]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - crypto/Kconfig
Merge tag 'drm-next-2019-09-27' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-focal-kernel.git] / crypto / Kconfig
1 # SPDX-License-Identifier: GPL-2.0
2 #
3 # Generic algorithms support
4 #
5 config XOR_BLOCKS
6 tristate
7
8 #
9 # async_tx api: hardware offloaded memory transfer/transform support
10 #
11 source "crypto/async_tx/Kconfig"
12
13 #
14 # Cryptographic API Configuration
15 #
16 menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21 if CRYPTO
22
23 comment "Crypto core or helper"
24
25 config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35 config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41 config CRYPTO_ALGAPI2
42 tristate
43
44 config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49 config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55 config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60 config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91 config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96 config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105 config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110 config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115 config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122 config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_BLKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131 config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139 if CRYPTO_MANAGER2
140
141 config CRYPTO_MANAGER_DISABLE_TESTS
142 bool "Disable run-time self tests"
143 default y
144 help
145 Disable run-time self tests that normally take place at
146 algorithm registration.
147
148 config CRYPTO_MANAGER_EXTRA_TESTS
149 bool "Enable extra run-time crypto self tests"
150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
151 help
152 Enable extra run-time self tests of registered crypto algorithms,
153 including randomized fuzz tests.
154
155 This is intended for developer use only, as these tests take much
156 longer to run than the normal self tests.
157
158 endif # if CRYPTO_MANAGER2
159
160 config CRYPTO_GF128MUL
161 tristate
162
163 config CRYPTO_NULL
164 tristate "Null algorithms"
165 select CRYPTO_NULL2
166 help
167 These are 'Null' algorithms, used by IPsec, which do nothing.
168
169 config CRYPTO_NULL2
170 tristate
171 select CRYPTO_ALGAPI2
172 select CRYPTO_BLKCIPHER2
173 select CRYPTO_HASH2
174
175 config CRYPTO_PCRYPT
176 tristate "Parallel crypto engine"
177 depends on SMP
178 select PADATA
179 select CRYPTO_MANAGER
180 select CRYPTO_AEAD
181 help
182 This converts an arbitrary crypto algorithm into a parallel
183 algorithm that executes in kernel threads.
184
185 config CRYPTO_CRYPTD
186 tristate "Software async crypto daemon"
187 select CRYPTO_BLKCIPHER
188 select CRYPTO_HASH
189 select CRYPTO_MANAGER
190 help
191 This is a generic software asynchronous crypto daemon that
192 converts an arbitrary synchronous software crypto algorithm
193 into an asynchronous algorithm that executes in a kernel thread.
194
195 config CRYPTO_AUTHENC
196 tristate "Authenc support"
197 select CRYPTO_AEAD
198 select CRYPTO_BLKCIPHER
199 select CRYPTO_MANAGER
200 select CRYPTO_HASH
201 select CRYPTO_NULL
202 help
203 Authenc: Combined mode wrapper for IPsec.
204 This is required for IPSec.
205
206 config CRYPTO_TEST
207 tristate "Testing module"
208 depends on m
209 select CRYPTO_MANAGER
210 help
211 Quick & dirty crypto test module.
212
213 config CRYPTO_SIMD
214 tristate
215 select CRYPTO_CRYPTD
216
217 config CRYPTO_GLUE_HELPER_X86
218 tristate
219 depends on X86
220 select CRYPTO_BLKCIPHER
221
222 config CRYPTO_ENGINE
223 tristate
224
225 comment "Public-key cryptography"
226
227 config CRYPTO_RSA
228 tristate "RSA algorithm"
229 select CRYPTO_AKCIPHER
230 select CRYPTO_MANAGER
231 select MPILIB
232 select ASN1
233 help
234 Generic implementation of the RSA public key algorithm.
235
236 config CRYPTO_DH
237 tristate "Diffie-Hellman algorithm"
238 select CRYPTO_KPP
239 select MPILIB
240 help
241 Generic implementation of the Diffie-Hellman algorithm.
242
243 config CRYPTO_ECC
244 tristate
245
246 config CRYPTO_ECDH
247 tristate "ECDH algorithm"
248 select CRYPTO_ECC
249 select CRYPTO_KPP
250 select CRYPTO_RNG_DEFAULT
251 help
252 Generic implementation of the ECDH algorithm
253
254 config CRYPTO_ECRDSA
255 tristate "EC-RDSA (GOST 34.10) algorithm"
256 select CRYPTO_ECC
257 select CRYPTO_AKCIPHER
258 select CRYPTO_STREEBOG
259 select OID_REGISTRY
260 select ASN1
261 help
262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
264 standard algorithms (called GOST algorithms). Only signature verification
265 is implemented.
266
267 comment "Authenticated Encryption with Associated Data"
268
269 config CRYPTO_CCM
270 tristate "CCM support"
271 select CRYPTO_CTR
272 select CRYPTO_HASH
273 select CRYPTO_AEAD
274 select CRYPTO_MANAGER
275 help
276 Support for Counter with CBC MAC. Required for IPsec.
277
278 config CRYPTO_GCM
279 tristate "GCM/GMAC support"
280 select CRYPTO_CTR
281 select CRYPTO_AEAD
282 select CRYPTO_GHASH
283 select CRYPTO_NULL
284 select CRYPTO_MANAGER
285 help
286 Support for Galois/Counter Mode (GCM) and Galois Message
287 Authentication Code (GMAC). Required for IPSec.
288
289 config CRYPTO_CHACHA20POLY1305
290 tristate "ChaCha20-Poly1305 AEAD support"
291 select CRYPTO_CHACHA20
292 select CRYPTO_POLY1305
293 select CRYPTO_AEAD
294 select CRYPTO_MANAGER
295 help
296 ChaCha20-Poly1305 AEAD support, RFC7539.
297
298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
299 with the Poly1305 authenticator. It is defined in RFC7539 for use in
300 IETF protocols.
301
302 config CRYPTO_AEGIS128
303 tristate "AEGIS-128 AEAD algorithm"
304 select CRYPTO_AEAD
305 select CRYPTO_AES # for AES S-box tables
306 help
307 Support for the AEGIS-128 dedicated AEAD algorithm.
308
309 config CRYPTO_AEGIS128_SIMD
310 bool "Support SIMD acceleration for AEGIS-128"
311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
312 default y
313
314 config CRYPTO_AEGIS128_AESNI_SSE2
315 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
316 depends on X86 && 64BIT
317 select CRYPTO_AEAD
318 select CRYPTO_SIMD
319 help
320 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
321
322 config CRYPTO_SEQIV
323 tristate "Sequence Number IV Generator"
324 select CRYPTO_AEAD
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_NULL
327 select CRYPTO_RNG_DEFAULT
328 select CRYPTO_MANAGER
329 help
330 This IV generator generates an IV based on a sequence number by
331 xoring it with a salt. This algorithm is mainly useful for CTR
332
333 config CRYPTO_ECHAINIV
334 tristate "Encrypted Chain IV Generator"
335 select CRYPTO_AEAD
336 select CRYPTO_NULL
337 select CRYPTO_RNG_DEFAULT
338 select CRYPTO_MANAGER
339 help
340 This IV generator generates an IV based on the encryption of
341 a sequence number xored with a salt. This is the default
342 algorithm for CBC.
343
344 comment "Block modes"
345
346 config CRYPTO_CBC
347 tristate "CBC support"
348 select CRYPTO_BLKCIPHER
349 select CRYPTO_MANAGER
350 help
351 CBC: Cipher Block Chaining mode
352 This block cipher algorithm is required for IPSec.
353
354 config CRYPTO_CFB
355 tristate "CFB support"
356 select CRYPTO_BLKCIPHER
357 select CRYPTO_MANAGER
358 help
359 CFB: Cipher FeedBack mode
360 This block cipher algorithm is required for TPM2 Cryptography.
361
362 config CRYPTO_CTR
363 tristate "CTR support"
364 select CRYPTO_BLKCIPHER
365 select CRYPTO_SEQIV
366 select CRYPTO_MANAGER
367 help
368 CTR: Counter mode
369 This block cipher algorithm is required for IPSec.
370
371 config CRYPTO_CTS
372 tristate "CTS support"
373 select CRYPTO_BLKCIPHER
374 select CRYPTO_MANAGER
375 help
376 CTS: Cipher Text Stealing
377 This is the Cipher Text Stealing mode as described by
378 Section 8 of rfc2040 and referenced by rfc3962
379 (rfc3962 includes errata information in its Appendix A) or
380 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
381 This mode is required for Kerberos gss mechanism support
382 for AES encryption.
383
384 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
385
386 config CRYPTO_ECB
387 tristate "ECB support"
388 select CRYPTO_BLKCIPHER
389 select CRYPTO_MANAGER
390 help
391 ECB: Electronic CodeBook mode
392 This is the simplest block cipher algorithm. It simply encrypts
393 the input block by block.
394
395 config CRYPTO_LRW
396 tristate "LRW support"
397 select CRYPTO_BLKCIPHER
398 select CRYPTO_MANAGER
399 select CRYPTO_GF128MUL
400 help
401 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
402 narrow block cipher mode for dm-crypt. Use it with cipher
403 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
404 The first 128, 192 or 256 bits in the key are used for AES and the
405 rest is used to tie each cipher block to its logical position.
406
407 config CRYPTO_OFB
408 tristate "OFB support"
409 select CRYPTO_BLKCIPHER
410 select CRYPTO_MANAGER
411 help
412 OFB: the Output Feedback mode makes a block cipher into a synchronous
413 stream cipher. It generates keystream blocks, which are then XORed
414 with the plaintext blocks to get the ciphertext. Flipping a bit in the
415 ciphertext produces a flipped bit in the plaintext at the same
416 location. This property allows many error correcting codes to function
417 normally even when applied before encryption.
418
419 config CRYPTO_PCBC
420 tristate "PCBC support"
421 select CRYPTO_BLKCIPHER
422 select CRYPTO_MANAGER
423 help
424 PCBC: Propagating Cipher Block Chaining mode
425 This block cipher algorithm is required for RxRPC.
426
427 config CRYPTO_XTS
428 tristate "XTS support"
429 select CRYPTO_BLKCIPHER
430 select CRYPTO_MANAGER
431 select CRYPTO_ECB
432 help
433 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
434 key size 256, 384 or 512 bits. This implementation currently
435 can't handle a sectorsize which is not a multiple of 16 bytes.
436
437 config CRYPTO_KEYWRAP
438 tristate "Key wrapping support"
439 select CRYPTO_BLKCIPHER
440 select CRYPTO_MANAGER
441 help
442 Support for key wrapping (NIST SP800-38F / RFC3394) without
443 padding.
444
445 config CRYPTO_NHPOLY1305
446 tristate
447 select CRYPTO_HASH
448 select CRYPTO_POLY1305
449
450 config CRYPTO_NHPOLY1305_SSE2
451 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
452 depends on X86 && 64BIT
453 select CRYPTO_NHPOLY1305
454 help
455 SSE2 optimized implementation of the hash function used by the
456 Adiantum encryption mode.
457
458 config CRYPTO_NHPOLY1305_AVX2
459 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
460 depends on X86 && 64BIT
461 select CRYPTO_NHPOLY1305
462 help
463 AVX2 optimized implementation of the hash function used by the
464 Adiantum encryption mode.
465
466 config CRYPTO_ADIANTUM
467 tristate "Adiantum support"
468 select CRYPTO_CHACHA20
469 select CRYPTO_POLY1305
470 select CRYPTO_NHPOLY1305
471 select CRYPTO_MANAGER
472 help
473 Adiantum is a tweakable, length-preserving encryption mode
474 designed for fast and secure disk encryption, especially on
475 CPUs without dedicated crypto instructions. It encrypts
476 each sector using the XChaCha12 stream cipher, two passes of
477 an ε-almost-∆-universal hash function, and an invocation of
478 the AES-256 block cipher on a single 16-byte block. On CPUs
479 without AES instructions, Adiantum is much faster than
480 AES-XTS.
481
482 Adiantum's security is provably reducible to that of its
483 underlying stream and block ciphers, subject to a security
484 bound. Unlike XTS, Adiantum is a true wide-block encryption
485 mode, so it actually provides an even stronger notion of
486 security than XTS, subject to the security bound.
487
488 If unsure, say N.
489
490 config CRYPTO_ESSIV
491 tristate "ESSIV support for block encryption"
492 select CRYPTO_AUTHENC
493 help
494 Encrypted salt-sector initialization vector (ESSIV) is an IV
495 generation method that is used in some cases by fscrypt and/or
496 dm-crypt. It uses the hash of the block encryption key as the
497 symmetric key for a block encryption pass applied to the input
498 IV, making low entropy IV sources more suitable for block
499 encryption.
500
501 This driver implements a crypto API template that can be
502 instantiated either as a skcipher or as a aead (depending on the
503 type of the first template argument), and which defers encryption
504 and decryption requests to the encapsulated cipher after applying
505 ESSIV to the input IV. Note that in the aead case, it is assumed
506 that the keys are presented in the same format used by the authenc
507 template, and that the IV appears at the end of the authenticated
508 associated data (AAD) region (which is how dm-crypt uses it.)
509
510 Note that the use of ESSIV is not recommended for new deployments,
511 and so this only needs to be enabled when interoperability with
512 existing encrypted volumes of filesystems is required, or when
513 building for a particular system that requires it (e.g., when
514 the SoC in question has accelerated CBC but not XTS, making CBC
515 combined with ESSIV the only feasible mode for h/w accelerated
516 block encryption)
517
518 comment "Hash modes"
519
520 config CRYPTO_CMAC
521 tristate "CMAC support"
522 select CRYPTO_HASH
523 select CRYPTO_MANAGER
524 help
525 Cipher-based Message Authentication Code (CMAC) specified by
526 The National Institute of Standards and Technology (NIST).
527
528 https://tools.ietf.org/html/rfc4493
529 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
530
531 config CRYPTO_HMAC
532 tristate "HMAC support"
533 select CRYPTO_HASH
534 select CRYPTO_MANAGER
535 help
536 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
537 This is required for IPSec.
538
539 config CRYPTO_XCBC
540 tristate "XCBC support"
541 select CRYPTO_HASH
542 select CRYPTO_MANAGER
543 help
544 XCBC: Keyed-Hashing with encryption algorithm
545 http://www.ietf.org/rfc/rfc3566.txt
546 http://csrc.nist.gov/encryption/modes/proposedmodes/
547 xcbc-mac/xcbc-mac-spec.pdf
548
549 config CRYPTO_VMAC
550 tristate "VMAC support"
551 select CRYPTO_HASH
552 select CRYPTO_MANAGER
553 help
554 VMAC is a message authentication algorithm designed for
555 very high speed on 64-bit architectures.
556
557 See also:
558 <http://fastcrypto.org/vmac>
559
560 comment "Digest"
561
562 config CRYPTO_CRC32C
563 tristate "CRC32c CRC algorithm"
564 select CRYPTO_HASH
565 select CRC32
566 help
567 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
568 by iSCSI for header and data digests and by others.
569 See Castagnoli93. Module will be crc32c.
570
571 config CRYPTO_CRC32C_INTEL
572 tristate "CRC32c INTEL hardware acceleration"
573 depends on X86
574 select CRYPTO_HASH
575 help
576 In Intel processor with SSE4.2 supported, the processor will
577 support CRC32C implementation using hardware accelerated CRC32
578 instruction. This option will create 'crc32c-intel' module,
579 which will enable any routine to use the CRC32 instruction to
580 gain performance compared with software implementation.
581 Module will be crc32c-intel.
582
583 config CRYPTO_CRC32C_VPMSUM
584 tristate "CRC32c CRC algorithm (powerpc64)"
585 depends on PPC64 && ALTIVEC
586 select CRYPTO_HASH
587 select CRC32
588 help
589 CRC32c algorithm implemented using vector polynomial multiply-sum
590 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
591 and newer processors for improved performance.
592
593
594 config CRYPTO_CRC32C_SPARC64
595 tristate "CRC32c CRC algorithm (SPARC64)"
596 depends on SPARC64
597 select CRYPTO_HASH
598 select CRC32
599 help
600 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
601 when available.
602
603 config CRYPTO_CRC32
604 tristate "CRC32 CRC algorithm"
605 select CRYPTO_HASH
606 select CRC32
607 help
608 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
609 Shash crypto api wrappers to crc32_le function.
610
611 config CRYPTO_CRC32_PCLMUL
612 tristate "CRC32 PCLMULQDQ hardware acceleration"
613 depends on X86
614 select CRYPTO_HASH
615 select CRC32
616 help
617 From Intel Westmere and AMD Bulldozer processor with SSE4.2
618 and PCLMULQDQ supported, the processor will support
619 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
620 instruction. This option will create 'crc32-pclmul' module,
621 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
622 and gain better performance as compared with the table implementation.
623
624 config CRYPTO_CRC32_MIPS
625 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
626 depends on MIPS_CRC_SUPPORT
627 select CRYPTO_HASH
628 help
629 CRC32c and CRC32 CRC algorithms implemented using mips crypto
630 instructions, when available.
631
632
633 config CRYPTO_XXHASH
634 tristate "xxHash hash algorithm"
635 select CRYPTO_HASH
636 select XXHASH
637 help
638 xxHash non-cryptographic hash algorithm. Extremely fast, working at
639 speeds close to RAM limits.
640
641 config CRYPTO_CRCT10DIF
642 tristate "CRCT10DIF algorithm"
643 select CRYPTO_HASH
644 help
645 CRC T10 Data Integrity Field computation is being cast as
646 a crypto transform. This allows for faster crc t10 diff
647 transforms to be used if they are available.
648
649 config CRYPTO_CRCT10DIF_PCLMUL
650 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
651 depends on X86 && 64BIT && CRC_T10DIF
652 select CRYPTO_HASH
653 help
654 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
655 CRC T10 DIF PCLMULQDQ computation can be hardware
656 accelerated PCLMULQDQ instruction. This option will create
657 'crct10dif-pclmul' module, which is faster when computing the
658 crct10dif checksum as compared with the generic table implementation.
659
660 config CRYPTO_CRCT10DIF_VPMSUM
661 tristate "CRC32T10DIF powerpc64 hardware acceleration"
662 depends on PPC64 && ALTIVEC && CRC_T10DIF
663 select CRYPTO_HASH
664 help
665 CRC10T10DIF algorithm implemented using vector polynomial
666 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
667 POWER8 and newer processors for improved performance.
668
669 config CRYPTO_VPMSUM_TESTER
670 tristate "Powerpc64 vpmsum hardware acceleration tester"
671 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
672 help
673 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
674 POWER8 vpmsum instructions.
675 Unless you are testing these algorithms, you don't need this.
676
677 config CRYPTO_GHASH
678 tristate "GHASH hash function"
679 select CRYPTO_GF128MUL
680 select CRYPTO_HASH
681 help
682 GHASH is the hash function used in GCM (Galois/Counter Mode).
683 It is not a general-purpose cryptographic hash function.
684
685 config CRYPTO_POLY1305
686 tristate "Poly1305 authenticator algorithm"
687 select CRYPTO_HASH
688 help
689 Poly1305 authenticator algorithm, RFC7539.
690
691 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
692 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
693 in IETF protocols. This is the portable C implementation of Poly1305.
694
695 config CRYPTO_POLY1305_X86_64
696 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
697 depends on X86 && 64BIT
698 select CRYPTO_POLY1305
699 help
700 Poly1305 authenticator algorithm, RFC7539.
701
702 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
703 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
704 in IETF protocols. This is the x86_64 assembler implementation using SIMD
705 instructions.
706
707 config CRYPTO_MD4
708 tristate "MD4 digest algorithm"
709 select CRYPTO_HASH
710 help
711 MD4 message digest algorithm (RFC1320).
712
713 config CRYPTO_MD5
714 tristate "MD5 digest algorithm"
715 select CRYPTO_HASH
716 help
717 MD5 message digest algorithm (RFC1321).
718
719 config CRYPTO_MD5_OCTEON
720 tristate "MD5 digest algorithm (OCTEON)"
721 depends on CPU_CAVIUM_OCTEON
722 select CRYPTO_MD5
723 select CRYPTO_HASH
724 help
725 MD5 message digest algorithm (RFC1321) implemented
726 using OCTEON crypto instructions, when available.
727
728 config CRYPTO_MD5_PPC
729 tristate "MD5 digest algorithm (PPC)"
730 depends on PPC
731 select CRYPTO_HASH
732 help
733 MD5 message digest algorithm (RFC1321) implemented
734 in PPC assembler.
735
736 config CRYPTO_MD5_SPARC64
737 tristate "MD5 digest algorithm (SPARC64)"
738 depends on SPARC64
739 select CRYPTO_MD5
740 select CRYPTO_HASH
741 help
742 MD5 message digest algorithm (RFC1321) implemented
743 using sparc64 crypto instructions, when available.
744
745 config CRYPTO_MICHAEL_MIC
746 tristate "Michael MIC keyed digest algorithm"
747 select CRYPTO_HASH
748 help
749 Michael MIC is used for message integrity protection in TKIP
750 (IEEE 802.11i). This algorithm is required for TKIP, but it
751 should not be used for other purposes because of the weakness
752 of the algorithm.
753
754 config CRYPTO_RMD128
755 tristate "RIPEMD-128 digest algorithm"
756 select CRYPTO_HASH
757 help
758 RIPEMD-128 (ISO/IEC 10118-3:2004).
759
760 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
761 be used as a secure replacement for RIPEMD. For other use cases,
762 RIPEMD-160 should be used.
763
764 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
765 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766
767 config CRYPTO_RMD160
768 tristate "RIPEMD-160 digest algorithm"
769 select CRYPTO_HASH
770 help
771 RIPEMD-160 (ISO/IEC 10118-3:2004).
772
773 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
774 to be used as a secure replacement for the 128-bit hash functions
775 MD4, MD5 and it's predecessor RIPEMD
776 (not to be confused with RIPEMD-128).
777
778 It's speed is comparable to SHA1 and there are no known attacks
779 against RIPEMD-160.
780
781 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
782 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
783
784 config CRYPTO_RMD256
785 tristate "RIPEMD-256 digest algorithm"
786 select CRYPTO_HASH
787 help
788 RIPEMD-256 is an optional extension of RIPEMD-128 with a
789 256 bit hash. It is intended for applications that require
790 longer hash-results, without needing a larger security level
791 (than RIPEMD-128).
792
793 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
794 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
795
796 config CRYPTO_RMD320
797 tristate "RIPEMD-320 digest algorithm"
798 select CRYPTO_HASH
799 help
800 RIPEMD-320 is an optional extension of RIPEMD-160 with a
801 320 bit hash. It is intended for applications that require
802 longer hash-results, without needing a larger security level
803 (than RIPEMD-160).
804
805 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
806 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
807
808 config CRYPTO_SHA1
809 tristate "SHA1 digest algorithm"
810 select CRYPTO_HASH
811 help
812 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
813
814 config CRYPTO_SHA1_SSSE3
815 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
816 depends on X86 && 64BIT
817 select CRYPTO_SHA1
818 select CRYPTO_HASH
819 help
820 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
821 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
822 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
823 when available.
824
825 config CRYPTO_SHA256_SSSE3
826 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
827 depends on X86 && 64BIT
828 select CRYPTO_SHA256
829 select CRYPTO_HASH
830 help
831 SHA-256 secure hash standard (DFIPS 180-2) implemented
832 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
833 Extensions version 1 (AVX1), or Advanced Vector Extensions
834 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
835 Instructions) when available.
836
837 config CRYPTO_SHA512_SSSE3
838 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
839 depends on X86 && 64BIT
840 select CRYPTO_SHA512
841 select CRYPTO_HASH
842 help
843 SHA-512 secure hash standard (DFIPS 180-2) implemented
844 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
845 Extensions version 1 (AVX1), or Advanced Vector Extensions
846 version 2 (AVX2) instructions, when available.
847
848 config CRYPTO_SHA1_OCTEON
849 tristate "SHA1 digest algorithm (OCTEON)"
850 depends on CPU_CAVIUM_OCTEON
851 select CRYPTO_SHA1
852 select CRYPTO_HASH
853 help
854 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
855 using OCTEON crypto instructions, when available.
856
857 config CRYPTO_SHA1_SPARC64
858 tristate "SHA1 digest algorithm (SPARC64)"
859 depends on SPARC64
860 select CRYPTO_SHA1
861 select CRYPTO_HASH
862 help
863 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
864 using sparc64 crypto instructions, when available.
865
866 config CRYPTO_SHA1_PPC
867 tristate "SHA1 digest algorithm (powerpc)"
868 depends on PPC
869 help
870 This is the powerpc hardware accelerated implementation of the
871 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
872
873 config CRYPTO_SHA1_PPC_SPE
874 tristate "SHA1 digest algorithm (PPC SPE)"
875 depends on PPC && SPE
876 help
877 SHA-1 secure hash standard (DFIPS 180-4) implemented
878 using powerpc SPE SIMD instruction set.
879
880 config CRYPTO_LIB_SHA256
881 tristate
882
883 config CRYPTO_SHA256
884 tristate "SHA224 and SHA256 digest algorithm"
885 select CRYPTO_HASH
886 select CRYPTO_LIB_SHA256
887 help
888 SHA256 secure hash standard (DFIPS 180-2).
889
890 This version of SHA implements a 256 bit hash with 128 bits of
891 security against collision attacks.
892
893 This code also includes SHA-224, a 224 bit hash with 112 bits
894 of security against collision attacks.
895
896 config CRYPTO_SHA256_PPC_SPE
897 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
898 depends on PPC && SPE
899 select CRYPTO_SHA256
900 select CRYPTO_HASH
901 help
902 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
903 implemented using powerpc SPE SIMD instruction set.
904
905 config CRYPTO_SHA256_OCTEON
906 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
907 depends on CPU_CAVIUM_OCTEON
908 select CRYPTO_SHA256
909 select CRYPTO_HASH
910 help
911 SHA-256 secure hash standard (DFIPS 180-2) implemented
912 using OCTEON crypto instructions, when available.
913
914 config CRYPTO_SHA256_SPARC64
915 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
916 depends on SPARC64
917 select CRYPTO_SHA256
918 select CRYPTO_HASH
919 help
920 SHA-256 secure hash standard (DFIPS 180-2) implemented
921 using sparc64 crypto instructions, when available.
922
923 config CRYPTO_SHA512
924 tristate "SHA384 and SHA512 digest algorithms"
925 select CRYPTO_HASH
926 help
927 SHA512 secure hash standard (DFIPS 180-2).
928
929 This version of SHA implements a 512 bit hash with 256 bits of
930 security against collision attacks.
931
932 This code also includes SHA-384, a 384 bit hash with 192 bits
933 of security against collision attacks.
934
935 config CRYPTO_SHA512_OCTEON
936 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
937 depends on CPU_CAVIUM_OCTEON
938 select CRYPTO_SHA512
939 select CRYPTO_HASH
940 help
941 SHA-512 secure hash standard (DFIPS 180-2) implemented
942 using OCTEON crypto instructions, when available.
943
944 config CRYPTO_SHA512_SPARC64
945 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
946 depends on SPARC64
947 select CRYPTO_SHA512
948 select CRYPTO_HASH
949 help
950 SHA-512 secure hash standard (DFIPS 180-2) implemented
951 using sparc64 crypto instructions, when available.
952
953 config CRYPTO_SHA3
954 tristate "SHA3 digest algorithm"
955 select CRYPTO_HASH
956 help
957 SHA-3 secure hash standard (DFIPS 202). It's based on
958 cryptographic sponge function family called Keccak.
959
960 References:
961 http://keccak.noekeon.org/
962
963 config CRYPTO_SM3
964 tristate "SM3 digest algorithm"
965 select CRYPTO_HASH
966 help
967 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
968 It is part of the Chinese Commercial Cryptography suite.
969
970 References:
971 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
972 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
973
974 config CRYPTO_STREEBOG
975 tristate "Streebog Hash Function"
976 select CRYPTO_HASH
977 help
978 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
979 cryptographic standard algorithms (called GOST algorithms).
980 This setting enables two hash algorithms with 256 and 512 bits output.
981
982 References:
983 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
984 https://tools.ietf.org/html/rfc6986
985
986 config CRYPTO_TGR192
987 tristate "Tiger digest algorithms"
988 select CRYPTO_HASH
989 help
990 Tiger hash algorithm 192, 160 and 128-bit hashes
991
992 Tiger is a hash function optimized for 64-bit processors while
993 still having decent performance on 32-bit processors.
994 Tiger was developed by Ross Anderson and Eli Biham.
995
996 See also:
997 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
998
999 config CRYPTO_WP512
1000 tristate "Whirlpool digest algorithms"
1001 select CRYPTO_HASH
1002 help
1003 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1004
1005 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1006 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1007
1008 See also:
1009 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1010
1011 config CRYPTO_GHASH_CLMUL_NI_INTEL
1012 tristate "GHASH hash function (CLMUL-NI accelerated)"
1013 depends on X86 && 64BIT
1014 select CRYPTO_CRYPTD
1015 help
1016 This is the x86_64 CLMUL-NI accelerated implementation of
1017 GHASH, the hash function used in GCM (Galois/Counter mode).
1018
1019 comment "Ciphers"
1020
1021 config CRYPTO_LIB_AES
1022 tristate
1023
1024 config CRYPTO_AES
1025 tristate "AES cipher algorithms"
1026 select CRYPTO_ALGAPI
1027 select CRYPTO_LIB_AES
1028 help
1029 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1030 algorithm.
1031
1032 Rijndael appears to be consistently a very good performer in
1033 both hardware and software across a wide range of computing
1034 environments regardless of its use in feedback or non-feedback
1035 modes. Its key setup time is excellent, and its key agility is
1036 good. Rijndael's very low memory requirements make it very well
1037 suited for restricted-space environments, in which it also
1038 demonstrates excellent performance. Rijndael's operations are
1039 among the easiest to defend against power and timing attacks.
1040
1041 The AES specifies three key sizes: 128, 192 and 256 bits
1042
1043 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1044
1045 config CRYPTO_AES_TI
1046 tristate "Fixed time AES cipher"
1047 select CRYPTO_ALGAPI
1048 select CRYPTO_LIB_AES
1049 help
1050 This is a generic implementation of AES that attempts to eliminate
1051 data dependent latencies as much as possible without affecting
1052 performance too much. It is intended for use by the generic CCM
1053 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1054 solely on encryption (although decryption is supported as well, but
1055 with a more dramatic performance hit)
1056
1057 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1058 8 for decryption), this implementation only uses just two S-boxes of
1059 256 bytes each, and attempts to eliminate data dependent latencies by
1060 prefetching the entire table into the cache at the start of each
1061 block. Interrupts are also disabled to avoid races where cachelines
1062 are evicted when the CPU is interrupted to do something else.
1063
1064 config CRYPTO_AES_NI_INTEL
1065 tristate "AES cipher algorithms (AES-NI)"
1066 depends on X86
1067 select CRYPTO_AEAD
1068 select CRYPTO_LIB_AES
1069 select CRYPTO_ALGAPI
1070 select CRYPTO_BLKCIPHER
1071 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1072 select CRYPTO_SIMD
1073 help
1074 Use Intel AES-NI instructions for AES algorithm.
1075
1076 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1077 algorithm.
1078
1079 Rijndael appears to be consistently a very good performer in
1080 both hardware and software across a wide range of computing
1081 environments regardless of its use in feedback or non-feedback
1082 modes. Its key setup time is excellent, and its key agility is
1083 good. Rijndael's very low memory requirements make it very well
1084 suited for restricted-space environments, in which it also
1085 demonstrates excellent performance. Rijndael's operations are
1086 among the easiest to defend against power and timing attacks.
1087
1088 The AES specifies three key sizes: 128, 192 and 256 bits
1089
1090 See <http://csrc.nist.gov/encryption/aes/> for more information.
1091
1092 In addition to AES cipher algorithm support, the acceleration
1093 for some popular block cipher mode is supported too, including
1094 ECB, CBC, LRW, XTS. The 64 bit version has additional
1095 acceleration for CTR.
1096
1097 config CRYPTO_AES_SPARC64
1098 tristate "AES cipher algorithms (SPARC64)"
1099 depends on SPARC64
1100 select CRYPTO_CRYPTD
1101 select CRYPTO_ALGAPI
1102 help
1103 Use SPARC64 crypto opcodes for AES algorithm.
1104
1105 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1106 algorithm.
1107
1108 Rijndael appears to be consistently a very good performer in
1109 both hardware and software across a wide range of computing
1110 environments regardless of its use in feedback or non-feedback
1111 modes. Its key setup time is excellent, and its key agility is
1112 good. Rijndael's very low memory requirements make it very well
1113 suited for restricted-space environments, in which it also
1114 demonstrates excellent performance. Rijndael's operations are
1115 among the easiest to defend against power and timing attacks.
1116
1117 The AES specifies three key sizes: 128, 192 and 256 bits
1118
1119 See <http://csrc.nist.gov/encryption/aes/> for more information.
1120
1121 In addition to AES cipher algorithm support, the acceleration
1122 for some popular block cipher mode is supported too, including
1123 ECB and CBC.
1124
1125 config CRYPTO_AES_PPC_SPE
1126 tristate "AES cipher algorithms (PPC SPE)"
1127 depends on PPC && SPE
1128 help
1129 AES cipher algorithms (FIPS-197). Additionally the acceleration
1130 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1131 This module should only be used for low power (router) devices
1132 without hardware AES acceleration (e.g. caam crypto). It reduces the
1133 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1134 timining attacks. Nevertheless it might be not as secure as other
1135 architecture specific assembler implementations that work on 1KB
1136 tables or 256 bytes S-boxes.
1137
1138 config CRYPTO_ANUBIS
1139 tristate "Anubis cipher algorithm"
1140 select CRYPTO_ALGAPI
1141 help
1142 Anubis cipher algorithm.
1143
1144 Anubis is a variable key length cipher which can use keys from
1145 128 bits to 320 bits in length. It was evaluated as a entrant
1146 in the NESSIE competition.
1147
1148 See also:
1149 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1150 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1151
1152 config CRYPTO_LIB_ARC4
1153 tristate
1154
1155 config CRYPTO_ARC4
1156 tristate "ARC4 cipher algorithm"
1157 select CRYPTO_BLKCIPHER
1158 select CRYPTO_LIB_ARC4
1159 help
1160 ARC4 cipher algorithm.
1161
1162 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1163 bits in length. This algorithm is required for driver-based
1164 WEP, but it should not be for other purposes because of the
1165 weakness of the algorithm.
1166
1167 config CRYPTO_BLOWFISH
1168 tristate "Blowfish cipher algorithm"
1169 select CRYPTO_ALGAPI
1170 select CRYPTO_BLOWFISH_COMMON
1171 help
1172 Blowfish cipher algorithm, by Bruce Schneier.
1173
1174 This is a variable key length cipher which can use keys from 32
1175 bits to 448 bits in length. It's fast, simple and specifically
1176 designed for use on "large microprocessors".
1177
1178 See also:
1179 <http://www.schneier.com/blowfish.html>
1180
1181 config CRYPTO_BLOWFISH_COMMON
1182 tristate
1183 help
1184 Common parts of the Blowfish cipher algorithm shared by the
1185 generic c and the assembler implementations.
1186
1187 See also:
1188 <http://www.schneier.com/blowfish.html>
1189
1190 config CRYPTO_BLOWFISH_X86_64
1191 tristate "Blowfish cipher algorithm (x86_64)"
1192 depends on X86 && 64BIT
1193 select CRYPTO_BLKCIPHER
1194 select CRYPTO_BLOWFISH_COMMON
1195 help
1196 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1197
1198 This is a variable key length cipher which can use keys from 32
1199 bits to 448 bits in length. It's fast, simple and specifically
1200 designed for use on "large microprocessors".
1201
1202 See also:
1203 <http://www.schneier.com/blowfish.html>
1204
1205 config CRYPTO_CAMELLIA
1206 tristate "Camellia cipher algorithms"
1207 depends on CRYPTO
1208 select CRYPTO_ALGAPI
1209 help
1210 Camellia cipher algorithms module.
1211
1212 Camellia is a symmetric key block cipher developed jointly
1213 at NTT and Mitsubishi Electric Corporation.
1214
1215 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1216
1217 See also:
1218 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1219
1220 config CRYPTO_CAMELLIA_X86_64
1221 tristate "Camellia cipher algorithm (x86_64)"
1222 depends on X86 && 64BIT
1223 depends on CRYPTO
1224 select CRYPTO_BLKCIPHER
1225 select CRYPTO_GLUE_HELPER_X86
1226 help
1227 Camellia cipher algorithm module (x86_64).
1228
1229 Camellia is a symmetric key block cipher developed jointly
1230 at NTT and Mitsubishi Electric Corporation.
1231
1232 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1233
1234 See also:
1235 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1236
1237 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1238 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1239 depends on X86 && 64BIT
1240 depends on CRYPTO
1241 select CRYPTO_BLKCIPHER
1242 select CRYPTO_CAMELLIA_X86_64
1243 select CRYPTO_GLUE_HELPER_X86
1244 select CRYPTO_SIMD
1245 select CRYPTO_XTS
1246 help
1247 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1248
1249 Camellia is a symmetric key block cipher developed jointly
1250 at NTT and Mitsubishi Electric Corporation.
1251
1252 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1253
1254 See also:
1255 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1256
1257 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1258 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1259 depends on X86 && 64BIT
1260 depends on CRYPTO
1261 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1262 help
1263 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1264
1265 Camellia is a symmetric key block cipher developed jointly
1266 at NTT and Mitsubishi Electric Corporation.
1267
1268 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1269
1270 See also:
1271 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1272
1273 config CRYPTO_CAMELLIA_SPARC64
1274 tristate "Camellia cipher algorithm (SPARC64)"
1275 depends on SPARC64
1276 depends on CRYPTO
1277 select CRYPTO_ALGAPI
1278 help
1279 Camellia cipher algorithm module (SPARC64).
1280
1281 Camellia is a symmetric key block cipher developed jointly
1282 at NTT and Mitsubishi Electric Corporation.
1283
1284 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1285
1286 See also:
1287 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1288
1289 config CRYPTO_CAST_COMMON
1290 tristate
1291 help
1292 Common parts of the CAST cipher algorithms shared by the
1293 generic c and the assembler implementations.
1294
1295 config CRYPTO_CAST5
1296 tristate "CAST5 (CAST-128) cipher algorithm"
1297 select CRYPTO_ALGAPI
1298 select CRYPTO_CAST_COMMON
1299 help
1300 The CAST5 encryption algorithm (synonymous with CAST-128) is
1301 described in RFC2144.
1302
1303 config CRYPTO_CAST5_AVX_X86_64
1304 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1305 depends on X86 && 64BIT
1306 select CRYPTO_BLKCIPHER
1307 select CRYPTO_CAST5
1308 select CRYPTO_CAST_COMMON
1309 select CRYPTO_SIMD
1310 help
1311 The CAST5 encryption algorithm (synonymous with CAST-128) is
1312 described in RFC2144.
1313
1314 This module provides the Cast5 cipher algorithm that processes
1315 sixteen blocks parallel using the AVX instruction set.
1316
1317 config CRYPTO_CAST6
1318 tristate "CAST6 (CAST-256) cipher algorithm"
1319 select CRYPTO_ALGAPI
1320 select CRYPTO_CAST_COMMON
1321 help
1322 The CAST6 encryption algorithm (synonymous with CAST-256) is
1323 described in RFC2612.
1324
1325 config CRYPTO_CAST6_AVX_X86_64
1326 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1327 depends on X86 && 64BIT
1328 select CRYPTO_BLKCIPHER
1329 select CRYPTO_CAST6
1330 select CRYPTO_CAST_COMMON
1331 select CRYPTO_GLUE_HELPER_X86
1332 select CRYPTO_SIMD
1333 select CRYPTO_XTS
1334 help
1335 The CAST6 encryption algorithm (synonymous with CAST-256) is
1336 described in RFC2612.
1337
1338 This module provides the Cast6 cipher algorithm that processes
1339 eight blocks parallel using the AVX instruction set.
1340
1341 config CRYPTO_LIB_DES
1342 tristate
1343
1344 config CRYPTO_DES
1345 tristate "DES and Triple DES EDE cipher algorithms"
1346 select CRYPTO_ALGAPI
1347 select CRYPTO_LIB_DES
1348 help
1349 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1350
1351 config CRYPTO_DES_SPARC64
1352 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1353 depends on SPARC64
1354 select CRYPTO_ALGAPI
1355 select CRYPTO_LIB_DES
1356 help
1357 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1358 optimized using SPARC64 crypto opcodes.
1359
1360 config CRYPTO_DES3_EDE_X86_64
1361 tristate "Triple DES EDE cipher algorithm (x86-64)"
1362 depends on X86 && 64BIT
1363 select CRYPTO_BLKCIPHER
1364 select CRYPTO_LIB_DES
1365 help
1366 Triple DES EDE (FIPS 46-3) algorithm.
1367
1368 This module provides implementation of the Triple DES EDE cipher
1369 algorithm that is optimized for x86-64 processors. Two versions of
1370 algorithm are provided; regular processing one input block and
1371 one that processes three blocks parallel.
1372
1373 config CRYPTO_FCRYPT
1374 tristate "FCrypt cipher algorithm"
1375 select CRYPTO_ALGAPI
1376 select CRYPTO_BLKCIPHER
1377 help
1378 FCrypt algorithm used by RxRPC.
1379
1380 config CRYPTO_KHAZAD
1381 tristate "Khazad cipher algorithm"
1382 select CRYPTO_ALGAPI
1383 help
1384 Khazad cipher algorithm.
1385
1386 Khazad was a finalist in the initial NESSIE competition. It is
1387 an algorithm optimized for 64-bit processors with good performance
1388 on 32-bit processors. Khazad uses an 128 bit key size.
1389
1390 See also:
1391 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1392
1393 config CRYPTO_SALSA20
1394 tristate "Salsa20 stream cipher algorithm"
1395 select CRYPTO_BLKCIPHER
1396 help
1397 Salsa20 stream cipher algorithm.
1398
1399 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1400 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1401
1402 The Salsa20 stream cipher algorithm is designed by Daniel J.
1403 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1404
1405 config CRYPTO_CHACHA20
1406 tristate "ChaCha stream cipher algorithms"
1407 select CRYPTO_BLKCIPHER
1408 help
1409 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1410
1411 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1412 Bernstein and further specified in RFC7539 for use in IETF protocols.
1413 This is the portable C implementation of ChaCha20. See also:
1414 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1415
1416 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1417 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1418 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1419 while provably retaining ChaCha20's security. See also:
1420 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1421
1422 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1423 reduced security margin but increased performance. It can be needed
1424 in some performance-sensitive scenarios.
1425
1426 config CRYPTO_CHACHA20_X86_64
1427 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1428 depends on X86 && 64BIT
1429 select CRYPTO_BLKCIPHER
1430 select CRYPTO_CHACHA20
1431 help
1432 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1433 XChaCha20, and XChaCha12 stream ciphers.
1434
1435 config CRYPTO_SEED
1436 tristate "SEED cipher algorithm"
1437 select CRYPTO_ALGAPI
1438 help
1439 SEED cipher algorithm (RFC4269).
1440
1441 SEED is a 128-bit symmetric key block cipher that has been
1442 developed by KISA (Korea Information Security Agency) as a
1443 national standard encryption algorithm of the Republic of Korea.
1444 It is a 16 round block cipher with the key size of 128 bit.
1445
1446 See also:
1447 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1448
1449 config CRYPTO_SERPENT
1450 tristate "Serpent cipher algorithm"
1451 select CRYPTO_ALGAPI
1452 help
1453 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1454
1455 Keys are allowed to be from 0 to 256 bits in length, in steps
1456 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1457 variant of Serpent for compatibility with old kerneli.org code.
1458
1459 See also:
1460 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1461
1462 config CRYPTO_SERPENT_SSE2_X86_64
1463 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1464 depends on X86 && 64BIT
1465 select CRYPTO_BLKCIPHER
1466 select CRYPTO_GLUE_HELPER_X86
1467 select CRYPTO_SERPENT
1468 select CRYPTO_SIMD
1469 help
1470 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1471
1472 Keys are allowed to be from 0 to 256 bits in length, in steps
1473 of 8 bits.
1474
1475 This module provides Serpent cipher algorithm that processes eight
1476 blocks parallel using SSE2 instruction set.
1477
1478 See also:
1479 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1480
1481 config CRYPTO_SERPENT_SSE2_586
1482 tristate "Serpent cipher algorithm (i586/SSE2)"
1483 depends on X86 && !64BIT
1484 select CRYPTO_BLKCIPHER
1485 select CRYPTO_GLUE_HELPER_X86
1486 select CRYPTO_SERPENT
1487 select CRYPTO_SIMD
1488 help
1489 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1490
1491 Keys are allowed to be from 0 to 256 bits in length, in steps
1492 of 8 bits.
1493
1494 This module provides Serpent cipher algorithm that processes four
1495 blocks parallel using SSE2 instruction set.
1496
1497 See also:
1498 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1499
1500 config CRYPTO_SERPENT_AVX_X86_64
1501 tristate "Serpent cipher algorithm (x86_64/AVX)"
1502 depends on X86 && 64BIT
1503 select CRYPTO_BLKCIPHER
1504 select CRYPTO_GLUE_HELPER_X86
1505 select CRYPTO_SERPENT
1506 select CRYPTO_SIMD
1507 select CRYPTO_XTS
1508 help
1509 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510
1511 Keys are allowed to be from 0 to 256 bits in length, in steps
1512 of 8 bits.
1513
1514 This module provides the Serpent cipher algorithm that processes
1515 eight blocks parallel using the AVX instruction set.
1516
1517 See also:
1518 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519
1520 config CRYPTO_SERPENT_AVX2_X86_64
1521 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1522 depends on X86 && 64BIT
1523 select CRYPTO_SERPENT_AVX_X86_64
1524 help
1525 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1526
1527 Keys are allowed to be from 0 to 256 bits in length, in steps
1528 of 8 bits.
1529
1530 This module provides Serpent cipher algorithm that processes 16
1531 blocks parallel using AVX2 instruction set.
1532
1533 See also:
1534 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1535
1536 config CRYPTO_SM4
1537 tristate "SM4 cipher algorithm"
1538 select CRYPTO_ALGAPI
1539 help
1540 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1541
1542 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1543 Organization of State Commercial Administration of China (OSCCA)
1544 as an authorized cryptographic algorithms for the use within China.
1545
1546 SMS4 was originally created for use in protecting wireless
1547 networks, and is mandated in the Chinese National Standard for
1548 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1549 (GB.15629.11-2003).
1550
1551 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1552 standardized through TC 260 of the Standardization Administration
1553 of the People's Republic of China (SAC).
1554
1555 The input, output, and key of SMS4 are each 128 bits.
1556
1557 See also: <https://eprint.iacr.org/2008/329.pdf>
1558
1559 If unsure, say N.
1560
1561 config CRYPTO_TEA
1562 tristate "TEA, XTEA and XETA cipher algorithms"
1563 select CRYPTO_ALGAPI
1564 help
1565 TEA cipher algorithm.
1566
1567 Tiny Encryption Algorithm is a simple cipher that uses
1568 many rounds for security. It is very fast and uses
1569 little memory.
1570
1571 Xtendend Tiny Encryption Algorithm is a modification to
1572 the TEA algorithm to address a potential key weakness
1573 in the TEA algorithm.
1574
1575 Xtendend Encryption Tiny Algorithm is a mis-implementation
1576 of the XTEA algorithm for compatibility purposes.
1577
1578 config CRYPTO_TWOFISH
1579 tristate "Twofish cipher algorithm"
1580 select CRYPTO_ALGAPI
1581 select CRYPTO_TWOFISH_COMMON
1582 help
1583 Twofish cipher algorithm.
1584
1585 Twofish was submitted as an AES (Advanced Encryption Standard)
1586 candidate cipher by researchers at CounterPane Systems. It is a
1587 16 round block cipher supporting key sizes of 128, 192, and 256
1588 bits.
1589
1590 See also:
1591 <http://www.schneier.com/twofish.html>
1592
1593 config CRYPTO_TWOFISH_COMMON
1594 tristate
1595 help
1596 Common parts of the Twofish cipher algorithm shared by the
1597 generic c and the assembler implementations.
1598
1599 config CRYPTO_TWOFISH_586
1600 tristate "Twofish cipher algorithms (i586)"
1601 depends on (X86 || UML_X86) && !64BIT
1602 select CRYPTO_ALGAPI
1603 select CRYPTO_TWOFISH_COMMON
1604 help
1605 Twofish cipher algorithm.
1606
1607 Twofish was submitted as an AES (Advanced Encryption Standard)
1608 candidate cipher by researchers at CounterPane Systems. It is a
1609 16 round block cipher supporting key sizes of 128, 192, and 256
1610 bits.
1611
1612 See also:
1613 <http://www.schneier.com/twofish.html>
1614
1615 config CRYPTO_TWOFISH_X86_64
1616 tristate "Twofish cipher algorithm (x86_64)"
1617 depends on (X86 || UML_X86) && 64BIT
1618 select CRYPTO_ALGAPI
1619 select CRYPTO_TWOFISH_COMMON
1620 help
1621 Twofish cipher algorithm (x86_64).
1622
1623 Twofish was submitted as an AES (Advanced Encryption Standard)
1624 candidate cipher by researchers at CounterPane Systems. It is a
1625 16 round block cipher supporting key sizes of 128, 192, and 256
1626 bits.
1627
1628 See also:
1629 <http://www.schneier.com/twofish.html>
1630
1631 config CRYPTO_TWOFISH_X86_64_3WAY
1632 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1633 depends on X86 && 64BIT
1634 select CRYPTO_BLKCIPHER
1635 select CRYPTO_TWOFISH_COMMON
1636 select CRYPTO_TWOFISH_X86_64
1637 select CRYPTO_GLUE_HELPER_X86
1638 help
1639 Twofish cipher algorithm (x86_64, 3-way parallel).
1640
1641 Twofish was submitted as an AES (Advanced Encryption Standard)
1642 candidate cipher by researchers at CounterPane Systems. It is a
1643 16 round block cipher supporting key sizes of 128, 192, and 256
1644 bits.
1645
1646 This module provides Twofish cipher algorithm that processes three
1647 blocks parallel, utilizing resources of out-of-order CPUs better.
1648
1649 See also:
1650 <http://www.schneier.com/twofish.html>
1651
1652 config CRYPTO_TWOFISH_AVX_X86_64
1653 tristate "Twofish cipher algorithm (x86_64/AVX)"
1654 depends on X86 && 64BIT
1655 select CRYPTO_BLKCIPHER
1656 select CRYPTO_GLUE_HELPER_X86
1657 select CRYPTO_SIMD
1658 select CRYPTO_TWOFISH_COMMON
1659 select CRYPTO_TWOFISH_X86_64
1660 select CRYPTO_TWOFISH_X86_64_3WAY
1661 help
1662 Twofish cipher algorithm (x86_64/AVX).
1663
1664 Twofish was submitted as an AES (Advanced Encryption Standard)
1665 candidate cipher by researchers at CounterPane Systems. It is a
1666 16 round block cipher supporting key sizes of 128, 192, and 256
1667 bits.
1668
1669 This module provides the Twofish cipher algorithm that processes
1670 eight blocks parallel using the AVX Instruction Set.
1671
1672 See also:
1673 <http://www.schneier.com/twofish.html>
1674
1675 comment "Compression"
1676
1677 config CRYPTO_DEFLATE
1678 tristate "Deflate compression algorithm"
1679 select CRYPTO_ALGAPI
1680 select CRYPTO_ACOMP2
1681 select ZLIB_INFLATE
1682 select ZLIB_DEFLATE
1683 help
1684 This is the Deflate algorithm (RFC1951), specified for use in
1685 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1686
1687 You will most probably want this if using IPSec.
1688
1689 config CRYPTO_LZO
1690 tristate "LZO compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZO_COMPRESS
1694 select LZO_DECOMPRESS
1695 help
1696 This is the LZO algorithm.
1697
1698 config CRYPTO_842
1699 tristate "842 compression algorithm"
1700 select CRYPTO_ALGAPI
1701 select CRYPTO_ACOMP2
1702 select 842_COMPRESS
1703 select 842_DECOMPRESS
1704 help
1705 This is the 842 algorithm.
1706
1707 config CRYPTO_LZ4
1708 tristate "LZ4 compression algorithm"
1709 select CRYPTO_ALGAPI
1710 select CRYPTO_ACOMP2
1711 select LZ4_COMPRESS
1712 select LZ4_DECOMPRESS
1713 help
1714 This is the LZ4 algorithm.
1715
1716 config CRYPTO_LZ4HC
1717 tristate "LZ4HC compression algorithm"
1718 select CRYPTO_ALGAPI
1719 select CRYPTO_ACOMP2
1720 select LZ4HC_COMPRESS
1721 select LZ4_DECOMPRESS
1722 help
1723 This is the LZ4 high compression mode algorithm.
1724
1725 config CRYPTO_ZSTD
1726 tristate "Zstd compression algorithm"
1727 select CRYPTO_ALGAPI
1728 select CRYPTO_ACOMP2
1729 select ZSTD_COMPRESS
1730 select ZSTD_DECOMPRESS
1731 help
1732 This is the zstd algorithm.
1733
1734 comment "Random Number Generation"
1735
1736 config CRYPTO_ANSI_CPRNG
1737 tristate "Pseudo Random Number Generation for Cryptographic modules"
1738 select CRYPTO_AES
1739 select CRYPTO_RNG
1740 help
1741 This option enables the generic pseudo random number generator
1742 for cryptographic modules. Uses the Algorithm specified in
1743 ANSI X9.31 A.2.4. Note that this option must be enabled if
1744 CRYPTO_FIPS is selected
1745
1746 menuconfig CRYPTO_DRBG_MENU
1747 tristate "NIST SP800-90A DRBG"
1748 help
1749 NIST SP800-90A compliant DRBG. In the following submenu, one or
1750 more of the DRBG types must be selected.
1751
1752 if CRYPTO_DRBG_MENU
1753
1754 config CRYPTO_DRBG_HMAC
1755 bool
1756 default y
1757 select CRYPTO_HMAC
1758 select CRYPTO_SHA256
1759
1760 config CRYPTO_DRBG_HASH
1761 bool "Enable Hash DRBG"
1762 select CRYPTO_SHA256
1763 help
1764 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1765
1766 config CRYPTO_DRBG_CTR
1767 bool "Enable CTR DRBG"
1768 select CRYPTO_AES
1769 depends on CRYPTO_CTR
1770 help
1771 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1772
1773 config CRYPTO_DRBG
1774 tristate
1775 default CRYPTO_DRBG_MENU
1776 select CRYPTO_RNG
1777 select CRYPTO_JITTERENTROPY
1778
1779 endif # if CRYPTO_DRBG_MENU
1780
1781 config CRYPTO_JITTERENTROPY
1782 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1783 select CRYPTO_RNG
1784 help
1785 The Jitterentropy RNG is a noise that is intended
1786 to provide seed to another RNG. The RNG does not
1787 perform any cryptographic whitening of the generated
1788 random numbers. This Jitterentropy RNG registers with
1789 the kernel crypto API and can be used by any caller.
1790
1791 config CRYPTO_USER_API
1792 tristate
1793
1794 config CRYPTO_USER_API_HASH
1795 tristate "User-space interface for hash algorithms"
1796 depends on NET
1797 select CRYPTO_HASH
1798 select CRYPTO_USER_API
1799 help
1800 This option enables the user-spaces interface for hash
1801 algorithms.
1802
1803 config CRYPTO_USER_API_SKCIPHER
1804 tristate "User-space interface for symmetric key cipher algorithms"
1805 depends on NET
1806 select CRYPTO_BLKCIPHER
1807 select CRYPTO_USER_API
1808 help
1809 This option enables the user-spaces interface for symmetric
1810 key cipher algorithms.
1811
1812 config CRYPTO_USER_API_RNG
1813 tristate "User-space interface for random number generator algorithms"
1814 depends on NET
1815 select CRYPTO_RNG
1816 select CRYPTO_USER_API
1817 help
1818 This option enables the user-spaces interface for random
1819 number generator algorithms.
1820
1821 config CRYPTO_USER_API_AEAD
1822 tristate "User-space interface for AEAD cipher algorithms"
1823 depends on NET
1824 select CRYPTO_AEAD
1825 select CRYPTO_BLKCIPHER
1826 select CRYPTO_NULL
1827 select CRYPTO_USER_API
1828 help
1829 This option enables the user-spaces interface for AEAD
1830 cipher algorithms.
1831
1832 config CRYPTO_STATS
1833 bool "Crypto usage statistics for User-space"
1834 depends on CRYPTO_USER
1835 help
1836 This option enables the gathering of crypto stats.
1837 This will collect:
1838 - encrypt/decrypt size and numbers of symmeric operations
1839 - compress/decompress size and numbers of compress operations
1840 - size and numbers of hash operations
1841 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1842 - generate/seed numbers for rng operations
1843
1844 config CRYPTO_HASH_INFO
1845 bool
1846
1847 source "drivers/crypto/Kconfig"
1848 source "crypto/asymmetric_keys/Kconfig"
1849 source "certs/Kconfig"
1850
1851 endif # if CRYPTO