO_ACOMP2
1783 select ZSTD_COMPRESS
1784 select ZSTD_DECOMPRESS
1785 help
1786 This is the zstd algorithm.
1787
1788 comment "Random Number Generation"
1789
1790 config CRYPTO_ANSI_CPRNG
1791 tristate "Pseudo Random Number Generation for Cryptographic modules"
1792 select CRYPTO_AES
1793 select CRYPTO_RNG
1794 help
1795 This option enables the generic pseudo random number generator
1796 for cryptographic modules. Uses the Algorithm specified in
1797 ANSI X9.31 A.2.4. Note that this option must be enabled if
1798 CRYPTO_FIPS is selected
1799
1800 menuconfig CRYPTO_DRBG_MENU
1801 tristate "NIST SP800-90A DRBG"
1802 help
1803 NIST SP800-90A compliant DRBG. In the following submenu, one or
1804 more of the DRBG types must be selected.
1805
1806 if CRYPTO_DRBG_MENU
1807
1808 config CRYPTO_DRBG_HMAC
1809 bool
1810 default y
1811 select CRYPTO_HMAC
1812 select CRYPTO_SHA256
1813
1814 config CRYPTO_DRBG_HASH
1815 bool "Enable Hash DRBG"
1816 select CRYPTO_SHA256
1817 help
1818 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1819
1820 config CRYPTO_DRBG_CTR
1821 bool "Enable CTR DRBG"
1822 select CRYPTO_AES
1823 depends on CRYPTO_CTR
1824 help
1825 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1826
1827 config CRYPTO_DRBG
1828 tristate
1829 default CRYPTO_DRBG_MENU
1830 select CRYPTO_RNG
1831 select CRYPTO_JITTERENTROPY
1832
1833 endif # if CRYPTO_DRBG_MENU
1834
1835 config CRYPTO_JITTERENTROPY
1836 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1837 select CRYPTO_RNG
1838 help
1839 The Jitterentropy RNG is a noise that is intended
1840 to provide seed to another RNG. The RNG does not
1841 perform any cryptographic whitening of the generated
1842 random numbers. This Jitterentropy RNG registers with
1843 the kernel crypto API and can be used by any caller.
1844
1845 config CRYPTO_USER_API
1846 tristate
1847
1848 config CRYPTO_USER_API_HASH
1849 tristate "User-space interface for hash algorithms"
1850 depends on NET
1851 select CRYPTO_HASH
1852 select CRYPTO_USER_API
1853 help
1854 This option enables the user-spaces interface for hash
1855 algorithms.
1856
1857 config CRYPTO_USER_API_SKCIPHER
1858 tristate "User-space interface for symmetric key cipher algorithms"
1859 depends on NET
1860 select CRYPTO_BLKCIPHER
1861 select CRYPTO_USER_API
1862 help
1863 This option enables the user-spaces interface for symmetric
1864 key cipher algorithms.
1865
1866 config CRYPTO_USER_API_RNG
1867 tristate "User-space interface for random number generator algorithms"
1868 depends on NET
1869 select CRYPTO_RNG
1870 select CRYPTO_USER_API
1871 help
1872 This option enables the user-spaces interface for random
1873 number generator algorithms.
1874
1875 config CRYPTO_USER_API_AEAD
1876 tristate "User-space interface for AEAD cipher algorithms"
1877 depends on NET
1878 select CRYPTO_AEAD
1879 select CRYPTO_BLKCIPHER
1880 select CRYPTO_NULL
1881 select CRYPTO_USER_API
1882 help
1883 This option enables the user-spaces interface for AEAD
1884 cipher algorithms.
1885
1886 config CRYPTO_STATS
1887 bool "Crypto usage statistics for User-space"
1888 depends on CRYPTO_USER
1889 help
1890 This option enables the gathering of crypto stats.
1891 This will collect:
1892 - encrypt/decrypt size and numbers of symmeric operations
1893 - compress/decompress size and numbers of compress operations
1894 - size and numbers of hash operations
1895 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1896 - generate/seed numbers for rng operations
1897
1898 config CRYPTO_HASH_INFO
1899 bool
1900
1901 source "drivers/crypto/Kconfig"
1902 source "crypto/asymmetric_keys/Kconfig"
1903 source "certs/Kconfig"
1904
1905 endif # if CRYPTO