]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - crypto/Kconfig
Merge tag 'trace-v4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / crypto / Kconfig
1 # SPDX-License-Identifier: GPL-2.0
2 #
3 # Generic algorithms support
4 #
5 config XOR_BLOCKS
6 tristate
7
8 #
9 # async_tx api: hardware offloaded memory transfer/transform support
10 #
11 source "crypto/async_tx/Kconfig"
12
13 #
14 # Cryptographic API Configuration
15 #
16 menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21 if CRYPTO
22
23 comment "Crypto core or helper"
24
25 config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35 config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41 config CRYPTO_ALGAPI2
42 tristate
43
44 config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49 config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55 config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60 config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66 config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71 config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75 config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80 config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84 config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88 config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92 config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97 config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101 config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106 config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109 select SGL_ALLOC
110
111 config CRYPTO_ACOMP
112 tristate
113 select CRYPTO_ALGAPI
114 select CRYPTO_ACOMP2
115
116 config CRYPTO_RSA
117 tristate "RSA algorithm"
118 select CRYPTO_AKCIPHER
119 select CRYPTO_MANAGER
120 select MPILIB
121 select ASN1
122 help
123 Generic implementation of the RSA public key algorithm.
124
125 config CRYPTO_DH
126 tristate "Diffie-Hellman algorithm"
127 select CRYPTO_KPP
128 select MPILIB
129 help
130 Generic implementation of the Diffie-Hellman algorithm.
131
132 config CRYPTO_ECDH
133 tristate "ECDH algorithm"
134 select CRYPTO_KPP
135 select CRYPTO_RNG_DEFAULT
136 help
137 Generic implementation of the ECDH algorithm
138
139 config CRYPTO_MANAGER
140 tristate "Cryptographic algorithm manager"
141 select CRYPTO_MANAGER2
142 help
143 Create default cryptographic template instantiations such as
144 cbc(aes).
145
146 config CRYPTO_MANAGER2
147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148 select CRYPTO_AEAD2
149 select CRYPTO_HASH2
150 select CRYPTO_BLKCIPHER2
151 select CRYPTO_AKCIPHER2
152 select CRYPTO_KPP2
153 select CRYPTO_ACOMP2
154
155 config CRYPTO_USER
156 tristate "Userspace cryptographic algorithm configuration"
157 depends on NET
158 select CRYPTO_MANAGER
159 help
160 Userspace configuration for cryptographic instantiations such as
161 cbc(aes).
162
163 config CRYPTO_MANAGER_DISABLE_TESTS
164 bool "Disable run-time self tests"
165 default y
166 depends on CRYPTO_MANAGER2
167 help
168 Disable run-time self tests that normally take place at
169 algorithm registration.
170
171 config CRYPTO_GF128MUL
172 tristate "GF(2^128) multiplication functions"
173 help
174 Efficient table driven implementation of multiplications in the
175 field GF(2^128). This is needed by some cypher modes. This
176 option will be selected automatically if you select such a
177 cipher mode. Only select this option by hand if you expect to load
178 an external module that requires these functions.
179
180 config CRYPTO_NULL
181 tristate "Null algorithms"
182 select CRYPTO_NULL2
183 help
184 These are 'Null' algorithms, used by IPsec, which do nothing.
185
186 config CRYPTO_NULL2
187 tristate
188 select CRYPTO_ALGAPI2
189 select CRYPTO_BLKCIPHER2
190 select CRYPTO_HASH2
191
192 config CRYPTO_PCRYPT
193 tristate "Parallel crypto engine"
194 depends on SMP
195 select PADATA
196 select CRYPTO_MANAGER
197 select CRYPTO_AEAD
198 help
199 This converts an arbitrary crypto algorithm into a parallel
200 algorithm that executes in kernel threads.
201
202 config CRYPTO_WORKQUEUE
203 tristate
204
205 config CRYPTO_CRYPTD
206 tristate "Software async crypto daemon"
207 select CRYPTO_BLKCIPHER
208 select CRYPTO_HASH
209 select CRYPTO_MANAGER
210 select CRYPTO_WORKQUEUE
211 help
212 This is a generic software asynchronous crypto daemon that
213 converts an arbitrary synchronous software crypto algorithm
214 into an asynchronous algorithm that executes in a kernel thread.
215
216 config CRYPTO_MCRYPTD
217 tristate "Software async multi-buffer crypto daemon"
218 select CRYPTO_BLKCIPHER
219 select CRYPTO_HASH
220 select CRYPTO_MANAGER
221 select CRYPTO_WORKQUEUE
222 help
223 This is a generic software asynchronous crypto daemon that
224 provides the kernel thread to assist multi-buffer crypto
225 algorithms for submitting jobs and flushing jobs in multi-buffer
226 crypto algorithms. Multi-buffer crypto algorithms are executed
227 in the context of this kernel thread and drivers can post
228 their crypto request asynchronously to be processed by this daemon.
229
230 config CRYPTO_AUTHENC
231 tristate "Authenc support"
232 select CRYPTO_AEAD
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 select CRYPTO_HASH
236 select CRYPTO_NULL
237 help
238 Authenc: Combined mode wrapper for IPsec.
239 This is required for IPSec.
240
241 config CRYPTO_TEST
242 tristate "Testing module"
243 depends on m
244 select CRYPTO_MANAGER
245 help
246 Quick & dirty crypto test module.
247
248 config CRYPTO_SIMD
249 tristate
250 select CRYPTO_CRYPTD
251
252 config CRYPTO_GLUE_HELPER_X86
253 tristate
254 depends on X86
255 select CRYPTO_BLKCIPHER
256
257 config CRYPTO_ENGINE
258 tristate
259
260 comment "Authenticated Encryption with Associated Data"
261
262 config CRYPTO_CCM
263 tristate "CCM support"
264 select CRYPTO_CTR
265 select CRYPTO_HASH
266 select CRYPTO_AEAD
267 help
268 Support for Counter with CBC MAC. Required for IPsec.
269
270 config CRYPTO_GCM
271 tristate "GCM/GMAC support"
272 select CRYPTO_CTR
273 select CRYPTO_AEAD
274 select CRYPTO_GHASH
275 select CRYPTO_NULL
276 help
277 Support for Galois/Counter Mode (GCM) and Galois Message
278 Authentication Code (GMAC). Required for IPSec.
279
280 config CRYPTO_CHACHA20POLY1305
281 tristate "ChaCha20-Poly1305 AEAD support"
282 select CRYPTO_CHACHA20
283 select CRYPTO_POLY1305
284 select CRYPTO_AEAD
285 help
286 ChaCha20-Poly1305 AEAD support, RFC7539.
287
288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289 with the Poly1305 authenticator. It is defined in RFC7539 for use in
290 IETF protocols.
291
292 config CRYPTO_AEGIS128
293 tristate "AEGIS-128 AEAD algorithm"
294 select CRYPTO_AEAD
295 select CRYPTO_AES # for AES S-box tables
296 help
297 Support for the AEGIS-128 dedicated AEAD algorithm.
298
299 config CRYPTO_AEGIS128L
300 tristate "AEGIS-128L AEAD algorithm"
301 select CRYPTO_AEAD
302 select CRYPTO_AES # for AES S-box tables
303 help
304 Support for the AEGIS-128L dedicated AEAD algorithm.
305
306 config CRYPTO_AEGIS256
307 tristate "AEGIS-256 AEAD algorithm"
308 select CRYPTO_AEAD
309 select CRYPTO_AES # for AES S-box tables
310 help
311 Support for the AEGIS-256 dedicated AEAD algorithm.
312
313 config CRYPTO_AEGIS128_AESNI_SSE2
314 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
315 depends on X86 && 64BIT
316 select CRYPTO_AEAD
317 select CRYPTO_CRYPTD
318 help
319 AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
320
321 config CRYPTO_AEGIS128L_AESNI_SSE2
322 tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
323 depends on X86 && 64BIT
324 select CRYPTO_AEAD
325 select CRYPTO_CRYPTD
326 help
327 AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
328
329 config CRYPTO_AEGIS256_AESNI_SSE2
330 tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
331 depends on X86 && 64BIT
332 select CRYPTO_AEAD
333 select CRYPTO_CRYPTD
334 help
335 AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
336
337 config CRYPTO_MORUS640
338 tristate "MORUS-640 AEAD algorithm"
339 select CRYPTO_AEAD
340 help
341 Support for the MORUS-640 dedicated AEAD algorithm.
342
343 config CRYPTO_MORUS640_GLUE
344 tristate
345 depends on X86
346 select CRYPTO_AEAD
347 select CRYPTO_CRYPTD
348 help
349 Common glue for SIMD optimizations of the MORUS-640 dedicated AEAD
350 algorithm.
351
352 config CRYPTO_MORUS640_SSE2
353 tristate "MORUS-640 AEAD algorithm (x86_64 SSE2 implementation)"
354 depends on X86 && 64BIT
355 select CRYPTO_AEAD
356 select CRYPTO_MORUS640_GLUE
357 help
358 SSE2 implementation of the MORUS-640 dedicated AEAD algorithm.
359
360 config CRYPTO_MORUS1280
361 tristate "MORUS-1280 AEAD algorithm"
362 select CRYPTO_AEAD
363 help
364 Support for the MORUS-1280 dedicated AEAD algorithm.
365
366 config CRYPTO_MORUS1280_GLUE
367 tristate
368 depends on X86
369 select CRYPTO_AEAD
370 select CRYPTO_CRYPTD
371 help
372 Common glue for SIMD optimizations of the MORUS-1280 dedicated AEAD
373 algorithm.
374
375 config CRYPTO_MORUS1280_SSE2
376 tristate "MORUS-1280 AEAD algorithm (x86_64 SSE2 implementation)"
377 depends on X86 && 64BIT
378 select CRYPTO_AEAD
379 select CRYPTO_MORUS1280_GLUE
380 help
381 SSE2 optimizedimplementation of the MORUS-1280 dedicated AEAD
382 algorithm.
383
384 config CRYPTO_MORUS1280_AVX2
385 tristate "MORUS-1280 AEAD algorithm (x86_64 AVX2 implementation)"
386 depends on X86 && 64BIT
387 select CRYPTO_AEAD
388 select CRYPTO_MORUS1280_GLUE
389 help
390 AVX2 optimized implementation of the MORUS-1280 dedicated AEAD
391 algorithm.
392
393 config CRYPTO_SEQIV
394 tristate "Sequence Number IV Generator"
395 select CRYPTO_AEAD
396 select CRYPTO_BLKCIPHER
397 select CRYPTO_NULL
398 select CRYPTO_RNG_DEFAULT
399 help
400 This IV generator generates an IV based on a sequence number by
401 xoring it with a salt. This algorithm is mainly useful for CTR
402
403 config CRYPTO_ECHAINIV
404 tristate "Encrypted Chain IV Generator"
405 select CRYPTO_AEAD
406 select CRYPTO_NULL
407 select CRYPTO_RNG_DEFAULT
408 default m
409 help
410 This IV generator generates an IV based on the encryption of
411 a sequence number xored with a salt. This is the default
412 algorithm for CBC.
413
414 comment "Block modes"
415
416 config CRYPTO_CBC
417 tristate "CBC support"
418 select CRYPTO_BLKCIPHER
419 select CRYPTO_MANAGER
420 help
421 CBC: Cipher Block Chaining mode
422 This block cipher algorithm is required for IPSec.
423
424 config CRYPTO_CFB
425 tristate "CFB support"
426 select CRYPTO_BLKCIPHER
427 select CRYPTO_MANAGER
428 help
429 CFB: Cipher FeedBack mode
430 This block cipher algorithm is required for TPM2 Cryptography.
431
432 config CRYPTO_CTR
433 tristate "CTR support"
434 select CRYPTO_BLKCIPHER
435 select CRYPTO_SEQIV
436 select CRYPTO_MANAGER
437 help
438 CTR: Counter mode
439 This block cipher algorithm is required for IPSec.
440
441 config CRYPTO_CTS
442 tristate "CTS support"
443 select CRYPTO_BLKCIPHER
444 help
445 CTS: Cipher Text Stealing
446 This is the Cipher Text Stealing mode as described by
447 Section 8 of rfc2040 and referenced by rfc3962.
448 (rfc3962 includes errata information in its Appendix A)
449 This mode is required for Kerberos gss mechanism support
450 for AES encryption.
451
452 config CRYPTO_ECB
453 tristate "ECB support"
454 select CRYPTO_BLKCIPHER
455 select CRYPTO_MANAGER
456 help
457 ECB: Electronic CodeBook mode
458 This is the simplest block cipher algorithm. It simply encrypts
459 the input block by block.
460
461 config CRYPTO_LRW
462 tristate "LRW support"
463 select CRYPTO_BLKCIPHER
464 select CRYPTO_MANAGER
465 select CRYPTO_GF128MUL
466 help
467 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
468 narrow block cipher mode for dm-crypt. Use it with cipher
469 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
470 The first 128, 192 or 256 bits in the key are used for AES and the
471 rest is used to tie each cipher block to its logical position.
472
473 config CRYPTO_PCBC
474 tristate "PCBC support"
475 select CRYPTO_BLKCIPHER
476 select CRYPTO_MANAGER
477 help
478 PCBC: Propagating Cipher Block Chaining mode
479 This block cipher algorithm is required for RxRPC.
480
481 config CRYPTO_XTS
482 tristate "XTS support"
483 select CRYPTO_BLKCIPHER
484 select CRYPTO_MANAGER
485 select CRYPTO_ECB
486 help
487 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
488 key size 256, 384 or 512 bits. This implementation currently
489 can't handle a sectorsize which is not a multiple of 16 bytes.
490
491 config CRYPTO_KEYWRAP
492 tristate "Key wrapping support"
493 select CRYPTO_BLKCIPHER
494 help
495 Support for key wrapping (NIST SP800-38F / RFC3394) without
496 padding.
497
498 comment "Hash modes"
499
500 config CRYPTO_CMAC
501 tristate "CMAC support"
502 select CRYPTO_HASH
503 select CRYPTO_MANAGER
504 help
505 Cipher-based Message Authentication Code (CMAC) specified by
506 The National Institute of Standards and Technology (NIST).
507
508 https://tools.ietf.org/html/rfc4493
509 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
510
511 config CRYPTO_HMAC
512 tristate "HMAC support"
513 select CRYPTO_HASH
514 select CRYPTO_MANAGER
515 help
516 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
517 This is required for IPSec.
518
519 config CRYPTO_XCBC
520 tristate "XCBC support"
521 select CRYPTO_HASH
522 select CRYPTO_MANAGER
523 help
524 XCBC: Keyed-Hashing with encryption algorithm
525 http://www.ietf.org/rfc/rfc3566.txt
526 http://csrc.nist.gov/encryption/modes/proposedmodes/
527 xcbc-mac/xcbc-mac-spec.pdf
528
529 config CRYPTO_VMAC
530 tristate "VMAC support"
531 select CRYPTO_HASH
532 select CRYPTO_MANAGER
533 help
534 VMAC is a message authentication algorithm designed for
535 very high speed on 64-bit architectures.
536
537 See also:
538 <http://fastcrypto.org/vmac>
539
540 comment "Digest"
541
542 config CRYPTO_CRC32C
543 tristate "CRC32c CRC algorithm"
544 select CRYPTO_HASH
545 select CRC32
546 help
547 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
548 by iSCSI for header and data digests and by others.
549 See Castagnoli93. Module will be crc32c.
550
551 config CRYPTO_CRC32C_INTEL
552 tristate "CRC32c INTEL hardware acceleration"
553 depends on X86
554 select CRYPTO_HASH
555 help
556 In Intel processor with SSE4.2 supported, the processor will
557 support CRC32C implementation using hardware accelerated CRC32
558 instruction. This option will create 'crc32c-intel' module,
559 which will enable any routine to use the CRC32 instruction to
560 gain performance compared with software implementation.
561 Module will be crc32c-intel.
562
563 config CRYPTO_CRC32C_VPMSUM
564 tristate "CRC32c CRC algorithm (powerpc64)"
565 depends on PPC64 && ALTIVEC
566 select CRYPTO_HASH
567 select CRC32
568 help
569 CRC32c algorithm implemented using vector polynomial multiply-sum
570 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
571 and newer processors for improved performance.
572
573
574 config CRYPTO_CRC32C_SPARC64
575 tristate "CRC32c CRC algorithm (SPARC64)"
576 depends on SPARC64
577 select CRYPTO_HASH
578 select CRC32
579 help
580 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
581 when available.
582
583 config CRYPTO_CRC32
584 tristate "CRC32 CRC algorithm"
585 select CRYPTO_HASH
586 select CRC32
587 help
588 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
589 Shash crypto api wrappers to crc32_le function.
590
591 config CRYPTO_CRC32_PCLMUL
592 tristate "CRC32 PCLMULQDQ hardware acceleration"
593 depends on X86
594 select CRYPTO_HASH
595 select CRC32
596 help
597 From Intel Westmere and AMD Bulldozer processor with SSE4.2
598 and PCLMULQDQ supported, the processor will support
599 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
600 instruction. This option will create 'crc32-plcmul' module,
601 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
602 and gain better performance as compared with the table implementation.
603
604 config CRYPTO_CRC32_MIPS
605 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
606 depends on MIPS_CRC_SUPPORT
607 select CRYPTO_HASH
608 help
609 CRC32c and CRC32 CRC algorithms implemented using mips crypto
610 instructions, when available.
611
612
613 config CRYPTO_CRCT10DIF
614 tristate "CRCT10DIF algorithm"
615 select CRYPTO_HASH
616 help
617 CRC T10 Data Integrity Field computation is being cast as
618 a crypto transform. This allows for faster crc t10 diff
619 transforms to be used if they are available.
620
621 config CRYPTO_CRCT10DIF_PCLMUL
622 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
623 depends on X86 && 64BIT && CRC_T10DIF
624 select CRYPTO_HASH
625 help
626 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
627 CRC T10 DIF PCLMULQDQ computation can be hardware
628 accelerated PCLMULQDQ instruction. This option will create
629 'crct10dif-plcmul' module, which is faster when computing the
630 crct10dif checksum as compared with the generic table implementation.
631
632 config CRYPTO_CRCT10DIF_VPMSUM
633 tristate "CRC32T10DIF powerpc64 hardware acceleration"
634 depends on PPC64 && ALTIVEC && CRC_T10DIF
635 select CRYPTO_HASH
636 help
637 CRC10T10DIF algorithm implemented using vector polynomial
638 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
639 POWER8 and newer processors for improved performance.
640
641 config CRYPTO_VPMSUM_TESTER
642 tristate "Powerpc64 vpmsum hardware acceleration tester"
643 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
644 help
645 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
646 POWER8 vpmsum instructions.
647 Unless you are testing these algorithms, you don't need this.
648
649 config CRYPTO_GHASH
650 tristate "GHASH digest algorithm"
651 select CRYPTO_GF128MUL
652 select CRYPTO_HASH
653 help
654 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
655
656 config CRYPTO_POLY1305
657 tristate "Poly1305 authenticator algorithm"
658 select CRYPTO_HASH
659 help
660 Poly1305 authenticator algorithm, RFC7539.
661
662 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
663 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
664 in IETF protocols. This is the portable C implementation of Poly1305.
665
666 config CRYPTO_POLY1305_X86_64
667 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
668 depends on X86 && 64BIT
669 select CRYPTO_POLY1305
670 help
671 Poly1305 authenticator algorithm, RFC7539.
672
673 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
674 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
675 in IETF protocols. This is the x86_64 assembler implementation using SIMD
676 instructions.
677
678 config CRYPTO_MD4
679 tristate "MD4 digest algorithm"
680 select CRYPTO_HASH
681 help
682 MD4 message digest algorithm (RFC1320).
683
684 config CRYPTO_MD5
685 tristate "MD5 digest algorithm"
686 select CRYPTO_HASH
687 help
688 MD5 message digest algorithm (RFC1321).
689
690 config CRYPTO_MD5_OCTEON
691 tristate "MD5 digest algorithm (OCTEON)"
692 depends on CPU_CAVIUM_OCTEON
693 select CRYPTO_MD5
694 select CRYPTO_HASH
695 help
696 MD5 message digest algorithm (RFC1321) implemented
697 using OCTEON crypto instructions, when available.
698
699 config CRYPTO_MD5_PPC
700 tristate "MD5 digest algorithm (PPC)"
701 depends on PPC
702 select CRYPTO_HASH
703 help
704 MD5 message digest algorithm (RFC1321) implemented
705 in PPC assembler.
706
707 config CRYPTO_MD5_SPARC64
708 tristate "MD5 digest algorithm (SPARC64)"
709 depends on SPARC64
710 select CRYPTO_MD5
711 select CRYPTO_HASH
712 help
713 MD5 message digest algorithm (RFC1321) implemented
714 using sparc64 crypto instructions, when available.
715
716 config CRYPTO_MICHAEL_MIC
717 tristate "Michael MIC keyed digest algorithm"
718 select CRYPTO_HASH
719 help
720 Michael MIC is used for message integrity protection in TKIP
721 (IEEE 802.11i). This algorithm is required for TKIP, but it
722 should not be used for other purposes because of the weakness
723 of the algorithm.
724
725 config CRYPTO_RMD128
726 tristate "RIPEMD-128 digest algorithm"
727 select CRYPTO_HASH
728 help
729 RIPEMD-128 (ISO/IEC 10118-3:2004).
730
731 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
732 be used as a secure replacement for RIPEMD. For other use cases,
733 RIPEMD-160 should be used.
734
735 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
736 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
737
738 config CRYPTO_RMD160
739 tristate "RIPEMD-160 digest algorithm"
740 select CRYPTO_HASH
741 help
742 RIPEMD-160 (ISO/IEC 10118-3:2004).
743
744 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
745 to be used as a secure replacement for the 128-bit hash functions
746 MD4, MD5 and it's predecessor RIPEMD
747 (not to be confused with RIPEMD-128).
748
749 It's speed is comparable to SHA1 and there are no known attacks
750 against RIPEMD-160.
751
752 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
753 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
754
755 config CRYPTO_RMD256
756 tristate "RIPEMD-256 digest algorithm"
757 select CRYPTO_HASH
758 help
759 RIPEMD-256 is an optional extension of RIPEMD-128 with a
760 256 bit hash. It is intended for applications that require
761 longer hash-results, without needing a larger security level
762 (than RIPEMD-128).
763
764 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
765 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766
767 config CRYPTO_RMD320
768 tristate "RIPEMD-320 digest algorithm"
769 select CRYPTO_HASH
770 help
771 RIPEMD-320 is an optional extension of RIPEMD-160 with a
772 320 bit hash. It is intended for applications that require
773 longer hash-results, without needing a larger security level
774 (than RIPEMD-160).
775
776 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
777 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
778
779 config CRYPTO_SHA1
780 tristate "SHA1 digest algorithm"
781 select CRYPTO_HASH
782 help
783 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
784
785 config CRYPTO_SHA1_SSSE3
786 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
787 depends on X86 && 64BIT
788 select CRYPTO_SHA1
789 select CRYPTO_HASH
790 help
791 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
792 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
793 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
794 when available.
795
796 config CRYPTO_SHA256_SSSE3
797 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
798 depends on X86 && 64BIT
799 select CRYPTO_SHA256
800 select CRYPTO_HASH
801 help
802 SHA-256 secure hash standard (DFIPS 180-2) implemented
803 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
804 Extensions version 1 (AVX1), or Advanced Vector Extensions
805 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
806 Instructions) when available.
807
808 config CRYPTO_SHA512_SSSE3
809 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
810 depends on X86 && 64BIT
811 select CRYPTO_SHA512
812 select CRYPTO_HASH
813 help
814 SHA-512 secure hash standard (DFIPS 180-2) implemented
815 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
816 Extensions version 1 (AVX1), or Advanced Vector Extensions
817 version 2 (AVX2) instructions, when available.
818
819 config CRYPTO_SHA1_OCTEON
820 tristate "SHA1 digest algorithm (OCTEON)"
821 depends on CPU_CAVIUM_OCTEON
822 select CRYPTO_SHA1
823 select CRYPTO_HASH
824 help
825 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
826 using OCTEON crypto instructions, when available.
827
828 config CRYPTO_SHA1_SPARC64
829 tristate "SHA1 digest algorithm (SPARC64)"
830 depends on SPARC64
831 select CRYPTO_SHA1
832 select CRYPTO_HASH
833 help
834 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
835 using sparc64 crypto instructions, when available.
836
837 config CRYPTO_SHA1_PPC
838 tristate "SHA1 digest algorithm (powerpc)"
839 depends on PPC
840 help
841 This is the powerpc hardware accelerated implementation of the
842 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
843
844 config CRYPTO_SHA1_PPC_SPE
845 tristate "SHA1 digest algorithm (PPC SPE)"
846 depends on PPC && SPE
847 help
848 SHA-1 secure hash standard (DFIPS 180-4) implemented
849 using powerpc SPE SIMD instruction set.
850
851 config CRYPTO_SHA1_MB
852 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
853 depends on X86 && 64BIT
854 select CRYPTO_SHA1
855 select CRYPTO_HASH
856 select CRYPTO_MCRYPTD
857 help
858 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
859 using multi-buffer technique. This algorithm computes on
860 multiple data lanes concurrently with SIMD instructions for
861 better throughput. It should not be enabled by default but
862 used when there is significant amount of work to keep the keep
863 the data lanes filled to get performance benefit. If the data
864 lanes remain unfilled, a flush operation will be initiated to
865 process the crypto jobs, adding a slight latency.
866
867 config CRYPTO_SHA256_MB
868 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
869 depends on X86 && 64BIT
870 select CRYPTO_SHA256
871 select CRYPTO_HASH
872 select CRYPTO_MCRYPTD
873 help
874 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
875 using multi-buffer technique. This algorithm computes on
876 multiple data lanes concurrently with SIMD instructions for
877 better throughput. It should not be enabled by default but
878 used when there is significant amount of work to keep the keep
879 the data lanes filled to get performance benefit. If the data
880 lanes remain unfilled, a flush operation will be initiated to
881 process the crypto jobs, adding a slight latency.
882
883 config CRYPTO_SHA512_MB
884 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
885 depends on X86 && 64BIT
886 select CRYPTO_SHA512
887 select CRYPTO_HASH
888 select CRYPTO_MCRYPTD
889 help
890 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
891 using multi-buffer technique. This algorithm computes on
892 multiple data lanes concurrently with SIMD instructions for
893 better throughput. It should not be enabled by default but
894 used when there is significant amount of work to keep the keep
895 the data lanes filled to get performance benefit. If the data
896 lanes remain unfilled, a flush operation will be initiated to
897 process the crypto jobs, adding a slight latency.
898
899 config CRYPTO_SHA256
900 tristate "SHA224 and SHA256 digest algorithm"
901 select CRYPTO_HASH
902 help
903 SHA256 secure hash standard (DFIPS 180-2).
904
905 This version of SHA implements a 256 bit hash with 128 bits of
906 security against collision attacks.
907
908 This code also includes SHA-224, a 224 bit hash with 112 bits
909 of security against collision attacks.
910
911 config CRYPTO_SHA256_PPC_SPE
912 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
913 depends on PPC && SPE
914 select CRYPTO_SHA256
915 select CRYPTO_HASH
916 help
917 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
918 implemented using powerpc SPE SIMD instruction set.
919
920 config CRYPTO_SHA256_OCTEON
921 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
922 depends on CPU_CAVIUM_OCTEON
923 select CRYPTO_SHA256
924 select CRYPTO_HASH
925 help
926 SHA-256 secure hash standard (DFIPS 180-2) implemented
927 using OCTEON crypto instructions, when available.
928
929 config CRYPTO_SHA256_SPARC64
930 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
931 depends on SPARC64
932 select CRYPTO_SHA256
933 select CRYPTO_HASH
934 help
935 SHA-256 secure hash standard (DFIPS 180-2) implemented
936 using sparc64 crypto instructions, when available.
937
938 config CRYPTO_SHA512
939 tristate "SHA384 and SHA512 digest algorithms"
940 select CRYPTO_HASH
941 help
942 SHA512 secure hash standard (DFIPS 180-2).
943
944 This version of SHA implements a 512 bit hash with 256 bits of
945 security against collision attacks.
946
947 This code also includes SHA-384, a 384 bit hash with 192 bits
948 of security against collision attacks.
949
950 config CRYPTO_SHA512_OCTEON
951 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
952 depends on CPU_CAVIUM_OCTEON
953 select CRYPTO_SHA512
954 select CRYPTO_HASH
955 help
956 SHA-512 secure hash standard (DFIPS 180-2) implemented
957 using OCTEON crypto instructions, when available.
958
959 config CRYPTO_SHA512_SPARC64
960 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
961 depends on SPARC64
962 select CRYPTO_SHA512
963 select CRYPTO_HASH
964 help
965 SHA-512 secure hash standard (DFIPS 180-2) implemented
966 using sparc64 crypto instructions, when available.
967
968 config CRYPTO_SHA3
969 tristate "SHA3 digest algorithm"
970 select CRYPTO_HASH
971 help
972 SHA-3 secure hash standard (DFIPS 202). It's based on
973 cryptographic sponge function family called Keccak.
974
975 References:
976 http://keccak.noekeon.org/
977
978 config CRYPTO_SM3
979 tristate "SM3 digest algorithm"
980 select CRYPTO_HASH
981 help
982 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
983 It is part of the Chinese Commercial Cryptography suite.
984
985 References:
986 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
987 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
988
989 config CRYPTO_TGR192
990 tristate "Tiger digest algorithms"
991 select CRYPTO_HASH
992 help
993 Tiger hash algorithm 192, 160 and 128-bit hashes
994
995 Tiger is a hash function optimized for 64-bit processors while
996 still having decent performance on 32-bit processors.
997 Tiger was developed by Ross Anderson and Eli Biham.
998
999 See also:
1000 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1001
1002 config CRYPTO_WP512
1003 tristate "Whirlpool digest algorithms"
1004 select CRYPTO_HASH
1005 help
1006 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1007
1008 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1009 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1010
1011 See also:
1012 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1013
1014 config CRYPTO_GHASH_CLMUL_NI_INTEL
1015 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
1016 depends on X86 && 64BIT
1017 select CRYPTO_CRYPTD
1018 help
1019 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
1020 The implementation is accelerated by CLMUL-NI of Intel.
1021
1022 comment "Ciphers"
1023
1024 config CRYPTO_AES
1025 tristate "AES cipher algorithms"
1026 select CRYPTO_ALGAPI
1027 help
1028 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1029 algorithm.
1030
1031 Rijndael appears to be consistently a very good performer in
1032 both hardware and software across a wide range of computing
1033 environments regardless of its use in feedback or non-feedback
1034 modes. Its key setup time is excellent, and its key agility is
1035 good. Rijndael's very low memory requirements make it very well
1036 suited for restricted-space environments, in which it also
1037 demonstrates excellent performance. Rijndael's operations are
1038 among the easiest to defend against power and timing attacks.
1039
1040 The AES specifies three key sizes: 128, 192 and 256 bits
1041
1042 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1043
1044 config CRYPTO_AES_TI
1045 tristate "Fixed time AES cipher"
1046 select CRYPTO_ALGAPI
1047 help
1048 This is a generic implementation of AES that attempts to eliminate
1049 data dependent latencies as much as possible without affecting
1050 performance too much. It is intended for use by the generic CCM
1051 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1052 solely on encryption (although decryption is supported as well, but
1053 with a more dramatic performance hit)
1054
1055 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1056 8 for decryption), this implementation only uses just two S-boxes of
1057 256 bytes each, and attempts to eliminate data dependent latencies by
1058 prefetching the entire table into the cache at the start of each
1059 block.
1060
1061 config CRYPTO_AES_586
1062 tristate "AES cipher algorithms (i586)"
1063 depends on (X86 || UML_X86) && !64BIT
1064 select CRYPTO_ALGAPI
1065 select CRYPTO_AES
1066 help
1067 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1068 algorithm.
1069
1070 Rijndael appears to be consistently a very good performer in
1071 both hardware and software across a wide range of computing
1072 environments regardless of its use in feedback or non-feedback
1073 modes. Its key setup time is excellent, and its key agility is
1074 good. Rijndael's very low memory requirements make it very well
1075 suited for restricted-space environments, in which it also
1076 demonstrates excellent performance. Rijndael's operations are
1077 among the easiest to defend against power and timing attacks.
1078
1079 The AES specifies three key sizes: 128, 192 and 256 bits
1080
1081 See <http://csrc.nist.gov/encryption/aes/> for more information.
1082
1083 config CRYPTO_AES_X86_64
1084 tristate "AES cipher algorithms (x86_64)"
1085 depends on (X86 || UML_X86) && 64BIT
1086 select CRYPTO_ALGAPI
1087 select CRYPTO_AES
1088 help
1089 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1090 algorithm.
1091
1092 Rijndael appears to be consistently a very good performer in
1093 both hardware and software across a wide range of computing
1094 environments regardless of its use in feedback or non-feedback
1095 modes. Its key setup time is excellent, and its key agility is
1096 good. Rijndael's very low memory requirements make it very well
1097 suited for restricted-space environments, in which it also
1098 demonstrates excellent performance. Rijndael's operations are
1099 among the easiest to defend against power and timing attacks.
1100
1101 The AES specifies three key sizes: 128, 192 and 256 bits
1102
1103 See <http://csrc.nist.gov/encryption/aes/> for more information.
1104
1105 config CRYPTO_AES_NI_INTEL
1106 tristate "AES cipher algorithms (AES-NI)"
1107 depends on X86
1108 select CRYPTO_AEAD
1109 select CRYPTO_AES_X86_64 if 64BIT
1110 select CRYPTO_AES_586 if !64BIT
1111 select CRYPTO_ALGAPI
1112 select CRYPTO_BLKCIPHER
1113 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1114 select CRYPTO_SIMD
1115 help
1116 Use Intel AES-NI instructions for AES algorithm.
1117
1118 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1119 algorithm.
1120
1121 Rijndael appears to be consistently a very good performer in
1122 both hardware and software across a wide range of computing
1123 environments regardless of its use in feedback or non-feedback
1124 modes. Its key setup time is excellent, and its key agility is
1125 good. Rijndael's very low memory requirements make it very well
1126 suited for restricted-space environments, in which it also
1127 demonstrates excellent performance. Rijndael's operations are
1128 among the easiest to defend against power and timing attacks.
1129
1130 The AES specifies three key sizes: 128, 192 and 256 bits
1131
1132 See <http://csrc.nist.gov/encryption/aes/> for more information.
1133
1134 In addition to AES cipher algorithm support, the acceleration
1135 for some popular block cipher mode is supported too, including
1136 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1137 acceleration for CTR.
1138
1139 config CRYPTO_AES_SPARC64
1140 tristate "AES cipher algorithms (SPARC64)"
1141 depends on SPARC64
1142 select CRYPTO_CRYPTD
1143 select CRYPTO_ALGAPI
1144 help
1145 Use SPARC64 crypto opcodes for AES algorithm.
1146
1147 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1148 algorithm.
1149
1150 Rijndael appears to be consistently a very good performer in
1151 both hardware and software across a wide range of computing
1152 environments regardless of its use in feedback or non-feedback
1153 modes. Its key setup time is excellent, and its key agility is
1154 good. Rijndael's very low memory requirements make it very well
1155 suited for restricted-space environments, in which it also
1156 demonstrates excellent performance. Rijndael's operations are
1157 among the easiest to defend against power and timing attacks.
1158
1159 The AES specifies three key sizes: 128, 192 and 256 bits
1160
1161 See <http://csrc.nist.gov/encryption/aes/> for more information.
1162
1163 In addition to AES cipher algorithm support, the acceleration
1164 for some popular block cipher mode is supported too, including
1165 ECB and CBC.
1166
1167 config CRYPTO_AES_PPC_SPE
1168 tristate "AES cipher algorithms (PPC SPE)"
1169 depends on PPC && SPE
1170 help
1171 AES cipher algorithms (FIPS-197). Additionally the acceleration
1172 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1173 This module should only be used for low power (router) devices
1174 without hardware AES acceleration (e.g. caam crypto). It reduces the
1175 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1176 timining attacks. Nevertheless it might be not as secure as other
1177 architecture specific assembler implementations that work on 1KB
1178 tables or 256 bytes S-boxes.
1179
1180 config CRYPTO_ANUBIS
1181 tristate "Anubis cipher algorithm"
1182 select CRYPTO_ALGAPI
1183 help
1184 Anubis cipher algorithm.
1185
1186 Anubis is a variable key length cipher which can use keys from
1187 128 bits to 320 bits in length. It was evaluated as a entrant
1188 in the NESSIE competition.
1189
1190 See also:
1191 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1192 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1193
1194 config CRYPTO_ARC4
1195 tristate "ARC4 cipher algorithm"
1196 select CRYPTO_BLKCIPHER
1197 help
1198 ARC4 cipher algorithm.
1199
1200 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1201 bits in length. This algorithm is required for driver-based
1202 WEP, but it should not be for other purposes because of the
1203 weakness of the algorithm.
1204
1205 config CRYPTO_BLOWFISH
1206 tristate "Blowfish cipher algorithm"
1207 select CRYPTO_ALGAPI
1208 select CRYPTO_BLOWFISH_COMMON
1209 help
1210 Blowfish cipher algorithm, by Bruce Schneier.
1211
1212 This is a variable key length cipher which can use keys from 32
1213 bits to 448 bits in length. It's fast, simple and specifically
1214 designed for use on "large microprocessors".
1215
1216 See also:
1217 <http://www.schneier.com/blowfish.html>
1218
1219 config CRYPTO_BLOWFISH_COMMON
1220 tristate
1221 help
1222 Common parts of the Blowfish cipher algorithm shared by the
1223 generic c and the assembler implementations.
1224
1225 See also:
1226 <http://www.schneier.com/blowfish.html>
1227
1228 config CRYPTO_BLOWFISH_X86_64
1229 tristate "Blowfish cipher algorithm (x86_64)"
1230 depends on X86 && 64BIT
1231 select CRYPTO_BLKCIPHER
1232 select CRYPTO_BLOWFISH_COMMON
1233 help
1234 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1235
1236 This is a variable key length cipher which can use keys from 32
1237 bits to 448 bits in length. It's fast, simple and specifically
1238 designed for use on "large microprocessors".
1239
1240 See also:
1241 <http://www.schneier.com/blowfish.html>
1242
1243 config CRYPTO_CAMELLIA
1244 tristate "Camellia cipher algorithms"
1245 depends on CRYPTO
1246 select CRYPTO_ALGAPI
1247 help
1248 Camellia cipher algorithms module.
1249
1250 Camellia is a symmetric key block cipher developed jointly
1251 at NTT and Mitsubishi Electric Corporation.
1252
1253 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1254
1255 See also:
1256 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1257
1258 config CRYPTO_CAMELLIA_X86_64
1259 tristate "Camellia cipher algorithm (x86_64)"
1260 depends on X86 && 64BIT
1261 depends on CRYPTO
1262 select CRYPTO_BLKCIPHER
1263 select CRYPTO_GLUE_HELPER_X86
1264 help
1265 Camellia cipher algorithm module (x86_64).
1266
1267 Camellia is a symmetric key block cipher developed jointly
1268 at NTT and Mitsubishi Electric Corporation.
1269
1270 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1271
1272 See also:
1273 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1274
1275 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1277 depends on X86 && 64BIT
1278 depends on CRYPTO
1279 select CRYPTO_BLKCIPHER
1280 select CRYPTO_CAMELLIA_X86_64
1281 select CRYPTO_GLUE_HELPER_X86
1282 select CRYPTO_SIMD
1283 select CRYPTO_XTS
1284 help
1285 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1286
1287 Camellia is a symmetric key block cipher developed jointly
1288 at NTT and Mitsubishi Electric Corporation.
1289
1290 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1291
1292 See also:
1293 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1294
1295 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1296 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1297 depends on X86 && 64BIT
1298 depends on CRYPTO
1299 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1300 help
1301 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1302
1303 Camellia is a symmetric key block cipher developed jointly
1304 at NTT and Mitsubishi Electric Corporation.
1305
1306 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1307
1308 See also:
1309 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1310
1311 config CRYPTO_CAMELLIA_SPARC64
1312 tristate "Camellia cipher algorithm (SPARC64)"
1313 depends on SPARC64
1314 depends on CRYPTO
1315 select CRYPTO_ALGAPI
1316 help
1317 Camellia cipher algorithm module (SPARC64).
1318
1319 Camellia is a symmetric key block cipher developed jointly
1320 at NTT and Mitsubishi Electric Corporation.
1321
1322 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1323
1324 See also:
1325 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1326
1327 config CRYPTO_CAST_COMMON
1328 tristate
1329 help
1330 Common parts of the CAST cipher algorithms shared by the
1331 generic c and the assembler implementations.
1332
1333 config CRYPTO_CAST5
1334 tristate "CAST5 (CAST-128) cipher algorithm"
1335 select CRYPTO_ALGAPI
1336 select CRYPTO_CAST_COMMON
1337 help
1338 The CAST5 encryption algorithm (synonymous with CAST-128) is
1339 described in RFC2144.
1340
1341 config CRYPTO_CAST5_AVX_X86_64
1342 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1343 depends on X86 && 64BIT
1344 select CRYPTO_BLKCIPHER
1345 select CRYPTO_CAST5
1346 select CRYPTO_CAST_COMMON
1347 select CRYPTO_SIMD
1348 help
1349 The CAST5 encryption algorithm (synonymous with CAST-128) is
1350 described in RFC2144.
1351
1352 This module provides the Cast5 cipher algorithm that processes
1353 sixteen blocks parallel using the AVX instruction set.
1354
1355 config CRYPTO_CAST6
1356 tristate "CAST6 (CAST-256) cipher algorithm"
1357 select CRYPTO_ALGAPI
1358 select CRYPTO_CAST_COMMON
1359 help
1360 The CAST6 encryption algorithm (synonymous with CAST-256) is
1361 described in RFC2612.
1362
1363 config CRYPTO_CAST6_AVX_X86_64
1364 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1365 depends on X86 && 64BIT
1366 select CRYPTO_BLKCIPHER
1367 select CRYPTO_CAST6
1368 select CRYPTO_CAST_COMMON
1369 select CRYPTO_GLUE_HELPER_X86
1370 select CRYPTO_SIMD
1371 select CRYPTO_XTS
1372 help
1373 The CAST6 encryption algorithm (synonymous with CAST-256) is
1374 described in RFC2612.
1375
1376 This module provides the Cast6 cipher algorithm that processes
1377 eight blocks parallel using the AVX instruction set.
1378
1379 config CRYPTO_DES
1380 tristate "DES and Triple DES EDE cipher algorithms"
1381 select CRYPTO_ALGAPI
1382 help
1383 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1384
1385 config CRYPTO_DES_SPARC64
1386 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1387 depends on SPARC64
1388 select CRYPTO_ALGAPI
1389 select CRYPTO_DES
1390 help
1391 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1392 optimized using SPARC64 crypto opcodes.
1393
1394 config CRYPTO_DES3_EDE_X86_64
1395 tristate "Triple DES EDE cipher algorithm (x86-64)"
1396 depends on X86 && 64BIT
1397 select CRYPTO_BLKCIPHER
1398 select CRYPTO_DES
1399 help
1400 Triple DES EDE (FIPS 46-3) algorithm.
1401
1402 This module provides implementation of the Triple DES EDE cipher
1403 algorithm that is optimized for x86-64 processors. Two versions of
1404 algorithm are provided; regular processing one input block and
1405 one that processes three blocks parallel.
1406
1407 config CRYPTO_FCRYPT
1408 tristate "FCrypt cipher algorithm"
1409 select CRYPTO_ALGAPI
1410 select CRYPTO_BLKCIPHER
1411 help
1412 FCrypt algorithm used by RxRPC.
1413
1414 config CRYPTO_KHAZAD
1415 tristate "Khazad cipher algorithm"
1416 select CRYPTO_ALGAPI
1417 help
1418 Khazad cipher algorithm.
1419
1420 Khazad was a finalist in the initial NESSIE competition. It is
1421 an algorithm optimized for 64-bit processors with good performance
1422 on 32-bit processors. Khazad uses an 128 bit key size.
1423
1424 See also:
1425 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1426
1427 config CRYPTO_SALSA20
1428 tristate "Salsa20 stream cipher algorithm"
1429 select CRYPTO_BLKCIPHER
1430 help
1431 Salsa20 stream cipher algorithm.
1432
1433 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1434 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1435
1436 The Salsa20 stream cipher algorithm is designed by Daniel J.
1437 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1438
1439 config CRYPTO_CHACHA20
1440 tristate "ChaCha20 cipher algorithm"
1441 select CRYPTO_BLKCIPHER
1442 help
1443 ChaCha20 cipher algorithm, RFC7539.
1444
1445 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1446 Bernstein and further specified in RFC7539 for use in IETF protocols.
1447 This is the portable C implementation of ChaCha20.
1448
1449 See also:
1450 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1451
1452 config CRYPTO_CHACHA20_X86_64
1453 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1454 depends on X86 && 64BIT
1455 select CRYPTO_BLKCIPHER
1456 select CRYPTO_CHACHA20
1457 help
1458 ChaCha20 cipher algorithm, RFC7539.
1459
1460 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1461 Bernstein and further specified in RFC7539 for use in IETF protocols.
1462 This is the x86_64 assembler implementation using SIMD instructions.
1463
1464 See also:
1465 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1466
1467 config CRYPTO_SEED
1468 tristate "SEED cipher algorithm"
1469 select CRYPTO_ALGAPI
1470 help
1471 SEED cipher algorithm (RFC4269).
1472
1473 SEED is a 128-bit symmetric key block cipher that has been
1474 developed by KISA (Korea Information Security Agency) as a
1475 national standard encryption algorithm of the Republic of Korea.
1476 It is a 16 round block cipher with the key size of 128 bit.
1477
1478 See also:
1479 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1480
1481 config CRYPTO_SERPENT
1482 tristate "Serpent cipher algorithm"
1483 select CRYPTO_ALGAPI
1484 help
1485 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1486
1487 Keys are allowed to be from 0 to 256 bits in length, in steps
1488 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1489 variant of Serpent for compatibility with old kerneli.org code.
1490
1491 See also:
1492 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1493
1494 config CRYPTO_SERPENT_SSE2_X86_64
1495 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1496 depends on X86 && 64BIT
1497 select CRYPTO_BLKCIPHER
1498 select CRYPTO_GLUE_HELPER_X86
1499 select CRYPTO_SERPENT
1500 select CRYPTO_SIMD
1501 help
1502 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1503
1504 Keys are allowed to be from 0 to 256 bits in length, in steps
1505 of 8 bits.
1506
1507 This module provides Serpent cipher algorithm that processes eight
1508 blocks parallel using SSE2 instruction set.
1509
1510 See also:
1511 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1512
1513 config CRYPTO_SERPENT_SSE2_586
1514 tristate "Serpent cipher algorithm (i586/SSE2)"
1515 depends on X86 && !64BIT
1516 select CRYPTO_BLKCIPHER
1517 select CRYPTO_GLUE_HELPER_X86
1518 select CRYPTO_SERPENT
1519 select CRYPTO_SIMD
1520 help
1521 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1522
1523 Keys are allowed to be from 0 to 256 bits in length, in steps
1524 of 8 bits.
1525
1526 This module provides Serpent cipher algorithm that processes four
1527 blocks parallel using SSE2 instruction set.
1528
1529 See also:
1530 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1531
1532 config CRYPTO_SERPENT_AVX_X86_64
1533 tristate "Serpent cipher algorithm (x86_64/AVX)"
1534 depends on X86 && 64BIT
1535 select CRYPTO_BLKCIPHER
1536 select CRYPTO_GLUE_HELPER_X86
1537 select CRYPTO_SERPENT
1538 select CRYPTO_SIMD
1539 select CRYPTO_XTS
1540 help
1541 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543 Keys are allowed to be from 0 to 256 bits in length, in steps
1544 of 8 bits.
1545
1546 This module provides the Serpent cipher algorithm that processes
1547 eight blocks parallel using the AVX instruction set.
1548
1549 See also:
1550 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552 config CRYPTO_SERPENT_AVX2_X86_64
1553 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1554 depends on X86 && 64BIT
1555 select CRYPTO_SERPENT_AVX_X86_64
1556 help
1557 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1558
1559 Keys are allowed to be from 0 to 256 bits in length, in steps
1560 of 8 bits.
1561
1562 This module provides Serpent cipher algorithm that processes 16
1563 blocks parallel using AVX2 instruction set.
1564
1565 See also:
1566 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1567
1568 config CRYPTO_SM4
1569 tristate "SM4 cipher algorithm"
1570 select CRYPTO_ALGAPI
1571 help
1572 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1573
1574 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1575 Organization of State Commercial Administration of China (OSCCA)
1576 as an authorized cryptographic algorithms for the use within China.
1577
1578 SMS4 was originally created for use in protecting wireless
1579 networks, and is mandated in the Chinese National Standard for
1580 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1581 (GB.15629.11-2003).
1582
1583 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1584 standardized through TC 260 of the Standardization Administration
1585 of the People's Republic of China (SAC).
1586
1587 The input, output, and key of SMS4 are each 128 bits.
1588
1589 See also: <https://eprint.iacr.org/2008/329.pdf>
1590
1591 If unsure, say N.
1592
1593 config CRYPTO_SPECK
1594 tristate "Speck cipher algorithm"
1595 select CRYPTO_ALGAPI
1596 help
1597 Speck is a lightweight block cipher that is tuned for optimal
1598 performance in software (rather than hardware).
1599
1600 Speck may not be as secure as AES, and should only be used on systems
1601 where AES is not fast enough.
1602
1603 See also: <https://eprint.iacr.org/2013/404.pdf>
1604
1605 If unsure, say N.
1606
1607 config CRYPTO_TEA
1608 tristate "TEA, XTEA and XETA cipher algorithms"
1609 select CRYPTO_ALGAPI
1610 help
1611 TEA cipher algorithm.
1612
1613 Tiny Encryption Algorithm is a simple cipher that uses
1614 many rounds for security. It is very fast and uses
1615 little memory.
1616
1617 Xtendend Tiny Encryption Algorithm is a modification to
1618 the TEA algorithm to address a potential key weakness
1619 in the TEA algorithm.
1620
1621 Xtendend Encryption Tiny Algorithm is a mis-implementation
1622 of the XTEA algorithm for compatibility purposes.
1623
1624 config CRYPTO_TWOFISH
1625 tristate "Twofish cipher algorithm"
1626 select CRYPTO_ALGAPI
1627 select CRYPTO_TWOFISH_COMMON
1628 help
1629 Twofish cipher algorithm.
1630
1631 Twofish was submitted as an AES (Advanced Encryption Standard)
1632 candidate cipher by researchers at CounterPane Systems. It is a
1633 16 round block cipher supporting key sizes of 128, 192, and 256
1634 bits.
1635
1636 See also:
1637 <http://www.schneier.com/twofish.html>
1638
1639 config CRYPTO_TWOFISH_COMMON
1640 tristate
1641 help
1642 Common parts of the Twofish cipher algorithm shared by the
1643 generic c and the assembler implementations.
1644
1645 config CRYPTO_TWOFISH_586
1646 tristate "Twofish cipher algorithms (i586)"
1647 depends on (X86 || UML_X86) && !64BIT
1648 select CRYPTO_ALGAPI
1649 select CRYPTO_TWOFISH_COMMON
1650 help
1651 Twofish cipher algorithm.
1652
1653 Twofish was submitted as an AES (Advanced Encryption Standard)
1654 candidate cipher by researchers at CounterPane Systems. It is a
1655 16 round block cipher supporting key sizes of 128, 192, and 256
1656 bits.
1657
1658 See also:
1659 <http://www.schneier.com/twofish.html>
1660
1661 config CRYPTO_TWOFISH_X86_64
1662 tristate "Twofish cipher algorithm (x86_64)"
1663 depends on (X86 || UML_X86) && 64BIT
1664 select CRYPTO_ALGAPI
1665 select CRYPTO_TWOFISH_COMMON
1666 help
1667 Twofish cipher algorithm (x86_64).
1668
1669 Twofish was submitted as an AES (Advanced Encryption Standard)
1670 candidate cipher by researchers at CounterPane Systems. It is a
1671 16 round block cipher supporting key sizes of 128, 192, and 256
1672 bits.
1673
1674 See also:
1675 <http://www.schneier.com/twofish.html>
1676
1677 config CRYPTO_TWOFISH_X86_64_3WAY
1678 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1679 depends on X86 && 64BIT
1680 select CRYPTO_BLKCIPHER
1681 select CRYPTO_TWOFISH_COMMON
1682 select CRYPTO_TWOFISH_X86_64
1683 select CRYPTO_GLUE_HELPER_X86
1684 help
1685 Twofish cipher algorithm (x86_64, 3-way parallel).
1686
1687 Twofish was submitted as an AES (Advanced Encryption Standard)
1688 candidate cipher by researchers at CounterPane Systems. It is a
1689 16 round block cipher supporting key sizes of 128, 192, and 256
1690 bits.
1691
1692 This module provides Twofish cipher algorithm that processes three
1693 blocks parallel, utilizing resources of out-of-order CPUs better.
1694
1695 See also:
1696 <http://www.schneier.com/twofish.html>
1697
1698 config CRYPTO_TWOFISH_AVX_X86_64
1699 tristate "Twofish cipher algorithm (x86_64/AVX)"
1700 depends on X86 && 64BIT
1701 select CRYPTO_BLKCIPHER
1702 select CRYPTO_GLUE_HELPER_X86
1703 select CRYPTO_SIMD
1704 select CRYPTO_TWOFISH_COMMON
1705 select CRYPTO_TWOFISH_X86_64
1706 select CRYPTO_TWOFISH_X86_64_3WAY
1707 help
1708 Twofish cipher algorithm (x86_64/AVX).
1709
1710 Twofish was submitted as an AES (Advanced Encryption Standard)
1711 candidate cipher by researchers at CounterPane Systems. It is a
1712 16 round block cipher supporting key sizes of 128, 192, and 256
1713 bits.
1714
1715 This module provides the Twofish cipher algorithm that processes
1716 eight blocks parallel using the AVX Instruction Set.
1717
1718 See also:
1719 <http://www.schneier.com/twofish.html>
1720
1721 comment "Compression"
1722
1723 config CRYPTO_DEFLATE
1724 tristate "Deflate compression algorithm"
1725 select CRYPTO_ALGAPI
1726 select CRYPTO_ACOMP2
1727 select ZLIB_INFLATE
1728 select ZLIB_DEFLATE
1729 help
1730 This is the Deflate algorithm (RFC1951), specified for use in
1731 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1732
1733 You will most probably want this if using IPSec.
1734
1735 config CRYPTO_LZO
1736 tristate "LZO compression algorithm"
1737 select CRYPTO_ALGAPI
1738 select CRYPTO_ACOMP2
1739 select LZO_COMPRESS
1740 select LZO_DECOMPRESS
1741 help
1742 This is the LZO algorithm.
1743
1744 config CRYPTO_842
1745 tristate "842 compression algorithm"
1746 select CRYPTO_ALGAPI
1747 select CRYPTO_ACOMP2
1748 select 842_COMPRESS
1749 select 842_DECOMPRESS
1750 help
1751 This is the 842 algorithm.
1752
1753 config CRYPTO_LZ4
1754 tristate "LZ4 compression algorithm"
1755 select CRYPTO_ALGAPI
1756 select CRYPTO_ACOMP2
1757 select LZ4_COMPRESS
1758 select LZ4_DECOMPRESS
1759 help
1760 This is the LZ4 algorithm.
1761
1762 config CRYPTO_LZ4HC
1763 tristate "LZ4HC compression algorithm"
1764 select CRYPTO_ALGAPI
1765 select CRYPTO_ACOMP2
1766 select LZ4HC_COMPRESS
1767 select LZ4_DECOMPRESS
1768 help
1769 This is the LZ4 high compression mode algorithm.
1770
1771 config CRYPTO_ZSTD
1772 tristate "Zstd compression algorithm"
1773 select CRYPTO_ALGAPI
1774 select CRYPTO_ACOMP2
1775 select ZSTD_COMPRESS
1776 select ZSTD_DECOMPRESS
1777 help
1778 This is the zstd algorithm.
1779
1780 comment "Random Number Generation"
1781
1782 config CRYPTO_ANSI_CPRNG
1783 tristate "Pseudo Random Number Generation for Cryptographic modules"
1784 select CRYPTO_AES
1785 select CRYPTO_RNG
1786 help
1787 This option enables the generic pseudo random number generator
1788 for cryptographic modules. Uses the Algorithm specified in
1789 ANSI X9.31 A.2.4. Note that this option must be enabled if
1790 CRYPTO_FIPS is selected
1791
1792 menuconfig CRYPTO_DRBG_MENU
1793 tristate "NIST SP800-90A DRBG"
1794 help
1795 NIST SP800-90A compliant DRBG. In the following submenu, one or
1796 more of the DRBG types must be selected.
1797
1798 if CRYPTO_DRBG_MENU
1799
1800 config CRYPTO_DRBG_HMAC
1801 bool
1802 default y
1803 select CRYPTO_HMAC
1804 select CRYPTO_SHA256
1805
1806 config CRYPTO_DRBG_HASH
1807 bool "Enable Hash DRBG"
1808 select CRYPTO_SHA256
1809 help
1810 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1811
1812 config CRYPTO_DRBG_CTR
1813 bool "Enable CTR DRBG"
1814 select CRYPTO_AES
1815 depends on CRYPTO_CTR
1816 help
1817 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1818
1819 config CRYPTO_DRBG
1820 tristate
1821 default CRYPTO_DRBG_MENU
1822 select CRYPTO_RNG
1823 select CRYPTO_JITTERENTROPY
1824
1825 endif # if CRYPTO_DRBG_MENU
1826
1827 config CRYPTO_JITTERENTROPY
1828 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1829 select CRYPTO_RNG
1830 help
1831 The Jitterentropy RNG is a noise that is intended
1832 to provide seed to another RNG. The RNG does not
1833 perform any cryptographic whitening of the generated
1834 random numbers. This Jitterentropy RNG registers with
1835 the kernel crypto API and can be used by any caller.
1836
1837 config CRYPTO_USER_API
1838 tristate
1839
1840 config CRYPTO_USER_API_HASH
1841 tristate "User-space interface for hash algorithms"
1842 depends on NET
1843 select CRYPTO_HASH
1844 select CRYPTO_USER_API
1845 help
1846 This option enables the user-spaces interface for hash
1847 algorithms.
1848
1849 config CRYPTO_USER_API_SKCIPHER
1850 tristate "User-space interface for symmetric key cipher algorithms"
1851 depends on NET
1852 select CRYPTO_BLKCIPHER
1853 select CRYPTO_USER_API
1854 help
1855 This option enables the user-spaces interface for symmetric
1856 key cipher algorithms.
1857
1858 config CRYPTO_USER_API_RNG
1859 tristate "User-space interface for random number generator algorithms"
1860 depends on NET
1861 select CRYPTO_RNG
1862 select CRYPTO_USER_API
1863 help
1864 This option enables the user-spaces interface for random
1865 number generator algorithms.
1866
1867 config CRYPTO_USER_API_AEAD
1868 tristate "User-space interface for AEAD cipher algorithms"
1869 depends on NET
1870 select CRYPTO_AEAD
1871 select CRYPTO_BLKCIPHER
1872 select CRYPTO_NULL
1873 select CRYPTO_USER_API
1874 help
1875 This option enables the user-spaces interface for AEAD
1876 cipher algorithms.
1877
1878 config CRYPTO_HASH_INFO
1879 bool
1880
1881 source "drivers/crypto/Kconfig"
1882 source crypto/asymmetric_keys/Kconfig
1883 source certs/Kconfig
1884
1885 endif # if CRYPTO