1 // SPDX-License-Identifier: GPL-2.0
3 * Adiantum length-preserving encryption mode
5 * Copyright 2018 Google LLC
9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10 * and secure disk encryption, especially on CPUs without dedicated crypto
11 * instructions. Adiantum encrypts each sector using the XChaCha12 stream
12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14 * 16-byte block. See the paper for details:
16 * Adiantum: length-preserving encryption for entry-level processors
17 * (https://eprint.iacr.org/2018/720.pdf)
19 * For flexibility, this implementation also allows other ciphers:
21 * - Stream cipher: XChaCha12 or XChaCha20
22 * - Block cipher: any with a 128-bit block size and 256-bit key
24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
25 * HPolyC is not supported. This is because Adiantum is ~20% faster than HPolyC
26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
27 * formally defined to take two inputs (tweak, message) which makes it difficult
28 * to wrap with the crypto_shash API. Rather, some details need to be handled
29 * here. Nevertheless, if needed in the future, support for other ε-∆U hash
30 * functions could be added here.
33 #include <crypto/b128ops.h>
34 #include <crypto/chacha.h>
35 #include <crypto/internal/hash.h>
36 #include <crypto/internal/poly1305.h>
37 #include <crypto/internal/skcipher.h>
38 #include <crypto/nhpoly1305.h>
39 #include <crypto/scatterwalk.h>
40 #include <linux/module.h>
43 * Size of right-hand part of input data, in bytes; also the size of the block
44 * cipher's block size and the hash function's output.
46 #define BLOCKCIPHER_BLOCK_SIZE 16
48 /* Size of the block cipher key (K_E) in bytes */
49 #define BLOCKCIPHER_KEY_SIZE 32
51 /* Size of the hash key (K_H) in bytes */
52 #define HASH_KEY_SIZE (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
55 * The specification allows variable-length tweaks, but Linux's crypto API
56 * currently only allows algorithms to support a single length. The "natural"
57 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
58 * the best performance. But longer tweaks are useful for fscrypt, to avoid
59 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes.
63 struct adiantum_instance_ctx
{
64 struct crypto_skcipher_spawn streamcipher_spawn
;
65 struct crypto_cipher_spawn blockcipher_spawn
;
66 struct crypto_shash_spawn hash_spawn
;
69 struct adiantum_tfm_ctx
{
70 struct crypto_skcipher
*streamcipher
;
71 struct crypto_cipher
*blockcipher
;
72 struct crypto_shash
*hash
;
73 struct poly1305_core_key header_hash_key
;
76 struct adiantum_request_ctx
{
79 * Buffer for right-hand part of data, i.e.
81 * P_L => P_M => C_M => C_R when encrypting, or
82 * C_R => C_M => P_M => P_L when decrypting.
84 * Also used to build the IV for the stream cipher.
87 u8 bytes
[XCHACHA_IV_SIZE
];
88 __le32 words
[XCHACHA_IV_SIZE
/ sizeof(__le32
)];
89 le128 bignum
; /* interpret as element of Z/(2^{128}Z) */
92 bool enc
; /* true if encrypting, false if decrypting */
95 * The result of the Poly1305 ε-∆U hash function applied to
96 * (bulk length, tweak)
100 /* Sub-requests, must be last */
102 struct shash_desc hash_desc
;
103 struct skcipher_request streamcipher_req
;
108 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
109 * hash key K_H as follows:
111 * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
113 * Note that this denotes using bits from the XChaCha keystream, which here we
114 * get indirectly by encrypting a buffer containing all 0's.
116 static int adiantum_setkey(struct crypto_skcipher
*tfm
, const u8
*key
,
119 struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
121 u8 iv
[XCHACHA_IV_SIZE
];
122 u8 derived_keys
[BLOCKCIPHER_KEY_SIZE
+ HASH_KEY_SIZE
];
123 struct scatterlist sg
;
124 struct crypto_wait wait
;
125 struct skcipher_request req
; /* must be last */
130 /* Set the stream cipher key (K_S) */
131 crypto_skcipher_clear_flags(tctx
->streamcipher
, CRYPTO_TFM_REQ_MASK
);
132 crypto_skcipher_set_flags(tctx
->streamcipher
,
133 crypto_skcipher_get_flags(tfm
) &
134 CRYPTO_TFM_REQ_MASK
);
135 err
= crypto_skcipher_setkey(tctx
->streamcipher
, key
, keylen
);
139 /* Derive the subkeys */
140 data
= kzalloc(sizeof(*data
) +
141 crypto_skcipher_reqsize(tctx
->streamcipher
), GFP_KERNEL
);
145 sg_init_one(&data
->sg
, data
->derived_keys
, sizeof(data
->derived_keys
));
146 crypto_init_wait(&data
->wait
);
147 skcipher_request_set_tfm(&data
->req
, tctx
->streamcipher
);
148 skcipher_request_set_callback(&data
->req
, CRYPTO_TFM_REQ_MAY_SLEEP
|
149 CRYPTO_TFM_REQ_MAY_BACKLOG
,
150 crypto_req_done
, &data
->wait
);
151 skcipher_request_set_crypt(&data
->req
, &data
->sg
, &data
->sg
,
152 sizeof(data
->derived_keys
), data
->iv
);
153 err
= crypto_wait_req(crypto_skcipher_encrypt(&data
->req
), &data
->wait
);
156 keyp
= data
->derived_keys
;
158 /* Set the block cipher key (K_E) */
159 crypto_cipher_clear_flags(tctx
->blockcipher
, CRYPTO_TFM_REQ_MASK
);
160 crypto_cipher_set_flags(tctx
->blockcipher
,
161 crypto_skcipher_get_flags(tfm
) &
162 CRYPTO_TFM_REQ_MASK
);
163 err
= crypto_cipher_setkey(tctx
->blockcipher
, keyp
,
164 BLOCKCIPHER_KEY_SIZE
);
167 keyp
+= BLOCKCIPHER_KEY_SIZE
;
169 /* Set the hash key (K_H) */
170 poly1305_core_setkey(&tctx
->header_hash_key
, keyp
);
171 keyp
+= POLY1305_BLOCK_SIZE
;
173 crypto_shash_clear_flags(tctx
->hash
, CRYPTO_TFM_REQ_MASK
);
174 crypto_shash_set_flags(tctx
->hash
, crypto_skcipher_get_flags(tfm
) &
175 CRYPTO_TFM_REQ_MASK
);
176 err
= crypto_shash_setkey(tctx
->hash
, keyp
, NHPOLY1305_KEY_SIZE
);
177 keyp
+= NHPOLY1305_KEY_SIZE
;
178 WARN_ON(keyp
!= &data
->derived_keys
[ARRAY_SIZE(data
->derived_keys
)]);
184 /* Addition in Z/(2^{128}Z) */
185 static inline void le128_add(le128
*r
, const le128
*v1
, const le128
*v2
)
187 u64 x
= le64_to_cpu(v1
->b
);
188 u64 y
= le64_to_cpu(v2
->b
);
190 r
->b
= cpu_to_le64(x
+ y
);
191 r
->a
= cpu_to_le64(le64_to_cpu(v1
->a
) + le64_to_cpu(v2
->a
) +
195 /* Subtraction in Z/(2^{128}Z) */
196 static inline void le128_sub(le128
*r
, const le128
*v1
, const le128
*v2
)
198 u64 x
= le64_to_cpu(v1
->b
);
199 u64 y
= le64_to_cpu(v2
->b
);
201 r
->b
= cpu_to_le64(x
- y
);
202 r
->a
= cpu_to_le64(le64_to_cpu(v1
->a
) - le64_to_cpu(v2
->a
) -
207 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
208 * result to rctx->header_hash. This is the calculation
210 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
212 * from the procedure in section 6.4 of the Adiantum paper. The resulting value
213 * is reused in both the first and second hash steps. Specifically, it's added
214 * to the result of an independently keyed ε-∆U hash function (for equal length
215 * inputs only) taken over the left-hand part (the "bulk") of the message, to
216 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
218 static void adiantum_hash_header(struct skcipher_request
*req
)
220 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
221 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
222 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
223 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
228 .message_bits
= cpu_to_le64((u64
)bulk_len
* 8)
230 struct poly1305_state state
;
232 poly1305_core_init(&state
);
234 BUILD_BUG_ON(sizeof(header
) % POLY1305_BLOCK_SIZE
!= 0);
235 poly1305_core_blocks(&state
, &tctx
->header_hash_key
,
236 &header
, sizeof(header
) / POLY1305_BLOCK_SIZE
, 1);
238 BUILD_BUG_ON(TWEAK_SIZE
% POLY1305_BLOCK_SIZE
!= 0);
239 poly1305_core_blocks(&state
, &tctx
->header_hash_key
, req
->iv
,
240 TWEAK_SIZE
/ POLY1305_BLOCK_SIZE
, 1);
242 poly1305_core_emit(&state
, NULL
, &rctx
->header_hash
);
245 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
246 static int adiantum_hash_message(struct skcipher_request
*req
,
247 struct scatterlist
*sgl
, le128
*digest
)
249 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
250 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
251 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
252 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
253 struct shash_desc
*hash_desc
= &rctx
->u
.hash_desc
;
254 struct sg_mapping_iter miter
;
258 hash_desc
->tfm
= tctx
->hash
;
260 err
= crypto_shash_init(hash_desc
);
264 sg_miter_start(&miter
, sgl
, sg_nents(sgl
),
265 SG_MITER_FROM_SG
| SG_MITER_ATOMIC
);
266 for (i
= 0; i
< bulk_len
; i
+= n
) {
267 sg_miter_next(&miter
);
268 n
= min_t(unsigned int, miter
.length
, bulk_len
- i
);
269 err
= crypto_shash_update(hash_desc
, miter
.addr
, n
);
273 sg_miter_stop(&miter
);
277 return crypto_shash_final(hash_desc
, (u8
*)digest
);
280 /* Continue Adiantum encryption/decryption after the stream cipher step */
281 static int adiantum_finish(struct skcipher_request
*req
)
283 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
284 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
285 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
286 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
290 /* If decrypting, decrypt C_M with the block cipher to get P_M */
292 crypto_cipher_decrypt_one(tctx
->blockcipher
, rctx
->rbuf
.bytes
,
297 * enc: C_R = C_M - H_{K_H}(T, C_L)
298 * dec: P_R = P_M - H_{K_H}(T, P_L)
300 err
= adiantum_hash_message(req
, req
->dst
, &digest
);
303 le128_add(&digest
, &digest
, &rctx
->header_hash
);
304 le128_sub(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &digest
);
305 scatterwalk_map_and_copy(&rctx
->rbuf
.bignum
, req
->dst
,
306 bulk_len
, BLOCKCIPHER_BLOCK_SIZE
, 1);
310 static void adiantum_streamcipher_done(struct crypto_async_request
*areq
,
313 struct skcipher_request
*req
= areq
->data
;
316 err
= adiantum_finish(req
);
318 skcipher_request_complete(req
, err
);
321 static int adiantum_crypt(struct skcipher_request
*req
, bool enc
)
323 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
324 const struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
325 struct adiantum_request_ctx
*rctx
= skcipher_request_ctx(req
);
326 const unsigned int bulk_len
= req
->cryptlen
- BLOCKCIPHER_BLOCK_SIZE
;
327 unsigned int stream_len
;
331 if (req
->cryptlen
< BLOCKCIPHER_BLOCK_SIZE
)
338 * enc: P_M = P_R + H_{K_H}(T, P_L)
339 * dec: C_M = C_R + H_{K_H}(T, C_L)
341 adiantum_hash_header(req
);
342 err
= adiantum_hash_message(req
, req
->src
, &digest
);
345 le128_add(&digest
, &digest
, &rctx
->header_hash
);
346 scatterwalk_map_and_copy(&rctx
->rbuf
.bignum
, req
->src
,
347 bulk_len
, BLOCKCIPHER_BLOCK_SIZE
, 0);
348 le128_add(&rctx
->rbuf
.bignum
, &rctx
->rbuf
.bignum
, &digest
);
350 /* If encrypting, encrypt P_M with the block cipher to get C_M */
352 crypto_cipher_encrypt_one(tctx
->blockcipher
, rctx
->rbuf
.bytes
,
355 /* Initialize the rest of the XChaCha IV (first part is C_M) */
356 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE
!= 16);
357 BUILD_BUG_ON(XCHACHA_IV_SIZE
!= 32); /* nonce || stream position */
358 rctx
->rbuf
.words
[4] = cpu_to_le32(1);
359 rctx
->rbuf
.words
[5] = 0;
360 rctx
->rbuf
.words
[6] = 0;
361 rctx
->rbuf
.words
[7] = 0;
364 * XChaCha needs to be done on all the data except the last 16 bytes;
365 * for disk encryption that usually means 4080 or 496 bytes. But ChaCha
366 * implementations tend to be most efficient when passed a whole number
367 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
368 * And here it doesn't matter whether the last 16 bytes are written to,
369 * as the second hash step will overwrite them. Thus, round the XChaCha
370 * length up to the next 64-byte boundary if possible.
372 stream_len
= bulk_len
;
373 if (round_up(stream_len
, CHACHA_BLOCK_SIZE
) <= req
->cryptlen
)
374 stream_len
= round_up(stream_len
, CHACHA_BLOCK_SIZE
);
376 skcipher_request_set_tfm(&rctx
->u
.streamcipher_req
, tctx
->streamcipher
);
377 skcipher_request_set_crypt(&rctx
->u
.streamcipher_req
, req
->src
,
378 req
->dst
, stream_len
, &rctx
->rbuf
);
379 skcipher_request_set_callback(&rctx
->u
.streamcipher_req
,
381 adiantum_streamcipher_done
, req
);
382 return crypto_skcipher_encrypt(&rctx
->u
.streamcipher_req
) ?:
383 adiantum_finish(req
);
386 static int adiantum_encrypt(struct skcipher_request
*req
)
388 return adiantum_crypt(req
, true);
391 static int adiantum_decrypt(struct skcipher_request
*req
)
393 return adiantum_crypt(req
, false);
396 static int adiantum_init_tfm(struct crypto_skcipher
*tfm
)
398 struct skcipher_instance
*inst
= skcipher_alg_instance(tfm
);
399 struct adiantum_instance_ctx
*ictx
= skcipher_instance_ctx(inst
);
400 struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
401 struct crypto_skcipher
*streamcipher
;
402 struct crypto_cipher
*blockcipher
;
403 struct crypto_shash
*hash
;
404 unsigned int subreq_size
;
407 streamcipher
= crypto_spawn_skcipher(&ictx
->streamcipher_spawn
);
408 if (IS_ERR(streamcipher
))
409 return PTR_ERR(streamcipher
);
411 blockcipher
= crypto_spawn_cipher(&ictx
->blockcipher_spawn
);
412 if (IS_ERR(blockcipher
)) {
413 err
= PTR_ERR(blockcipher
);
414 goto err_free_streamcipher
;
417 hash
= crypto_spawn_shash(&ictx
->hash_spawn
);
420 goto err_free_blockcipher
;
423 tctx
->streamcipher
= streamcipher
;
424 tctx
->blockcipher
= blockcipher
;
427 BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx
, u
) !=
428 sizeof(struct adiantum_request_ctx
));
429 subreq_size
= max(sizeof_field(struct adiantum_request_ctx
,
431 crypto_shash_descsize(hash
),
432 sizeof_field(struct adiantum_request_ctx
,
433 u
.streamcipher_req
) +
434 crypto_skcipher_reqsize(streamcipher
));
436 crypto_skcipher_set_reqsize(tfm
,
437 offsetof(struct adiantum_request_ctx
, u
) +
441 err_free_blockcipher
:
442 crypto_free_cipher(blockcipher
);
443 err_free_streamcipher
:
444 crypto_free_skcipher(streamcipher
);
448 static void adiantum_exit_tfm(struct crypto_skcipher
*tfm
)
450 struct adiantum_tfm_ctx
*tctx
= crypto_skcipher_ctx(tfm
);
452 crypto_free_skcipher(tctx
->streamcipher
);
453 crypto_free_cipher(tctx
->blockcipher
);
454 crypto_free_shash(tctx
->hash
);
457 static void adiantum_free_instance(struct skcipher_instance
*inst
)
459 struct adiantum_instance_ctx
*ictx
= skcipher_instance_ctx(inst
);
461 crypto_drop_skcipher(&ictx
->streamcipher_spawn
);
462 crypto_drop_cipher(&ictx
->blockcipher_spawn
);
463 crypto_drop_shash(&ictx
->hash_spawn
);
468 * Check for a supported set of inner algorithms.
469 * See the comment at the beginning of this file.
471 static bool adiantum_supported_algorithms(struct skcipher_alg
*streamcipher_alg
,
472 struct crypto_alg
*blockcipher_alg
,
473 struct shash_alg
*hash_alg
)
475 if (strcmp(streamcipher_alg
->base
.cra_name
, "xchacha12") != 0 &&
476 strcmp(streamcipher_alg
->base
.cra_name
, "xchacha20") != 0)
479 if (blockcipher_alg
->cra_cipher
.cia_min_keysize
> BLOCKCIPHER_KEY_SIZE
||
480 blockcipher_alg
->cra_cipher
.cia_max_keysize
< BLOCKCIPHER_KEY_SIZE
)
482 if (blockcipher_alg
->cra_blocksize
!= BLOCKCIPHER_BLOCK_SIZE
)
485 if (strcmp(hash_alg
->base
.cra_name
, "nhpoly1305") != 0)
491 static int adiantum_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
493 struct crypto_attr_type
*algt
;
495 const char *nhpoly1305_name
;
496 struct skcipher_instance
*inst
;
497 struct adiantum_instance_ctx
*ictx
;
498 struct skcipher_alg
*streamcipher_alg
;
499 struct crypto_alg
*blockcipher_alg
;
500 struct shash_alg
*hash_alg
;
503 algt
= crypto_get_attr_type(tb
);
505 return PTR_ERR(algt
);
507 if ((algt
->type
^ CRYPTO_ALG_TYPE_SKCIPHER
) & algt
->mask
)
510 mask
= crypto_requires_sync(algt
->type
, algt
->mask
);
512 inst
= kzalloc(sizeof(*inst
) + sizeof(*ictx
), GFP_KERNEL
);
515 ictx
= skcipher_instance_ctx(inst
);
517 /* Stream cipher, e.g. "xchacha12" */
518 err
= crypto_grab_skcipher(&ictx
->streamcipher_spawn
,
519 skcipher_crypto_instance(inst
),
520 crypto_attr_alg_name(tb
[1]), 0, mask
);
523 streamcipher_alg
= crypto_spawn_skcipher_alg(&ictx
->streamcipher_spawn
);
525 /* Block cipher, e.g. "aes" */
526 err
= crypto_grab_cipher(&ictx
->blockcipher_spawn
,
527 skcipher_crypto_instance(inst
),
528 crypto_attr_alg_name(tb
[2]), 0, mask
);
531 blockcipher_alg
= crypto_spawn_cipher_alg(&ictx
->blockcipher_spawn
);
533 /* NHPoly1305 ε-∆U hash function */
534 nhpoly1305_name
= crypto_attr_alg_name(tb
[3]);
535 if (nhpoly1305_name
== ERR_PTR(-ENOENT
))
536 nhpoly1305_name
= "nhpoly1305";
537 err
= crypto_grab_shash(&ictx
->hash_spawn
,
538 skcipher_crypto_instance(inst
),
539 nhpoly1305_name
, 0, mask
);
542 hash_alg
= crypto_spawn_shash_alg(&ictx
->hash_spawn
);
544 /* Check the set of algorithms */
545 if (!adiantum_supported_algorithms(streamcipher_alg
, blockcipher_alg
,
547 pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
548 streamcipher_alg
->base
.cra_name
,
549 blockcipher_alg
->cra_name
, hash_alg
->base
.cra_name
);
554 /* Instance fields */
557 if (snprintf(inst
->alg
.base
.cra_name
, CRYPTO_MAX_ALG_NAME
,
558 "adiantum(%s,%s)", streamcipher_alg
->base
.cra_name
,
559 blockcipher_alg
->cra_name
) >= CRYPTO_MAX_ALG_NAME
)
561 if (snprintf(inst
->alg
.base
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
562 "adiantum(%s,%s,%s)",
563 streamcipher_alg
->base
.cra_driver_name
,
564 blockcipher_alg
->cra_driver_name
,
565 hash_alg
->base
.cra_driver_name
) >= CRYPTO_MAX_ALG_NAME
)
568 inst
->alg
.base
.cra_flags
= streamcipher_alg
->base
.cra_flags
&
570 inst
->alg
.base
.cra_blocksize
= BLOCKCIPHER_BLOCK_SIZE
;
571 inst
->alg
.base
.cra_ctxsize
= sizeof(struct adiantum_tfm_ctx
);
572 inst
->alg
.base
.cra_alignmask
= streamcipher_alg
->base
.cra_alignmask
|
573 hash_alg
->base
.cra_alignmask
;
575 * The block cipher is only invoked once per message, so for long
576 * messages (e.g. sectors for disk encryption) its performance doesn't
577 * matter as much as that of the stream cipher and hash function. Thus,
578 * weigh the block cipher's ->cra_priority less.
580 inst
->alg
.base
.cra_priority
= (4 * streamcipher_alg
->base
.cra_priority
+
581 2 * hash_alg
->base
.cra_priority
+
582 blockcipher_alg
->cra_priority
) / 7;
584 inst
->alg
.setkey
= adiantum_setkey
;
585 inst
->alg
.encrypt
= adiantum_encrypt
;
586 inst
->alg
.decrypt
= adiantum_decrypt
;
587 inst
->alg
.init
= adiantum_init_tfm
;
588 inst
->alg
.exit
= adiantum_exit_tfm
;
589 inst
->alg
.min_keysize
= crypto_skcipher_alg_min_keysize(streamcipher_alg
);
590 inst
->alg
.max_keysize
= crypto_skcipher_alg_max_keysize(streamcipher_alg
);
591 inst
->alg
.ivsize
= TWEAK_SIZE
;
593 inst
->free
= adiantum_free_instance
;
595 err
= skcipher_register_instance(tmpl
, inst
);
598 adiantum_free_instance(inst
);
603 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
604 static struct crypto_template adiantum_tmpl
= {
606 .create
= adiantum_create
,
607 .module
= THIS_MODULE
,
610 static int __init
adiantum_module_init(void)
612 return crypto_register_template(&adiantum_tmpl
);
615 static void __exit
adiantum_module_exit(void)
617 crypto_unregister_template(&adiantum_tmpl
);
620 subsys_initcall(adiantum_module_init
);
621 module_exit(adiantum_module_exit
);
623 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
624 MODULE_LICENSE("GPL v2");
625 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
626 MODULE_ALIAS_CRYPTO("adiantum");