]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - crypto/adiantum.c
Merge tag 'gvt-fixes-2020-02-12' of https://github.com/intel/gvt-linux into drm-intel...
[mirror_ubuntu-hirsute-kernel.git] / crypto / adiantum.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Adiantum length-preserving encryption mode
4 *
5 * Copyright 2018 Google LLC
6 */
7
8 /*
9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
10 * and secure disk encryption, especially on CPUs without dedicated crypto
11 * instructions. Adiantum encrypts each sector using the XChaCha12 stream
12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
14 * 16-byte block. See the paper for details:
15 *
16 * Adiantum: length-preserving encryption for entry-level processors
17 * (https://eprint.iacr.org/2018/720.pdf)
18 *
19 * For flexibility, this implementation also allows other ciphers:
20 *
21 * - Stream cipher: XChaCha12 or XChaCha20
22 * - Block cipher: any with a 128-bit block size and 256-bit key
23 *
24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
25 * HPolyC is not supported. This is because Adiantum is ~20% faster than HPolyC
26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
27 * formally defined to take two inputs (tweak, message) which makes it difficult
28 * to wrap with the crypto_shash API. Rather, some details need to be handled
29 * here. Nevertheless, if needed in the future, support for other ε-∆U hash
30 * functions could be added here.
31 */
32
33 #include <crypto/b128ops.h>
34 #include <crypto/chacha.h>
35 #include <crypto/internal/hash.h>
36 #include <crypto/internal/poly1305.h>
37 #include <crypto/internal/skcipher.h>
38 #include <crypto/nhpoly1305.h>
39 #include <crypto/scatterwalk.h>
40 #include <linux/module.h>
41
42 #include "internal.h"
43
44 /*
45 * Size of right-hand part of input data, in bytes; also the size of the block
46 * cipher's block size and the hash function's output.
47 */
48 #define BLOCKCIPHER_BLOCK_SIZE 16
49
50 /* Size of the block cipher key (K_E) in bytes */
51 #define BLOCKCIPHER_KEY_SIZE 32
52
53 /* Size of the hash key (K_H) in bytes */
54 #define HASH_KEY_SIZE (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
55
56 /*
57 * The specification allows variable-length tweaks, but Linux's crypto API
58 * currently only allows algorithms to support a single length. The "natural"
59 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
60 * the best performance. But longer tweaks are useful for fscrypt, to avoid
61 * needing to derive per-file keys. So instead we use two blocks, or 32 bytes.
62 */
63 #define TWEAK_SIZE 32
64
65 struct adiantum_instance_ctx {
66 struct crypto_skcipher_spawn streamcipher_spawn;
67 struct crypto_spawn blockcipher_spawn;
68 struct crypto_shash_spawn hash_spawn;
69 };
70
71 struct adiantum_tfm_ctx {
72 struct crypto_skcipher *streamcipher;
73 struct crypto_cipher *blockcipher;
74 struct crypto_shash *hash;
75 struct poly1305_key header_hash_key;
76 };
77
78 struct adiantum_request_ctx {
79
80 /*
81 * Buffer for right-hand part of data, i.e.
82 *
83 * P_L => P_M => C_M => C_R when encrypting, or
84 * C_R => C_M => P_M => P_L when decrypting.
85 *
86 * Also used to build the IV for the stream cipher.
87 */
88 union {
89 u8 bytes[XCHACHA_IV_SIZE];
90 __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
91 le128 bignum; /* interpret as element of Z/(2^{128}Z) */
92 } rbuf;
93
94 bool enc; /* true if encrypting, false if decrypting */
95
96 /*
97 * The result of the Poly1305 ε-∆U hash function applied to
98 * (bulk length, tweak)
99 */
100 le128 header_hash;
101
102 /* Sub-requests, must be last */
103 union {
104 struct shash_desc hash_desc;
105 struct skcipher_request streamcipher_req;
106 } u;
107 };
108
109 /*
110 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
111 * hash key K_H as follows:
112 *
113 * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
114 *
115 * Note that this denotes using bits from the XChaCha keystream, which here we
116 * get indirectly by encrypting a buffer containing all 0's.
117 */
118 static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
119 unsigned int keylen)
120 {
121 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
122 struct {
123 u8 iv[XCHACHA_IV_SIZE];
124 u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
125 struct scatterlist sg;
126 struct crypto_wait wait;
127 struct skcipher_request req; /* must be last */
128 } *data;
129 u8 *keyp;
130 int err;
131
132 /* Set the stream cipher key (K_S) */
133 crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
134 crypto_skcipher_set_flags(tctx->streamcipher,
135 crypto_skcipher_get_flags(tfm) &
136 CRYPTO_TFM_REQ_MASK);
137 err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
138 crypto_skcipher_set_flags(tfm,
139 crypto_skcipher_get_flags(tctx->streamcipher) &
140 CRYPTO_TFM_RES_MASK);
141 if (err)
142 return err;
143
144 /* Derive the subkeys */
145 data = kzalloc(sizeof(*data) +
146 crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
147 if (!data)
148 return -ENOMEM;
149 data->iv[0] = 1;
150 sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
151 crypto_init_wait(&data->wait);
152 skcipher_request_set_tfm(&data->req, tctx->streamcipher);
153 skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
154 CRYPTO_TFM_REQ_MAY_BACKLOG,
155 crypto_req_done, &data->wait);
156 skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
157 sizeof(data->derived_keys), data->iv);
158 err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
159 if (err)
160 goto out;
161 keyp = data->derived_keys;
162
163 /* Set the block cipher key (K_E) */
164 crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
165 crypto_cipher_set_flags(tctx->blockcipher,
166 crypto_skcipher_get_flags(tfm) &
167 CRYPTO_TFM_REQ_MASK);
168 err = crypto_cipher_setkey(tctx->blockcipher, keyp,
169 BLOCKCIPHER_KEY_SIZE);
170 crypto_skcipher_set_flags(tfm,
171 crypto_cipher_get_flags(tctx->blockcipher) &
172 CRYPTO_TFM_RES_MASK);
173 if (err)
174 goto out;
175 keyp += BLOCKCIPHER_KEY_SIZE;
176
177 /* Set the hash key (K_H) */
178 poly1305_core_setkey(&tctx->header_hash_key, keyp);
179 keyp += POLY1305_BLOCK_SIZE;
180
181 crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
182 crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
183 CRYPTO_TFM_REQ_MASK);
184 err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
185 crypto_skcipher_set_flags(tfm, crypto_shash_get_flags(tctx->hash) &
186 CRYPTO_TFM_RES_MASK);
187 keyp += NHPOLY1305_KEY_SIZE;
188 WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
189 out:
190 kzfree(data);
191 return err;
192 }
193
194 /* Addition in Z/(2^{128}Z) */
195 static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
196 {
197 u64 x = le64_to_cpu(v1->b);
198 u64 y = le64_to_cpu(v2->b);
199
200 r->b = cpu_to_le64(x + y);
201 r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
202 (x + y < x));
203 }
204
205 /* Subtraction in Z/(2^{128}Z) */
206 static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
207 {
208 u64 x = le64_to_cpu(v1->b);
209 u64 y = le64_to_cpu(v2->b);
210
211 r->b = cpu_to_le64(x - y);
212 r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
213 (x - y > x));
214 }
215
216 /*
217 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
218 * result to rctx->header_hash. This is the calculation
219 *
220 * H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
221 *
222 * from the procedure in section 6.4 of the Adiantum paper. The resulting value
223 * is reused in both the first and second hash steps. Specifically, it's added
224 * to the result of an independently keyed ε-∆U hash function (for equal length
225 * inputs only) taken over the left-hand part (the "bulk") of the message, to
226 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
227 */
228 static void adiantum_hash_header(struct skcipher_request *req)
229 {
230 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
231 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
232 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
233 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
234 struct {
235 __le64 message_bits;
236 __le64 padding;
237 } header = {
238 .message_bits = cpu_to_le64((u64)bulk_len * 8)
239 };
240 struct poly1305_state state;
241
242 poly1305_core_init(&state);
243
244 BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
245 poly1305_core_blocks(&state, &tctx->header_hash_key,
246 &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
247
248 BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
249 poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
250 TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
251
252 poly1305_core_emit(&state, &rctx->header_hash);
253 }
254
255 /* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
256 static int adiantum_hash_message(struct skcipher_request *req,
257 struct scatterlist *sgl, le128 *digest)
258 {
259 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
260 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
261 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
262 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
263 struct shash_desc *hash_desc = &rctx->u.hash_desc;
264 struct sg_mapping_iter miter;
265 unsigned int i, n;
266 int err;
267
268 hash_desc->tfm = tctx->hash;
269
270 err = crypto_shash_init(hash_desc);
271 if (err)
272 return err;
273
274 sg_miter_start(&miter, sgl, sg_nents(sgl),
275 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
276 for (i = 0; i < bulk_len; i += n) {
277 sg_miter_next(&miter);
278 n = min_t(unsigned int, miter.length, bulk_len - i);
279 err = crypto_shash_update(hash_desc, miter.addr, n);
280 if (err)
281 break;
282 }
283 sg_miter_stop(&miter);
284 if (err)
285 return err;
286
287 return crypto_shash_final(hash_desc, (u8 *)digest);
288 }
289
290 /* Continue Adiantum encryption/decryption after the stream cipher step */
291 static int adiantum_finish(struct skcipher_request *req)
292 {
293 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
294 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
295 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
296 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
297 le128 digest;
298 int err;
299
300 /* If decrypting, decrypt C_M with the block cipher to get P_M */
301 if (!rctx->enc)
302 crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
303 rctx->rbuf.bytes);
304
305 /*
306 * Second hash step
307 * enc: C_R = C_M - H_{K_H}(T, C_L)
308 * dec: P_R = P_M - H_{K_H}(T, P_L)
309 */
310 err = adiantum_hash_message(req, req->dst, &digest);
311 if (err)
312 return err;
313 le128_add(&digest, &digest, &rctx->header_hash);
314 le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
315 scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst,
316 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1);
317 return 0;
318 }
319
320 static void adiantum_streamcipher_done(struct crypto_async_request *areq,
321 int err)
322 {
323 struct skcipher_request *req = areq->data;
324
325 if (!err)
326 err = adiantum_finish(req);
327
328 skcipher_request_complete(req, err);
329 }
330
331 static int adiantum_crypt(struct skcipher_request *req, bool enc)
332 {
333 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
334 const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
335 struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
336 const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
337 unsigned int stream_len;
338 le128 digest;
339 int err;
340
341 if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
342 return -EINVAL;
343
344 rctx->enc = enc;
345
346 /*
347 * First hash step
348 * enc: P_M = P_R + H_{K_H}(T, P_L)
349 * dec: C_M = C_R + H_{K_H}(T, C_L)
350 */
351 adiantum_hash_header(req);
352 err = adiantum_hash_message(req, req->src, &digest);
353 if (err)
354 return err;
355 le128_add(&digest, &digest, &rctx->header_hash);
356 scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src,
357 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0);
358 le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
359
360 /* If encrypting, encrypt P_M with the block cipher to get C_M */
361 if (enc)
362 crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
363 rctx->rbuf.bytes);
364
365 /* Initialize the rest of the XChaCha IV (first part is C_M) */
366 BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
367 BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */
368 rctx->rbuf.words[4] = cpu_to_le32(1);
369 rctx->rbuf.words[5] = 0;
370 rctx->rbuf.words[6] = 0;
371 rctx->rbuf.words[7] = 0;
372
373 /*
374 * XChaCha needs to be done on all the data except the last 16 bytes;
375 * for disk encryption that usually means 4080 or 496 bytes. But ChaCha
376 * implementations tend to be most efficient when passed a whole number
377 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
378 * And here it doesn't matter whether the last 16 bytes are written to,
379 * as the second hash step will overwrite them. Thus, round the XChaCha
380 * length up to the next 64-byte boundary if possible.
381 */
382 stream_len = bulk_len;
383 if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
384 stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
385
386 skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
387 skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
388 req->dst, stream_len, &rctx->rbuf);
389 skcipher_request_set_callback(&rctx->u.streamcipher_req,
390 req->base.flags,
391 adiantum_streamcipher_done, req);
392 return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
393 adiantum_finish(req);
394 }
395
396 static int adiantum_encrypt(struct skcipher_request *req)
397 {
398 return adiantum_crypt(req, true);
399 }
400
401 static int adiantum_decrypt(struct skcipher_request *req)
402 {
403 return adiantum_crypt(req, false);
404 }
405
406 static int adiantum_init_tfm(struct crypto_skcipher *tfm)
407 {
408 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
409 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
410 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
411 struct crypto_skcipher *streamcipher;
412 struct crypto_cipher *blockcipher;
413 struct crypto_shash *hash;
414 unsigned int subreq_size;
415 int err;
416
417 streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
418 if (IS_ERR(streamcipher))
419 return PTR_ERR(streamcipher);
420
421 blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
422 if (IS_ERR(blockcipher)) {
423 err = PTR_ERR(blockcipher);
424 goto err_free_streamcipher;
425 }
426
427 hash = crypto_spawn_shash(&ictx->hash_spawn);
428 if (IS_ERR(hash)) {
429 err = PTR_ERR(hash);
430 goto err_free_blockcipher;
431 }
432
433 tctx->streamcipher = streamcipher;
434 tctx->blockcipher = blockcipher;
435 tctx->hash = hash;
436
437 BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
438 sizeof(struct adiantum_request_ctx));
439 subreq_size = max(sizeof_field(struct adiantum_request_ctx,
440 u.hash_desc) +
441 crypto_shash_descsize(hash),
442 sizeof_field(struct adiantum_request_ctx,
443 u.streamcipher_req) +
444 crypto_skcipher_reqsize(streamcipher));
445
446 crypto_skcipher_set_reqsize(tfm,
447 offsetof(struct adiantum_request_ctx, u) +
448 subreq_size);
449 return 0;
450
451 err_free_blockcipher:
452 crypto_free_cipher(blockcipher);
453 err_free_streamcipher:
454 crypto_free_skcipher(streamcipher);
455 return err;
456 }
457
458 static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
459 {
460 struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
461
462 crypto_free_skcipher(tctx->streamcipher);
463 crypto_free_cipher(tctx->blockcipher);
464 crypto_free_shash(tctx->hash);
465 }
466
467 static void adiantum_free_instance(struct skcipher_instance *inst)
468 {
469 struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
470
471 crypto_drop_skcipher(&ictx->streamcipher_spawn);
472 crypto_drop_spawn(&ictx->blockcipher_spawn);
473 crypto_drop_shash(&ictx->hash_spawn);
474 kfree(inst);
475 }
476
477 /*
478 * Check for a supported set of inner algorithms.
479 * See the comment at the beginning of this file.
480 */
481 static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg,
482 struct crypto_alg *blockcipher_alg,
483 struct shash_alg *hash_alg)
484 {
485 if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
486 strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
487 return false;
488
489 if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
490 blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
491 return false;
492 if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
493 return false;
494
495 if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
496 return false;
497
498 return true;
499 }
500
501 static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
502 {
503 struct crypto_attr_type *algt;
504 const char *streamcipher_name;
505 const char *blockcipher_name;
506 const char *nhpoly1305_name;
507 struct skcipher_instance *inst;
508 struct adiantum_instance_ctx *ictx;
509 struct skcipher_alg *streamcipher_alg;
510 struct crypto_alg *blockcipher_alg;
511 struct crypto_alg *_hash_alg;
512 struct shash_alg *hash_alg;
513 int err;
514
515 algt = crypto_get_attr_type(tb);
516 if (IS_ERR(algt))
517 return PTR_ERR(algt);
518
519 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
520 return -EINVAL;
521
522 streamcipher_name = crypto_attr_alg_name(tb[1]);
523 if (IS_ERR(streamcipher_name))
524 return PTR_ERR(streamcipher_name);
525
526 blockcipher_name = crypto_attr_alg_name(tb[2]);
527 if (IS_ERR(blockcipher_name))
528 return PTR_ERR(blockcipher_name);
529
530 nhpoly1305_name = crypto_attr_alg_name(tb[3]);
531 if (nhpoly1305_name == ERR_PTR(-ENOENT))
532 nhpoly1305_name = "nhpoly1305";
533 if (IS_ERR(nhpoly1305_name))
534 return PTR_ERR(nhpoly1305_name);
535
536 inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
537 if (!inst)
538 return -ENOMEM;
539 ictx = skcipher_instance_ctx(inst);
540
541 /* Stream cipher, e.g. "xchacha12" */
542 crypto_set_skcipher_spawn(&ictx->streamcipher_spawn,
543 skcipher_crypto_instance(inst));
544 err = crypto_grab_skcipher(&ictx->streamcipher_spawn, streamcipher_name,
545 0, crypto_requires_sync(algt->type,
546 algt->mask));
547 if (err)
548 goto out_free_inst;
549 streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn);
550
551 /* Block cipher, e.g. "aes" */
552 crypto_set_spawn(&ictx->blockcipher_spawn,
553 skcipher_crypto_instance(inst));
554 err = crypto_grab_spawn(&ictx->blockcipher_spawn, blockcipher_name,
555 CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK);
556 if (err)
557 goto out_drop_streamcipher;
558 blockcipher_alg = ictx->blockcipher_spawn.alg;
559
560 /* NHPoly1305 ε-∆U hash function */
561 _hash_alg = crypto_alg_mod_lookup(nhpoly1305_name,
562 CRYPTO_ALG_TYPE_SHASH,
563 CRYPTO_ALG_TYPE_MASK);
564 if (IS_ERR(_hash_alg)) {
565 err = PTR_ERR(_hash_alg);
566 goto out_drop_blockcipher;
567 }
568 hash_alg = __crypto_shash_alg(_hash_alg);
569 err = crypto_init_shash_spawn(&ictx->hash_spawn, hash_alg,
570 skcipher_crypto_instance(inst));
571 if (err)
572 goto out_put_hash;
573
574 /* Check the set of algorithms */
575 if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
576 hash_alg)) {
577 pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
578 streamcipher_alg->base.cra_name,
579 blockcipher_alg->cra_name, hash_alg->base.cra_name);
580 err = -EINVAL;
581 goto out_drop_hash;
582 }
583
584 /* Instance fields */
585
586 err = -ENAMETOOLONG;
587 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
588 "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
589 blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
590 goto out_drop_hash;
591 if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
592 "adiantum(%s,%s,%s)",
593 streamcipher_alg->base.cra_driver_name,
594 blockcipher_alg->cra_driver_name,
595 hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
596 goto out_drop_hash;
597
598 inst->alg.base.cra_flags = streamcipher_alg->base.cra_flags &
599 CRYPTO_ALG_ASYNC;
600 inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
601 inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
602 inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask |
603 hash_alg->base.cra_alignmask;
604 /*
605 * The block cipher is only invoked once per message, so for long
606 * messages (e.g. sectors for disk encryption) its performance doesn't
607 * matter as much as that of the stream cipher and hash function. Thus,
608 * weigh the block cipher's ->cra_priority less.
609 */
610 inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
611 2 * hash_alg->base.cra_priority +
612 blockcipher_alg->cra_priority) / 7;
613
614 inst->alg.setkey = adiantum_setkey;
615 inst->alg.encrypt = adiantum_encrypt;
616 inst->alg.decrypt = adiantum_decrypt;
617 inst->alg.init = adiantum_init_tfm;
618 inst->alg.exit = adiantum_exit_tfm;
619 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg);
620 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg);
621 inst->alg.ivsize = TWEAK_SIZE;
622
623 inst->free = adiantum_free_instance;
624
625 err = skcipher_register_instance(tmpl, inst);
626 if (err)
627 goto out_drop_hash;
628
629 crypto_mod_put(_hash_alg);
630 return 0;
631
632 out_drop_hash:
633 crypto_drop_shash(&ictx->hash_spawn);
634 out_put_hash:
635 crypto_mod_put(_hash_alg);
636 out_drop_blockcipher:
637 crypto_drop_spawn(&ictx->blockcipher_spawn);
638 out_drop_streamcipher:
639 crypto_drop_skcipher(&ictx->streamcipher_spawn);
640 out_free_inst:
641 kfree(inst);
642 return err;
643 }
644
645 /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
646 static struct crypto_template adiantum_tmpl = {
647 .name = "adiantum",
648 .create = adiantum_create,
649 .module = THIS_MODULE,
650 };
651
652 static int __init adiantum_module_init(void)
653 {
654 return crypto_register_template(&adiantum_tmpl);
655 }
656
657 static void __exit adiantum_module_exit(void)
658 {
659 crypto_unregister_template(&adiantum_tmpl);
660 }
661
662 subsys_initcall(adiantum_module_init);
663 module_exit(adiantum_module_exit);
664
665 MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
666 MODULE_LICENSE("GPL v2");
667 MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
668 MODULE_ALIAS_CRYPTO("adiantum");