]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - crypto/Kconfig
Merge tag 'selinux-pr-20200210' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / crypto / Kconfig
1 # SPDX-License-Identifier: GPL-2.0
2 #
3 # Generic algorithms support
4 #
5 config XOR_BLOCKS
6 tristate
7
8 #
9 # async_tx api: hardware offloaded memory transfer/transform support
10 #
11 source "crypto/async_tx/Kconfig"
12
13 #
14 # Cryptographic API Configuration
15 #
16 menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21 if CRYPTO
22
23 comment "Crypto core or helper"
24
25 config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35 config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41 config CRYPTO_ALGAPI2
42 tristate
43
44 config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49 config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55 config CRYPTO_SKCIPHER
56 tristate
57 select CRYPTO_SKCIPHER2
58 select CRYPTO_ALGAPI
59
60 config CRYPTO_SKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91 config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96 config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105 config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110 config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115 config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122 config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_SKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131 config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139 if CRYPTO_MANAGER2
140
141 config CRYPTO_MANAGER_DISABLE_TESTS
142 bool "Disable run-time self tests"
143 default y
144 help
145 Disable run-time self tests that normally take place at
146 algorithm registration.
147
148 config CRYPTO_MANAGER_EXTRA_TESTS
149 bool "Enable extra run-time crypto self tests"
150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
151 help
152 Enable extra run-time self tests of registered crypto algorithms,
153 including randomized fuzz tests.
154
155 This is intended for developer use only, as these tests take much
156 longer to run than the normal self tests.
157
158 endif # if CRYPTO_MANAGER2
159
160 config CRYPTO_GF128MUL
161 tristate
162
163 config CRYPTO_NULL
164 tristate "Null algorithms"
165 select CRYPTO_NULL2
166 help
167 These are 'Null' algorithms, used by IPsec, which do nothing.
168
169 config CRYPTO_NULL2
170 tristate
171 select CRYPTO_ALGAPI2
172 select CRYPTO_SKCIPHER2
173 select CRYPTO_HASH2
174
175 config CRYPTO_PCRYPT
176 tristate "Parallel crypto engine"
177 depends on SMP
178 select PADATA
179 select CRYPTO_MANAGER
180 select CRYPTO_AEAD
181 help
182 This converts an arbitrary crypto algorithm into a parallel
183 algorithm that executes in kernel threads.
184
185 config CRYPTO_CRYPTD
186 tristate "Software async crypto daemon"
187 select CRYPTO_SKCIPHER
188 select CRYPTO_HASH
189 select CRYPTO_MANAGER
190 help
191 This is a generic software asynchronous crypto daemon that
192 converts an arbitrary synchronous software crypto algorithm
193 into an asynchronous algorithm that executes in a kernel thread.
194
195 config CRYPTO_AUTHENC
196 tristate "Authenc support"
197 select CRYPTO_AEAD
198 select CRYPTO_SKCIPHER
199 select CRYPTO_MANAGER
200 select CRYPTO_HASH
201 select CRYPTO_NULL
202 help
203 Authenc: Combined mode wrapper for IPsec.
204 This is required for IPSec.
205
206 config CRYPTO_TEST
207 tristate "Testing module"
208 depends on m
209 select CRYPTO_MANAGER
210 help
211 Quick & dirty crypto test module.
212
213 config CRYPTO_SIMD
214 tristate
215 select CRYPTO_CRYPTD
216
217 config CRYPTO_GLUE_HELPER_X86
218 tristate
219 depends on X86
220 select CRYPTO_SKCIPHER
221
222 config CRYPTO_ENGINE
223 tristate
224
225 comment "Public-key cryptography"
226
227 config CRYPTO_RSA
228 tristate "RSA algorithm"
229 select CRYPTO_AKCIPHER
230 select CRYPTO_MANAGER
231 select MPILIB
232 select ASN1
233 help
234 Generic implementation of the RSA public key algorithm.
235
236 config CRYPTO_DH
237 tristate "Diffie-Hellman algorithm"
238 select CRYPTO_KPP
239 select MPILIB
240 help
241 Generic implementation of the Diffie-Hellman algorithm.
242
243 config CRYPTO_ECC
244 tristate
245
246 config CRYPTO_ECDH
247 tristate "ECDH algorithm"
248 select CRYPTO_ECC
249 select CRYPTO_KPP
250 select CRYPTO_RNG_DEFAULT
251 help
252 Generic implementation of the ECDH algorithm
253
254 config CRYPTO_ECRDSA
255 tristate "EC-RDSA (GOST 34.10) algorithm"
256 select CRYPTO_ECC
257 select CRYPTO_AKCIPHER
258 select CRYPTO_STREEBOG
259 select OID_REGISTRY
260 select ASN1
261 help
262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
264 standard algorithms (called GOST algorithms). Only signature verification
265 is implemented.
266
267 config CRYPTO_CURVE25519
268 tristate "Curve25519 algorithm"
269 select CRYPTO_KPP
270 select CRYPTO_LIB_CURVE25519_GENERIC
271
272 config CRYPTO_CURVE25519_X86
273 tristate "x86_64 accelerated Curve25519 scalar multiplication library"
274 depends on X86 && 64BIT
275 select CRYPTO_LIB_CURVE25519_GENERIC
276 select CRYPTO_ARCH_HAVE_LIB_CURVE25519
277
278 comment "Authenticated Encryption with Associated Data"
279
280 config CRYPTO_CCM
281 tristate "CCM support"
282 select CRYPTO_CTR
283 select CRYPTO_HASH
284 select CRYPTO_AEAD
285 select CRYPTO_MANAGER
286 help
287 Support for Counter with CBC MAC. Required for IPsec.
288
289 config CRYPTO_GCM
290 tristate "GCM/GMAC support"
291 select CRYPTO_CTR
292 select CRYPTO_AEAD
293 select CRYPTO_GHASH
294 select CRYPTO_NULL
295 select CRYPTO_MANAGER
296 help
297 Support for Galois/Counter Mode (GCM) and Galois Message
298 Authentication Code (GMAC). Required for IPSec.
299
300 config CRYPTO_CHACHA20POLY1305
301 tristate "ChaCha20-Poly1305 AEAD support"
302 select CRYPTO_CHACHA20
303 select CRYPTO_POLY1305
304 select CRYPTO_AEAD
305 select CRYPTO_MANAGER
306 help
307 ChaCha20-Poly1305 AEAD support, RFC7539.
308
309 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
310 with the Poly1305 authenticator. It is defined in RFC7539 for use in
311 IETF protocols.
312
313 config CRYPTO_AEGIS128
314 tristate "AEGIS-128 AEAD algorithm"
315 select CRYPTO_AEAD
316 select CRYPTO_AES # for AES S-box tables
317 help
318 Support for the AEGIS-128 dedicated AEAD algorithm.
319
320 config CRYPTO_AEGIS128_SIMD
321 bool "Support SIMD acceleration for AEGIS-128"
322 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
323 depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800
324 default y
325
326 config CRYPTO_AEGIS128_AESNI_SSE2
327 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
328 depends on X86 && 64BIT
329 select CRYPTO_AEAD
330 select CRYPTO_SIMD
331 help
332 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
333
334 config CRYPTO_SEQIV
335 tristate "Sequence Number IV Generator"
336 select CRYPTO_AEAD
337 select CRYPTO_SKCIPHER
338 select CRYPTO_NULL
339 select CRYPTO_RNG_DEFAULT
340 select CRYPTO_MANAGER
341 help
342 This IV generator generates an IV based on a sequence number by
343 xoring it with a salt. This algorithm is mainly useful for CTR
344
345 config CRYPTO_ECHAINIV
346 tristate "Encrypted Chain IV Generator"
347 select CRYPTO_AEAD
348 select CRYPTO_NULL
349 select CRYPTO_RNG_DEFAULT
350 select CRYPTO_MANAGER
351 help
352 This IV generator generates an IV based on the encryption of
353 a sequence number xored with a salt. This is the default
354 algorithm for CBC.
355
356 comment "Block modes"
357
358 config CRYPTO_CBC
359 tristate "CBC support"
360 select CRYPTO_SKCIPHER
361 select CRYPTO_MANAGER
362 help
363 CBC: Cipher Block Chaining mode
364 This block cipher algorithm is required for IPSec.
365
366 config CRYPTO_CFB
367 tristate "CFB support"
368 select CRYPTO_SKCIPHER
369 select CRYPTO_MANAGER
370 help
371 CFB: Cipher FeedBack mode
372 This block cipher algorithm is required for TPM2 Cryptography.
373
374 config CRYPTO_CTR
375 tristate "CTR support"
376 select CRYPTO_SKCIPHER
377 select CRYPTO_SEQIV
378 select CRYPTO_MANAGER
379 help
380 CTR: Counter mode
381 This block cipher algorithm is required for IPSec.
382
383 config CRYPTO_CTS
384 tristate "CTS support"
385 select CRYPTO_SKCIPHER
386 select CRYPTO_MANAGER
387 help
388 CTS: Cipher Text Stealing
389 This is the Cipher Text Stealing mode as described by
390 Section 8 of rfc2040 and referenced by rfc3962
391 (rfc3962 includes errata information in its Appendix A) or
392 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
393 This mode is required for Kerberos gss mechanism support
394 for AES encryption.
395
396 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
397
398 config CRYPTO_ECB
399 tristate "ECB support"
400 select CRYPTO_SKCIPHER
401 select CRYPTO_MANAGER
402 help
403 ECB: Electronic CodeBook mode
404 This is the simplest block cipher algorithm. It simply encrypts
405 the input block by block.
406
407 config CRYPTO_LRW
408 tristate "LRW support"
409 select CRYPTO_SKCIPHER
410 select CRYPTO_MANAGER
411 select CRYPTO_GF128MUL
412 help
413 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
414 narrow block cipher mode for dm-crypt. Use it with cipher
415 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
416 The first 128, 192 or 256 bits in the key are used for AES and the
417 rest is used to tie each cipher block to its logical position.
418
419 config CRYPTO_OFB
420 tristate "OFB support"
421 select CRYPTO_SKCIPHER
422 select CRYPTO_MANAGER
423 help
424 OFB: the Output Feedback mode makes a block cipher into a synchronous
425 stream cipher. It generates keystream blocks, which are then XORed
426 with the plaintext blocks to get the ciphertext. Flipping a bit in the
427 ciphertext produces a flipped bit in the plaintext at the same
428 location. This property allows many error correcting codes to function
429 normally even when applied before encryption.
430
431 config CRYPTO_PCBC
432 tristate "PCBC support"
433 select CRYPTO_SKCIPHER
434 select CRYPTO_MANAGER
435 help
436 PCBC: Propagating Cipher Block Chaining mode
437 This block cipher algorithm is required for RxRPC.
438
439 config CRYPTO_XTS
440 tristate "XTS support"
441 select CRYPTO_SKCIPHER
442 select CRYPTO_MANAGER
443 select CRYPTO_ECB
444 help
445 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
446 key size 256, 384 or 512 bits. This implementation currently
447 can't handle a sectorsize which is not a multiple of 16 bytes.
448
449 config CRYPTO_KEYWRAP
450 tristate "Key wrapping support"
451 select CRYPTO_SKCIPHER
452 select CRYPTO_MANAGER
453 help
454 Support for key wrapping (NIST SP800-38F / RFC3394) without
455 padding.
456
457 config CRYPTO_NHPOLY1305
458 tristate
459 select CRYPTO_HASH
460 select CRYPTO_LIB_POLY1305_GENERIC
461
462 config CRYPTO_NHPOLY1305_SSE2
463 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
464 depends on X86 && 64BIT
465 select CRYPTO_NHPOLY1305
466 help
467 SSE2 optimized implementation of the hash function used by the
468 Adiantum encryption mode.
469
470 config CRYPTO_NHPOLY1305_AVX2
471 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
472 depends on X86 && 64BIT
473 select CRYPTO_NHPOLY1305
474 help
475 AVX2 optimized implementation of the hash function used by the
476 Adiantum encryption mode.
477
478 config CRYPTO_ADIANTUM
479 tristate "Adiantum support"
480 select CRYPTO_CHACHA20
481 select CRYPTO_LIB_POLY1305_GENERIC
482 select CRYPTO_NHPOLY1305
483 select CRYPTO_MANAGER
484 help
485 Adiantum is a tweakable, length-preserving encryption mode
486 designed for fast and secure disk encryption, especially on
487 CPUs without dedicated crypto instructions. It encrypts
488 each sector using the XChaCha12 stream cipher, two passes of
489 an ε-almost-∆-universal hash function, and an invocation of
490 the AES-256 block cipher on a single 16-byte block. On CPUs
491 without AES instructions, Adiantum is much faster than
492 AES-XTS.
493
494 Adiantum's security is provably reducible to that of its
495 underlying stream and block ciphers, subject to a security
496 bound. Unlike XTS, Adiantum is a true wide-block encryption
497 mode, so it actually provides an even stronger notion of
498 security than XTS, subject to the security bound.
499
500 If unsure, say N.
501
502 config CRYPTO_ESSIV
503 tristate "ESSIV support for block encryption"
504 select CRYPTO_AUTHENC
505 help
506 Encrypted salt-sector initialization vector (ESSIV) is an IV
507 generation method that is used in some cases by fscrypt and/or
508 dm-crypt. It uses the hash of the block encryption key as the
509 symmetric key for a block encryption pass applied to the input
510 IV, making low entropy IV sources more suitable for block
511 encryption.
512
513 This driver implements a crypto API template that can be
514 instantiated either as an skcipher or as an AEAD (depending on the
515 type of the first template argument), and which defers encryption
516 and decryption requests to the encapsulated cipher after applying
517 ESSIV to the input IV. Note that in the AEAD case, it is assumed
518 that the keys are presented in the same format used by the authenc
519 template, and that the IV appears at the end of the authenticated
520 associated data (AAD) region (which is how dm-crypt uses it.)
521
522 Note that the use of ESSIV is not recommended for new deployments,
523 and so this only needs to be enabled when interoperability with
524 existing encrypted volumes of filesystems is required, or when
525 building for a particular system that requires it (e.g., when
526 the SoC in question has accelerated CBC but not XTS, making CBC
527 combined with ESSIV the only feasible mode for h/w accelerated
528 block encryption)
529
530 comment "Hash modes"
531
532 config CRYPTO_CMAC
533 tristate "CMAC support"
534 select CRYPTO_HASH
535 select CRYPTO_MANAGER
536 help
537 Cipher-based Message Authentication Code (CMAC) specified by
538 The National Institute of Standards and Technology (NIST).
539
540 https://tools.ietf.org/html/rfc4493
541 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
542
543 config CRYPTO_HMAC
544 tristate "HMAC support"
545 select CRYPTO_HASH
546 select CRYPTO_MANAGER
547 help
548 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
549 This is required for IPSec.
550
551 config CRYPTO_XCBC
552 tristate "XCBC support"
553 select CRYPTO_HASH
554 select CRYPTO_MANAGER
555 help
556 XCBC: Keyed-Hashing with encryption algorithm
557 http://www.ietf.org/rfc/rfc3566.txt
558 http://csrc.nist.gov/encryption/modes/proposedmodes/
559 xcbc-mac/xcbc-mac-spec.pdf
560
561 config CRYPTO_VMAC
562 tristate "VMAC support"
563 select CRYPTO_HASH
564 select CRYPTO_MANAGER
565 help
566 VMAC is a message authentication algorithm designed for
567 very high speed on 64-bit architectures.
568
569 See also:
570 <http://fastcrypto.org/vmac>
571
572 comment "Digest"
573
574 config CRYPTO_CRC32C
575 tristate "CRC32c CRC algorithm"
576 select CRYPTO_HASH
577 select CRC32
578 help
579 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
580 by iSCSI for header and data digests and by others.
581 See Castagnoli93. Module will be crc32c.
582
583 config CRYPTO_CRC32C_INTEL
584 tristate "CRC32c INTEL hardware acceleration"
585 depends on X86
586 select CRYPTO_HASH
587 help
588 In Intel processor with SSE4.2 supported, the processor will
589 support CRC32C implementation using hardware accelerated CRC32
590 instruction. This option will create 'crc32c-intel' module,
591 which will enable any routine to use the CRC32 instruction to
592 gain performance compared with software implementation.
593 Module will be crc32c-intel.
594
595 config CRYPTO_CRC32C_VPMSUM
596 tristate "CRC32c CRC algorithm (powerpc64)"
597 depends on PPC64 && ALTIVEC
598 select CRYPTO_HASH
599 select CRC32
600 help
601 CRC32c algorithm implemented using vector polynomial multiply-sum
602 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
603 and newer processors for improved performance.
604
605
606 config CRYPTO_CRC32C_SPARC64
607 tristate "CRC32c CRC algorithm (SPARC64)"
608 depends on SPARC64
609 select CRYPTO_HASH
610 select CRC32
611 help
612 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
613 when available.
614
615 config CRYPTO_CRC32
616 tristate "CRC32 CRC algorithm"
617 select CRYPTO_HASH
618 select CRC32
619 help
620 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
621 Shash crypto api wrappers to crc32_le function.
622
623 config CRYPTO_CRC32_PCLMUL
624 tristate "CRC32 PCLMULQDQ hardware acceleration"
625 depends on X86
626 select CRYPTO_HASH
627 select CRC32
628 help
629 From Intel Westmere and AMD Bulldozer processor with SSE4.2
630 and PCLMULQDQ supported, the processor will support
631 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
632 instruction. This option will create 'crc32-pclmul' module,
633 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
634 and gain better performance as compared with the table implementation.
635
636 config CRYPTO_CRC32_MIPS
637 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
638 depends on MIPS_CRC_SUPPORT
639 select CRYPTO_HASH
640 help
641 CRC32c and CRC32 CRC algorithms implemented using mips crypto
642 instructions, when available.
643
644
645 config CRYPTO_XXHASH
646 tristate "xxHash hash algorithm"
647 select CRYPTO_HASH
648 select XXHASH
649 help
650 xxHash non-cryptographic hash algorithm. Extremely fast, working at
651 speeds close to RAM limits.
652
653 config CRYPTO_BLAKE2B
654 tristate "BLAKE2b digest algorithm"
655 select CRYPTO_HASH
656 help
657 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
658 optimized for 64bit platforms and can produce digests of any size
659 between 1 to 64. The keyed hash is also implemented.
660
661 This module provides the following algorithms:
662
663 - blake2b-160
664 - blake2b-256
665 - blake2b-384
666 - blake2b-512
667
668 See https://blake2.net for further information.
669
670 config CRYPTO_BLAKE2S
671 tristate "BLAKE2s digest algorithm"
672 select CRYPTO_LIB_BLAKE2S_GENERIC
673 select CRYPTO_HASH
674 help
675 Implementation of cryptographic hash function BLAKE2s
676 optimized for 8-32bit platforms and can produce digests of any size
677 between 1 to 32. The keyed hash is also implemented.
678
679 This module provides the following algorithms:
680
681 - blake2s-128
682 - blake2s-160
683 - blake2s-224
684 - blake2s-256
685
686 See https://blake2.net for further information.
687
688 config CRYPTO_BLAKE2S_X86
689 tristate "BLAKE2s digest algorithm (x86 accelerated version)"
690 depends on X86 && 64BIT
691 select CRYPTO_LIB_BLAKE2S_GENERIC
692 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
693
694 config CRYPTO_CRCT10DIF
695 tristate "CRCT10DIF algorithm"
696 select CRYPTO_HASH
697 help
698 CRC T10 Data Integrity Field computation is being cast as
699 a crypto transform. This allows for faster crc t10 diff
700 transforms to be used if they are available.
701
702 config CRYPTO_CRCT10DIF_PCLMUL
703 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
704 depends on X86 && 64BIT && CRC_T10DIF
705 select CRYPTO_HASH
706 help
707 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
708 CRC T10 DIF PCLMULQDQ computation can be hardware
709 accelerated PCLMULQDQ instruction. This option will create
710 'crct10dif-pclmul' module, which is faster when computing the
711 crct10dif checksum as compared with the generic table implementation.
712
713 config CRYPTO_CRCT10DIF_VPMSUM
714 tristate "CRC32T10DIF powerpc64 hardware acceleration"
715 depends on PPC64 && ALTIVEC && CRC_T10DIF
716 select CRYPTO_HASH
717 help
718 CRC10T10DIF algorithm implemented using vector polynomial
719 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
720 POWER8 and newer processors for improved performance.
721
722 config CRYPTO_VPMSUM_TESTER
723 tristate "Powerpc64 vpmsum hardware acceleration tester"
724 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
725 help
726 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
727 POWER8 vpmsum instructions.
728 Unless you are testing these algorithms, you don't need this.
729
730 config CRYPTO_GHASH
731 tristate "GHASH hash function"
732 select CRYPTO_GF128MUL
733 select CRYPTO_HASH
734 help
735 GHASH is the hash function used in GCM (Galois/Counter Mode).
736 It is not a general-purpose cryptographic hash function.
737
738 config CRYPTO_POLY1305
739 tristate "Poly1305 authenticator algorithm"
740 select CRYPTO_HASH
741 select CRYPTO_LIB_POLY1305_GENERIC
742 help
743 Poly1305 authenticator algorithm, RFC7539.
744
745 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
746 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
747 in IETF protocols. This is the portable C implementation of Poly1305.
748
749 config CRYPTO_POLY1305_X86_64
750 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
751 depends on X86 && 64BIT
752 select CRYPTO_LIB_POLY1305_GENERIC
753 select CRYPTO_ARCH_HAVE_LIB_POLY1305
754 help
755 Poly1305 authenticator algorithm, RFC7539.
756
757 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
758 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
759 in IETF protocols. This is the x86_64 assembler implementation using SIMD
760 instructions.
761
762 config CRYPTO_POLY1305_MIPS
763 tristate "Poly1305 authenticator algorithm (MIPS optimized)"
764 depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
765 select CRYPTO_ARCH_HAVE_LIB_POLY1305
766
767 config CRYPTO_MD4
768 tristate "MD4 digest algorithm"
769 select CRYPTO_HASH
770 help
771 MD4 message digest algorithm (RFC1320).
772
773 config CRYPTO_MD5
774 tristate "MD5 digest algorithm"
775 select CRYPTO_HASH
776 help
777 MD5 message digest algorithm (RFC1321).
778
779 config CRYPTO_MD5_OCTEON
780 tristate "MD5 digest algorithm (OCTEON)"
781 depends on CPU_CAVIUM_OCTEON
782 select CRYPTO_MD5
783 select CRYPTO_HASH
784 help
785 MD5 message digest algorithm (RFC1321) implemented
786 using OCTEON crypto instructions, when available.
787
788 config CRYPTO_MD5_PPC
789 tristate "MD5 digest algorithm (PPC)"
790 depends on PPC
791 select CRYPTO_HASH
792 help
793 MD5 message digest algorithm (RFC1321) implemented
794 in PPC assembler.
795
796 config CRYPTO_MD5_SPARC64
797 tristate "MD5 digest algorithm (SPARC64)"
798 depends on SPARC64
799 select CRYPTO_MD5
800 select CRYPTO_HASH
801 help
802 MD5 message digest algorithm (RFC1321) implemented
803 using sparc64 crypto instructions, when available.
804
805 config CRYPTO_MICHAEL_MIC
806 tristate "Michael MIC keyed digest algorithm"
807 select CRYPTO_HASH
808 help
809 Michael MIC is used for message integrity protection in TKIP
810 (IEEE 802.11i). This algorithm is required for TKIP, but it
811 should not be used for other purposes because of the weakness
812 of the algorithm.
813
814 config CRYPTO_RMD128
815 tristate "RIPEMD-128 digest algorithm"
816 select CRYPTO_HASH
817 help
818 RIPEMD-128 (ISO/IEC 10118-3:2004).
819
820 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
821 be used as a secure replacement for RIPEMD. For other use cases,
822 RIPEMD-160 should be used.
823
824 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
825 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
826
827 config CRYPTO_RMD160
828 tristate "RIPEMD-160 digest algorithm"
829 select CRYPTO_HASH
830 help
831 RIPEMD-160 (ISO/IEC 10118-3:2004).
832
833 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
834 to be used as a secure replacement for the 128-bit hash functions
835 MD4, MD5 and it's predecessor RIPEMD
836 (not to be confused with RIPEMD-128).
837
838 It's speed is comparable to SHA1 and there are no known attacks
839 against RIPEMD-160.
840
841 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
842 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
843
844 config CRYPTO_RMD256
845 tristate "RIPEMD-256 digest algorithm"
846 select CRYPTO_HASH
847 help
848 RIPEMD-256 is an optional extension of RIPEMD-128 with a
849 256 bit hash. It is intended for applications that require
850 longer hash-results, without needing a larger security level
851 (than RIPEMD-128).
852
853 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
854 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
855
856 config CRYPTO_RMD320
857 tristate "RIPEMD-320 digest algorithm"
858 select CRYPTO_HASH
859 help
860 RIPEMD-320 is an optional extension of RIPEMD-160 with a
861 320 bit hash. It is intended for applications that require
862 longer hash-results, without needing a larger security level
863 (than RIPEMD-160).
864
865 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
866 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
867
868 config CRYPTO_SHA1
869 tristate "SHA1 digest algorithm"
870 select CRYPTO_HASH
871 help
872 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
873
874 config CRYPTO_SHA1_SSSE3
875 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
876 depends on X86 && 64BIT
877 select CRYPTO_SHA1
878 select CRYPTO_HASH
879 help
880 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
881 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
882 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
883 when available.
884
885 config CRYPTO_SHA256_SSSE3
886 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
887 depends on X86 && 64BIT
888 select CRYPTO_SHA256
889 select CRYPTO_HASH
890 help
891 SHA-256 secure hash standard (DFIPS 180-2) implemented
892 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
893 Extensions version 1 (AVX1), or Advanced Vector Extensions
894 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
895 Instructions) when available.
896
897 config CRYPTO_SHA512_SSSE3
898 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
899 depends on X86 && 64BIT
900 select CRYPTO_SHA512
901 select CRYPTO_HASH
902 help
903 SHA-512 secure hash standard (DFIPS 180-2) implemented
904 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
905 Extensions version 1 (AVX1), or Advanced Vector Extensions
906 version 2 (AVX2) instructions, when available.
907
908 config CRYPTO_SHA1_OCTEON
909 tristate "SHA1 digest algorithm (OCTEON)"
910 depends on CPU_CAVIUM_OCTEON
911 select CRYPTO_SHA1
912 select CRYPTO_HASH
913 help
914 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
915 using OCTEON crypto instructions, when available.
916
917 config CRYPTO_SHA1_SPARC64
918 tristate "SHA1 digest algorithm (SPARC64)"
919 depends on SPARC64
920 select CRYPTO_SHA1
921 select CRYPTO_HASH
922 help
923 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
924 using sparc64 crypto instructions, when available.
925
926 config CRYPTO_SHA1_PPC
927 tristate "SHA1 digest algorithm (powerpc)"
928 depends on PPC
929 help
930 This is the powerpc hardware accelerated implementation of the
931 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
932
933 config CRYPTO_SHA1_PPC_SPE
934 tristate "SHA1 digest algorithm (PPC SPE)"
935 depends on PPC && SPE
936 help
937 SHA-1 secure hash standard (DFIPS 180-4) implemented
938 using powerpc SPE SIMD instruction set.
939
940 config CRYPTO_SHA256
941 tristate "SHA224 and SHA256 digest algorithm"
942 select CRYPTO_HASH
943 select CRYPTO_LIB_SHA256
944 help
945 SHA256 secure hash standard (DFIPS 180-2).
946
947 This version of SHA implements a 256 bit hash with 128 bits of
948 security against collision attacks.
949
950 This code also includes SHA-224, a 224 bit hash with 112 bits
951 of security against collision attacks.
952
953 config CRYPTO_SHA256_PPC_SPE
954 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
955 depends on PPC && SPE
956 select CRYPTO_SHA256
957 select CRYPTO_HASH
958 help
959 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
960 implemented using powerpc SPE SIMD instruction set.
961
962 config CRYPTO_SHA256_OCTEON
963 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
964 depends on CPU_CAVIUM_OCTEON
965 select CRYPTO_SHA256
966 select CRYPTO_HASH
967 help
968 SHA-256 secure hash standard (DFIPS 180-2) implemented
969 using OCTEON crypto instructions, when available.
970
971 config CRYPTO_SHA256_SPARC64
972 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
973 depends on SPARC64
974 select CRYPTO_SHA256
975 select CRYPTO_HASH
976 help
977 SHA-256 secure hash standard (DFIPS 180-2) implemented
978 using sparc64 crypto instructions, when available.
979
980 config CRYPTO_SHA512
981 tristate "SHA384 and SHA512 digest algorithms"
982 select CRYPTO_HASH
983 help
984 SHA512 secure hash standard (DFIPS 180-2).
985
986 This version of SHA implements a 512 bit hash with 256 bits of
987 security against collision attacks.
988
989 This code also includes SHA-384, a 384 bit hash with 192 bits
990 of security against collision attacks.
991
992 config CRYPTO_SHA512_OCTEON
993 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
994 depends on CPU_CAVIUM_OCTEON
995 select CRYPTO_SHA512
996 select CRYPTO_HASH
997 help
998 SHA-512 secure hash standard (DFIPS 180-2) implemented
999 using OCTEON crypto instructions, when available.
1000
1001 config CRYPTO_SHA512_SPARC64
1002 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
1003 depends on SPARC64
1004 select CRYPTO_SHA512
1005 select CRYPTO_HASH
1006 help
1007 SHA-512 secure hash standard (DFIPS 180-2) implemented
1008 using sparc64 crypto instructions, when available.
1009
1010 config CRYPTO_SHA3
1011 tristate "SHA3 digest algorithm"
1012 select CRYPTO_HASH
1013 help
1014 SHA-3 secure hash standard (DFIPS 202). It's based on
1015 cryptographic sponge function family called Keccak.
1016
1017 References:
1018 http://keccak.noekeon.org/
1019
1020 config CRYPTO_SM3
1021 tristate "SM3 digest algorithm"
1022 select CRYPTO_HASH
1023 help
1024 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1025 It is part of the Chinese Commercial Cryptography suite.
1026
1027 References:
1028 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1029 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1030
1031 config CRYPTO_STREEBOG
1032 tristate "Streebog Hash Function"
1033 select CRYPTO_HASH
1034 help
1035 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1036 cryptographic standard algorithms (called GOST algorithms).
1037 This setting enables two hash algorithms with 256 and 512 bits output.
1038
1039 References:
1040 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1041 https://tools.ietf.org/html/rfc6986
1042
1043 config CRYPTO_TGR192
1044 tristate "Tiger digest algorithms"
1045 select CRYPTO_HASH
1046 help
1047 Tiger hash algorithm 192, 160 and 128-bit hashes
1048
1049 Tiger is a hash function optimized for 64-bit processors while
1050 still having decent performance on 32-bit processors.
1051 Tiger was developed by Ross Anderson and Eli Biham.
1052
1053 See also:
1054 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1055
1056 config CRYPTO_WP512
1057 tristate "Whirlpool digest algorithms"
1058 select CRYPTO_HASH
1059 help
1060 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1061
1062 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1063 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1064
1065 See also:
1066 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1067
1068 config CRYPTO_GHASH_CLMUL_NI_INTEL
1069 tristate "GHASH hash function (CLMUL-NI accelerated)"
1070 depends on X86 && 64BIT
1071 select CRYPTO_CRYPTD
1072 help
1073 This is the x86_64 CLMUL-NI accelerated implementation of
1074 GHASH, the hash function used in GCM (Galois/Counter mode).
1075
1076 comment "Ciphers"
1077
1078 config CRYPTO_AES
1079 tristate "AES cipher algorithms"
1080 select CRYPTO_ALGAPI
1081 select CRYPTO_LIB_AES
1082 help
1083 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1084 algorithm.
1085
1086 Rijndael appears to be consistently a very good performer in
1087 both hardware and software across a wide range of computing
1088 environments regardless of its use in feedback or non-feedback
1089 modes. Its key setup time is excellent, and its key agility is
1090 good. Rijndael's very low memory requirements make it very well
1091 suited for restricted-space environments, in which it also
1092 demonstrates excellent performance. Rijndael's operations are
1093 among the easiest to defend against power and timing attacks.
1094
1095 The AES specifies three key sizes: 128, 192 and 256 bits
1096
1097 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1098
1099 config CRYPTO_AES_TI
1100 tristate "Fixed time AES cipher"
1101 select CRYPTO_ALGAPI
1102 select CRYPTO_LIB_AES
1103 help
1104 This is a generic implementation of AES that attempts to eliminate
1105 data dependent latencies as much as possible without affecting
1106 performance too much. It is intended for use by the generic CCM
1107 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1108 solely on encryption (although decryption is supported as well, but
1109 with a more dramatic performance hit)
1110
1111 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1112 8 for decryption), this implementation only uses just two S-boxes of
1113 256 bytes each, and attempts to eliminate data dependent latencies by
1114 prefetching the entire table into the cache at the start of each
1115 block. Interrupts are also disabled to avoid races where cachelines
1116 are evicted when the CPU is interrupted to do something else.
1117
1118 config CRYPTO_AES_NI_INTEL
1119 tristate "AES cipher algorithms (AES-NI)"
1120 depends on X86
1121 select CRYPTO_AEAD
1122 select CRYPTO_LIB_AES
1123 select CRYPTO_ALGAPI
1124 select CRYPTO_SKCIPHER
1125 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1126 select CRYPTO_SIMD
1127 help
1128 Use Intel AES-NI instructions for AES algorithm.
1129
1130 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1131 algorithm.
1132
1133 Rijndael appears to be consistently a very good performer in
1134 both hardware and software across a wide range of computing
1135 environments regardless of its use in feedback or non-feedback
1136 modes. Its key setup time is excellent, and its key agility is
1137 good. Rijndael's very low memory requirements make it very well
1138 suited for restricted-space environments, in which it also
1139 demonstrates excellent performance. Rijndael's operations are
1140 among the easiest to defend against power and timing attacks.
1141
1142 The AES specifies three key sizes: 128, 192 and 256 bits
1143
1144 See <http://csrc.nist.gov/encryption/aes/> for more information.
1145
1146 In addition to AES cipher algorithm support, the acceleration
1147 for some popular block cipher mode is supported too, including
1148 ECB, CBC, LRW, XTS. The 64 bit version has additional
1149 acceleration for CTR.
1150
1151 config CRYPTO_AES_SPARC64
1152 tristate "AES cipher algorithms (SPARC64)"
1153 depends on SPARC64
1154 select CRYPTO_SKCIPHER
1155 help
1156 Use SPARC64 crypto opcodes for AES algorithm.
1157
1158 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1159 algorithm.
1160
1161 Rijndael appears to be consistently a very good performer in
1162 both hardware and software across a wide range of computing
1163 environments regardless of its use in feedback or non-feedback
1164 modes. Its key setup time is excellent, and its key agility is
1165 good. Rijndael's very low memory requirements make it very well
1166 suited for restricted-space environments, in which it also
1167 demonstrates excellent performance. Rijndael's operations are
1168 among the easiest to defend against power and timing attacks.
1169
1170 The AES specifies three key sizes: 128, 192 and 256 bits
1171
1172 See <http://csrc.nist.gov/encryption/aes/> for more information.
1173
1174 In addition to AES cipher algorithm support, the acceleration
1175 for some popular block cipher mode is supported too, including
1176 ECB and CBC.
1177
1178 config CRYPTO_AES_PPC_SPE
1179 tristate "AES cipher algorithms (PPC SPE)"
1180 depends on PPC && SPE
1181 select CRYPTO_SKCIPHER
1182 help
1183 AES cipher algorithms (FIPS-197). Additionally the acceleration
1184 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1185 This module should only be used for low power (router) devices
1186 without hardware AES acceleration (e.g. caam crypto). It reduces the
1187 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1188 timining attacks. Nevertheless it might be not as secure as other
1189 architecture specific assembler implementations that work on 1KB
1190 tables or 256 bytes S-boxes.
1191
1192 config CRYPTO_ANUBIS
1193 tristate "Anubis cipher algorithm"
1194 select CRYPTO_ALGAPI
1195 help
1196 Anubis cipher algorithm.
1197
1198 Anubis is a variable key length cipher which can use keys from
1199 128 bits to 320 bits in length. It was evaluated as a entrant
1200 in the NESSIE competition.
1201
1202 See also:
1203 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1204 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1205
1206 config CRYPTO_ARC4
1207 tristate "ARC4 cipher algorithm"
1208 select CRYPTO_SKCIPHER
1209 select CRYPTO_LIB_ARC4
1210 help
1211 ARC4 cipher algorithm.
1212
1213 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1214 bits in length. This algorithm is required for driver-based
1215 WEP, but it should not be for other purposes because of the
1216 weakness of the algorithm.
1217
1218 config CRYPTO_BLOWFISH
1219 tristate "Blowfish cipher algorithm"
1220 select CRYPTO_ALGAPI
1221 select CRYPTO_BLOWFISH_COMMON
1222 help
1223 Blowfish cipher algorithm, by Bruce Schneier.
1224
1225 This is a variable key length cipher which can use keys from 32
1226 bits to 448 bits in length. It's fast, simple and specifically
1227 designed for use on "large microprocessors".
1228
1229 See also:
1230 <http://www.schneier.com/blowfish.html>
1231
1232 config CRYPTO_BLOWFISH_COMMON
1233 tristate
1234 help
1235 Common parts of the Blowfish cipher algorithm shared by the
1236 generic c and the assembler implementations.
1237
1238 See also:
1239 <http://www.schneier.com/blowfish.html>
1240
1241 config CRYPTO_BLOWFISH_X86_64
1242 tristate "Blowfish cipher algorithm (x86_64)"
1243 depends on X86 && 64BIT
1244 select CRYPTO_SKCIPHER
1245 select CRYPTO_BLOWFISH_COMMON
1246 help
1247 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1248
1249 This is a variable key length cipher which can use keys from 32
1250 bits to 448 bits in length. It's fast, simple and specifically
1251 designed for use on "large microprocessors".
1252
1253 See also:
1254 <http://www.schneier.com/blowfish.html>
1255
1256 config CRYPTO_CAMELLIA
1257 tristate "Camellia cipher algorithms"
1258 depends on CRYPTO
1259 select CRYPTO_ALGAPI
1260 help
1261 Camellia cipher algorithms module.
1262
1263 Camellia is a symmetric key block cipher developed jointly
1264 at NTT and Mitsubishi Electric Corporation.
1265
1266 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1267
1268 See also:
1269 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1270
1271 config CRYPTO_CAMELLIA_X86_64
1272 tristate "Camellia cipher algorithm (x86_64)"
1273 depends on X86 && 64BIT
1274 depends on CRYPTO
1275 select CRYPTO_SKCIPHER
1276 select CRYPTO_GLUE_HELPER_X86
1277 help
1278 Camellia cipher algorithm module (x86_64).
1279
1280 Camellia is a symmetric key block cipher developed jointly
1281 at NTT and Mitsubishi Electric Corporation.
1282
1283 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1284
1285 See also:
1286 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1287
1288 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1289 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1290 depends on X86 && 64BIT
1291 depends on CRYPTO
1292 select CRYPTO_SKCIPHER
1293 select CRYPTO_CAMELLIA_X86_64
1294 select CRYPTO_GLUE_HELPER_X86
1295 select CRYPTO_SIMD
1296 select CRYPTO_XTS
1297 help
1298 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1299
1300 Camellia is a symmetric key block cipher developed jointly
1301 at NTT and Mitsubishi Electric Corporation.
1302
1303 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1304
1305 See also:
1306 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1307
1308 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1309 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1310 depends on X86 && 64BIT
1311 depends on CRYPTO
1312 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1313 help
1314 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1315
1316 Camellia is a symmetric key block cipher developed jointly
1317 at NTT and Mitsubishi Electric Corporation.
1318
1319 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1320
1321 See also:
1322 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1323
1324 config CRYPTO_CAMELLIA_SPARC64
1325 tristate "Camellia cipher algorithm (SPARC64)"
1326 depends on SPARC64
1327 depends on CRYPTO
1328 select CRYPTO_ALGAPI
1329 select CRYPTO_SKCIPHER
1330 help
1331 Camellia cipher algorithm module (SPARC64).
1332
1333 Camellia is a symmetric key block cipher developed jointly
1334 at NTT and Mitsubishi Electric Corporation.
1335
1336 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1337
1338 See also:
1339 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1340
1341 config CRYPTO_CAST_COMMON
1342 tristate
1343 help
1344 Common parts of the CAST cipher algorithms shared by the
1345 generic c and the assembler implementations.
1346
1347 config CRYPTO_CAST5
1348 tristate "CAST5 (CAST-128) cipher algorithm"
1349 select CRYPTO_ALGAPI
1350 select CRYPTO_CAST_COMMON
1351 help
1352 The CAST5 encryption algorithm (synonymous with CAST-128) is
1353 described in RFC2144.
1354
1355 config CRYPTO_CAST5_AVX_X86_64
1356 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1357 depends on X86 && 64BIT
1358 select CRYPTO_SKCIPHER
1359 select CRYPTO_CAST5
1360 select CRYPTO_CAST_COMMON
1361 select CRYPTO_SIMD
1362 help
1363 The CAST5 encryption algorithm (synonymous with CAST-128) is
1364 described in RFC2144.
1365
1366 This module provides the Cast5 cipher algorithm that processes
1367 sixteen blocks parallel using the AVX instruction set.
1368
1369 config CRYPTO_CAST6
1370 tristate "CAST6 (CAST-256) cipher algorithm"
1371 select CRYPTO_ALGAPI
1372 select CRYPTO_CAST_COMMON
1373 help
1374 The CAST6 encryption algorithm (synonymous with CAST-256) is
1375 described in RFC2612.
1376
1377 config CRYPTO_CAST6_AVX_X86_64
1378 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1379 depends on X86 && 64BIT
1380 select CRYPTO_SKCIPHER
1381 select CRYPTO_CAST6
1382 select CRYPTO_CAST_COMMON
1383 select CRYPTO_GLUE_HELPER_X86
1384 select CRYPTO_SIMD
1385 select CRYPTO_XTS
1386 help
1387 The CAST6 encryption algorithm (synonymous with CAST-256) is
1388 described in RFC2612.
1389
1390 This module provides the Cast6 cipher algorithm that processes
1391 eight blocks parallel using the AVX instruction set.
1392
1393 config CRYPTO_DES
1394 tristate "DES and Triple DES EDE cipher algorithms"
1395 select CRYPTO_ALGAPI
1396 select CRYPTO_LIB_DES
1397 help
1398 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1399
1400 config CRYPTO_DES_SPARC64
1401 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1402 depends on SPARC64
1403 select CRYPTO_ALGAPI
1404 select CRYPTO_LIB_DES
1405 select CRYPTO_SKCIPHER
1406 help
1407 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1408 optimized using SPARC64 crypto opcodes.
1409
1410 config CRYPTO_DES3_EDE_X86_64
1411 tristate "Triple DES EDE cipher algorithm (x86-64)"
1412 depends on X86 && 64BIT
1413 select CRYPTO_SKCIPHER
1414 select CRYPTO_LIB_DES
1415 help
1416 Triple DES EDE (FIPS 46-3) algorithm.
1417
1418 This module provides implementation of the Triple DES EDE cipher
1419 algorithm that is optimized for x86-64 processors. Two versions of
1420 algorithm are provided; regular processing one input block and
1421 one that processes three blocks parallel.
1422
1423 config CRYPTO_FCRYPT
1424 tristate "FCrypt cipher algorithm"
1425 select CRYPTO_ALGAPI
1426 select CRYPTO_SKCIPHER
1427 help
1428 FCrypt algorithm used by RxRPC.
1429
1430 config CRYPTO_KHAZAD
1431 tristate "Khazad cipher algorithm"
1432 select CRYPTO_ALGAPI
1433 help
1434 Khazad cipher algorithm.
1435
1436 Khazad was a finalist in the initial NESSIE competition. It is
1437 an algorithm optimized for 64-bit processors with good performance
1438 on 32-bit processors. Khazad uses an 128 bit key size.
1439
1440 See also:
1441 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1442
1443 config CRYPTO_SALSA20
1444 tristate "Salsa20 stream cipher algorithm"
1445 select CRYPTO_SKCIPHER
1446 help
1447 Salsa20 stream cipher algorithm.
1448
1449 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1450 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1451
1452 The Salsa20 stream cipher algorithm is designed by Daniel J.
1453 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1454
1455 config CRYPTO_CHACHA20
1456 tristate "ChaCha stream cipher algorithms"
1457 select CRYPTO_LIB_CHACHA_GENERIC
1458 select CRYPTO_SKCIPHER
1459 help
1460 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1461
1462 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1463 Bernstein and further specified in RFC7539 for use in IETF protocols.
1464 This is the portable C implementation of ChaCha20. See also:
1465 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1466
1467 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1468 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1469 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1470 while provably retaining ChaCha20's security. See also:
1471 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1472
1473 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1474 reduced security margin but increased performance. It can be needed
1475 in some performance-sensitive scenarios.
1476
1477 config CRYPTO_CHACHA20_X86_64
1478 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1479 depends on X86 && 64BIT
1480 select CRYPTO_SKCIPHER
1481 select CRYPTO_LIB_CHACHA_GENERIC
1482 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1483 help
1484 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1485 XChaCha20, and XChaCha12 stream ciphers.
1486
1487 config CRYPTO_CHACHA_MIPS
1488 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1489 depends on CPU_MIPS32_R2
1490 select CRYPTO_SKCIPHER
1491 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1492
1493 config CRYPTO_SEED
1494 tristate "SEED cipher algorithm"
1495 select CRYPTO_ALGAPI
1496 help
1497 SEED cipher algorithm (RFC4269).
1498
1499 SEED is a 128-bit symmetric key block cipher that has been
1500 developed by KISA (Korea Information Security Agency) as a
1501 national standard encryption algorithm of the Republic of Korea.
1502 It is a 16 round block cipher with the key size of 128 bit.
1503
1504 See also:
1505 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1506
1507 config CRYPTO_SERPENT
1508 tristate "Serpent cipher algorithm"
1509 select CRYPTO_ALGAPI
1510 help
1511 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1512
1513 Keys are allowed to be from 0 to 256 bits in length, in steps
1514 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1515 variant of Serpent for compatibility with old kerneli.org code.
1516
1517 See also:
1518 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519
1520 config CRYPTO_SERPENT_SSE2_X86_64
1521 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1522 depends on X86 && 64BIT
1523 select CRYPTO_SKCIPHER
1524 select CRYPTO_GLUE_HELPER_X86
1525 select CRYPTO_SERPENT
1526 select CRYPTO_SIMD
1527 help
1528 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1529
1530 Keys are allowed to be from 0 to 256 bits in length, in steps
1531 of 8 bits.
1532
1533 This module provides Serpent cipher algorithm that processes eight
1534 blocks parallel using SSE2 instruction set.
1535
1536 See also:
1537 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1538
1539 config CRYPTO_SERPENT_SSE2_586
1540 tristate "Serpent cipher algorithm (i586/SSE2)"
1541 depends on X86 && !64BIT
1542 select CRYPTO_SKCIPHER
1543 select CRYPTO_GLUE_HELPER_X86
1544 select CRYPTO_SERPENT
1545 select CRYPTO_SIMD
1546 help
1547 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1548
1549 Keys are allowed to be from 0 to 256 bits in length, in steps
1550 of 8 bits.
1551
1552 This module provides Serpent cipher algorithm that processes four
1553 blocks parallel using SSE2 instruction set.
1554
1555 See also:
1556 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1557
1558 config CRYPTO_SERPENT_AVX_X86_64
1559 tristate "Serpent cipher algorithm (x86_64/AVX)"
1560 depends on X86 && 64BIT
1561 select CRYPTO_SKCIPHER
1562 select CRYPTO_GLUE_HELPER_X86
1563 select CRYPTO_SERPENT
1564 select CRYPTO_SIMD
1565 select CRYPTO_XTS
1566 help
1567 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1568
1569 Keys are allowed to be from 0 to 256 bits in length, in steps
1570 of 8 bits.
1571
1572 This module provides the Serpent cipher algorithm that processes
1573 eight blocks parallel using the AVX instruction set.
1574
1575 See also:
1576 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1577
1578 config CRYPTO_SERPENT_AVX2_X86_64
1579 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1580 depends on X86 && 64BIT
1581 select CRYPTO_SERPENT_AVX_X86_64
1582 help
1583 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1584
1585 Keys are allowed to be from 0 to 256 bits in length, in steps
1586 of 8 bits.
1587
1588 This module provides Serpent cipher algorithm that processes 16
1589 blocks parallel using AVX2 instruction set.
1590
1591 See also:
1592 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1593
1594 config CRYPTO_SM4
1595 tristate "SM4 cipher algorithm"
1596 select CRYPTO_ALGAPI
1597 help
1598 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1599
1600 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1601 Organization of State Commercial Administration of China (OSCCA)
1602 as an authorized cryptographic algorithms for the use within China.
1603
1604 SMS4 was originally created for use in protecting wireless
1605 networks, and is mandated in the Chinese National Standard for
1606 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1607 (GB.15629.11-2003).
1608
1609 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1610 standardized through TC 260 of the Standardization Administration
1611 of the People's Republic of China (SAC).
1612
1613 The input, output, and key of SMS4 are each 128 bits.
1614
1615 See also: <https://eprint.iacr.org/2008/329.pdf>
1616
1617 If unsure, say N.
1618
1619 config CRYPTO_TEA
1620 tristate "TEA, XTEA and XETA cipher algorithms"
1621 select CRYPTO_ALGAPI
1622 help
1623 TEA cipher algorithm.
1624
1625 Tiny Encryption Algorithm is a simple cipher that uses
1626 many rounds for security. It is very fast and uses
1627 little memory.
1628
1629 Xtendend Tiny Encryption Algorithm is a modification to
1630 the TEA algorithm to address a potential key weakness
1631 in the TEA algorithm.
1632
1633 Xtendend Encryption Tiny Algorithm is a mis-implementation
1634 of the XTEA algorithm for compatibility purposes.
1635
1636 config CRYPTO_TWOFISH
1637 tristate "Twofish cipher algorithm"
1638 select CRYPTO_ALGAPI
1639 select CRYPTO_TWOFISH_COMMON
1640 help
1641 Twofish cipher algorithm.
1642
1643 Twofish was submitted as an AES (Advanced Encryption Standard)
1644 candidate cipher by researchers at CounterPane Systems. It is a
1645 16 round block cipher supporting key sizes of 128, 192, and 256
1646 bits.
1647
1648 See also:
1649 <http://www.schneier.com/twofish.html>
1650
1651 config CRYPTO_TWOFISH_COMMON
1652 tristate
1653 help
1654 Common parts of the Twofish cipher algorithm shared by the
1655 generic c and the assembler implementations.
1656
1657 config CRYPTO_TWOFISH_586
1658 tristate "Twofish cipher algorithms (i586)"
1659 depends on (X86 || UML_X86) && !64BIT
1660 select CRYPTO_ALGAPI
1661 select CRYPTO_TWOFISH_COMMON
1662 help
1663 Twofish cipher algorithm.
1664
1665 Twofish was submitted as an AES (Advanced Encryption Standard)
1666 candidate cipher by researchers at CounterPane Systems. It is a
1667 16 round block cipher supporting key sizes of 128, 192, and 256
1668 bits.
1669
1670 See also:
1671 <http://www.schneier.com/twofish.html>
1672
1673 config CRYPTO_TWOFISH_X86_64
1674 tristate "Twofish cipher algorithm (x86_64)"
1675 depends on (X86 || UML_X86) && 64BIT
1676 select CRYPTO_ALGAPI
1677 select CRYPTO_TWOFISH_COMMON
1678 help
1679 Twofish cipher algorithm (x86_64).
1680
1681 Twofish was submitted as an AES (Advanced Encryption Standard)
1682 candidate cipher by researchers at CounterPane Systems. It is a
1683 16 round block cipher supporting key sizes of 128, 192, and 256
1684 bits.
1685
1686 See also:
1687 <http://www.schneier.com/twofish.html>
1688
1689 config CRYPTO_TWOFISH_X86_64_3WAY
1690 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1691 depends on X86 && 64BIT
1692 select CRYPTO_SKCIPHER
1693 select CRYPTO_TWOFISH_COMMON
1694 select CRYPTO_TWOFISH_X86_64
1695 select CRYPTO_GLUE_HELPER_X86
1696 help
1697 Twofish cipher algorithm (x86_64, 3-way parallel).
1698
1699 Twofish was submitted as an AES (Advanced Encryption Standard)
1700 candidate cipher by researchers at CounterPane Systems. It is a
1701 16 round block cipher supporting key sizes of 128, 192, and 256
1702 bits.
1703
1704 This module provides Twofish cipher algorithm that processes three
1705 blocks parallel, utilizing resources of out-of-order CPUs better.
1706
1707 See also:
1708 <http://www.schneier.com/twofish.html>
1709
1710 config CRYPTO_TWOFISH_AVX_X86_64
1711 tristate "Twofish cipher algorithm (x86_64/AVX)"
1712 depends on X86 && 64BIT
1713 select CRYPTO_SKCIPHER
1714 select CRYPTO_GLUE_HELPER_X86
1715 select CRYPTO_SIMD
1716 select CRYPTO_TWOFISH_COMMON
1717 select CRYPTO_TWOFISH_X86_64
1718 select CRYPTO_TWOFISH_X86_64_3WAY
1719 help
1720 Twofish cipher algorithm (x86_64/AVX).
1721
1722 Twofish was submitted as an AES (Advanced Encryption Standard)
1723 candidate cipher by researchers at CounterPane Systems. It is a
1724 16 round block cipher supporting key sizes of 128, 192, and 256
1725 bits.
1726
1727 This module provides the Twofish cipher algorithm that processes
1728 eight blocks parallel using the AVX Instruction Set.
1729
1730 See also:
1731 <http://www.schneier.com/twofish.html>
1732
1733 comment "Compression"
1734
1735 config CRYPTO_DEFLATE
1736 tristate "Deflate compression algorithm"
1737 select CRYPTO_ALGAPI
1738 select CRYPTO_ACOMP2
1739 select ZLIB_INFLATE
1740 select ZLIB_DEFLATE
1741 help
1742 This is the Deflate algorithm (RFC1951), specified for use in
1743 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1744
1745 You will most probably want this if using IPSec.
1746
1747 config CRYPTO_LZO
1748 tristate "LZO compression algorithm"
1749 select CRYPTO_ALGAPI
1750 select CRYPTO_ACOMP2
1751 select LZO_COMPRESS
1752 select LZO_DECOMPRESS
1753 help
1754 This is the LZO algorithm.
1755
1756 config CRYPTO_842
1757 tristate "842 compression algorithm"
1758 select CRYPTO_ALGAPI
1759 select CRYPTO_ACOMP2
1760 select 842_COMPRESS
1761 select 842_DECOMPRESS
1762 help
1763 This is the 842 algorithm.
1764
1765 config CRYPTO_LZ4
1766 tristate "LZ4 compression algorithm"
1767 select CRYPTO_ALGAPI
1768 select CRYPTO_ACOMP2
1769 select LZ4_COMPRESS
1770 select LZ4_DECOMPRESS
1771 help
1772 This is the LZ4 algorithm.
1773
1774 config CRYPTO_LZ4HC
1775 tristate "LZ4HC compression algorithm"
1776 select CRYPTO_ALGAPI
1777 select CRYPTO_ACOMP2
1778 select LZ4HC_COMPRESS
1779 select LZ4_DECOMPRESS
1780 help
1781 This is the LZ4 high compression mode algorithm.
1782
1783 config CRYPTO_ZSTD
1784 tristate "Zstd compression algorithm"
1785 select CRYPTO_ALGAPI
1786 select CRYPTO_ACOMP2
1787 select ZSTD_COMPRESS
1788 select ZSTD_DECOMPRESS
1789 help
1790 This is the zstd algorithm.
1791
1792 comment "Random Number Generation"
1793
1794 config CRYPTO_ANSI_CPRNG
1795 tristate "Pseudo Random Number Generation for Cryptographic modules"
1796 select CRYPTO_AES
1797 select CRYPTO_RNG
1798 help
1799 This option enables the generic pseudo random number generator
1800 for cryptographic modules. Uses the Algorithm specified in
1801 ANSI X9.31 A.2.4. Note that this option must be enabled if
1802 CRYPTO_FIPS is selected
1803
1804 menuconfig CRYPTO_DRBG_MENU
1805 tristate "NIST SP800-90A DRBG"
1806 help
1807 NIST SP800-90A compliant DRBG. In the following submenu, one or
1808 more of the DRBG types must be selected.
1809
1810 if CRYPTO_DRBG_MENU
1811
1812 config CRYPTO_DRBG_HMAC
1813 bool
1814 default y
1815 select CRYPTO_HMAC
1816 select CRYPTO_SHA256
1817
1818 config CRYPTO_DRBG_HASH
1819 bool "Enable Hash DRBG"
1820 select CRYPTO_SHA256
1821 help
1822 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1823
1824 config CRYPTO_DRBG_CTR
1825 bool "Enable CTR DRBG"
1826 select CRYPTO_AES
1827 depends on CRYPTO_CTR
1828 help
1829 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1830
1831 config CRYPTO_DRBG
1832 tristate
1833 default CRYPTO_DRBG_MENU
1834 select CRYPTO_RNG
1835 select CRYPTO_JITTERENTROPY
1836
1837 endif # if CRYPTO_DRBG_MENU
1838
1839 config CRYPTO_JITTERENTROPY
1840 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1841 select CRYPTO_RNG
1842 help
1843 The Jitterentropy RNG is a noise that is intended
1844 to provide seed to another RNG. The RNG does not
1845 perform any cryptographic whitening of the generated
1846 random numbers. This Jitterentropy RNG registers with
1847 the kernel crypto API and can be used by any caller.
1848
1849 config CRYPTO_USER_API
1850 tristate
1851
1852 config CRYPTO_USER_API_HASH
1853 tristate "User-space interface for hash algorithms"
1854 depends on NET
1855 select CRYPTO_HASH
1856 select CRYPTO_USER_API
1857 help
1858 This option enables the user-spaces interface for hash
1859 algorithms.
1860
1861 config CRYPTO_USER_API_SKCIPHER
1862 tristate "User-space interface for symmetric key cipher algorithms"
1863 depends on NET
1864 select CRYPTO_SKCIPHER
1865 select CRYPTO_USER_API
1866 help
1867 This option enables the user-spaces interface for symmetric
1868 key cipher algorithms.
1869
1870 config CRYPTO_USER_API_RNG
1871 tristate "User-space interface for random number generator algorithms"
1872 depends on NET
1873 select CRYPTO_RNG
1874 select CRYPTO_USER_API
1875 help
1876 This option enables the user-spaces interface for random
1877 number generator algorithms.
1878
1879 config CRYPTO_USER_API_AEAD
1880 tristate "User-space interface for AEAD cipher algorithms"
1881 depends on NET
1882 select CRYPTO_AEAD
1883 select CRYPTO_SKCIPHER
1884 select CRYPTO_NULL
1885 select CRYPTO_USER_API
1886 help
1887 This option enables the user-spaces interface for AEAD
1888 cipher algorithms.
1889
1890 config CRYPTO_STATS
1891 bool "Crypto usage statistics for User-space"
1892 depends on CRYPTO_USER
1893 help
1894 This option enables the gathering of crypto stats.
1895 This will collect:
1896 - encrypt/decrypt size and numbers of symmeric operations
1897 - compress/decompress size and numbers of compress operations
1898 - size and numbers of hash operations
1899 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1900 - generate/seed numbers for rng operations
1901
1902 config CRYPTO_HASH_INFO
1903 bool
1904
1905 source "lib/crypto/Kconfig"
1906 source "drivers/crypto/Kconfig"
1907 source "crypto/asymmetric_keys/Kconfig"
1908 source "certs/Kconfig"
1909
1910 endif # if CRYPTO