1 //SPDX-License-Identifier: GPL-2.0
3 * CFB: Cipher FeedBack mode
5 * Copyright (c) 2018 James.Bottomley@HansenPartnership.com
7 * CFB is a stream cipher mode which is layered on to a block
8 * encryption scheme. It works very much like a one time pad where
9 * the pad is generated initially from the encrypted IV and then
10 * subsequently from the encrypted previous block of ciphertext. The
11 * pad is XOR'd into the plain text to get the final ciphertext.
13 * The scheme of CFB is best described by wikipedia:
15 * https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#CFB
17 * Note that since the pad for both encryption and decryption is
18 * generated by an encryption operation, CFB never uses the block
19 * decryption function.
22 #include <crypto/algapi.h>
23 #include <crypto/internal/skcipher.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
30 static unsigned int crypto_cfb_bsize(struct crypto_skcipher
*tfm
)
32 return crypto_cipher_blocksize(skcipher_cipher_simple(tfm
));
35 static void crypto_cfb_encrypt_one(struct crypto_skcipher
*tfm
,
36 const u8
*src
, u8
*dst
)
38 crypto_cipher_encrypt_one(skcipher_cipher_simple(tfm
), dst
, src
);
41 /* final encrypt and decrypt is the same */
42 static void crypto_cfb_final(struct skcipher_walk
*walk
,
43 struct crypto_skcipher
*tfm
)
45 const unsigned long alignmask
= crypto_skcipher_alignmask(tfm
);
46 u8 tmp
[MAX_CIPHER_BLOCKSIZE
+ MAX_CIPHER_ALIGNMASK
];
47 u8
*stream
= PTR_ALIGN(tmp
+ 0, alignmask
+ 1);
48 u8
*src
= walk
->src
.virt
.addr
;
49 u8
*dst
= walk
->dst
.virt
.addr
;
51 unsigned int nbytes
= walk
->nbytes
;
53 crypto_cfb_encrypt_one(tfm
, iv
, stream
);
54 crypto_xor_cpy(dst
, stream
, src
, nbytes
);
57 static int crypto_cfb_encrypt_segment(struct skcipher_walk
*walk
,
58 struct crypto_skcipher
*tfm
)
60 const unsigned int bsize
= crypto_cfb_bsize(tfm
);
61 unsigned int nbytes
= walk
->nbytes
;
62 u8
*src
= walk
->src
.virt
.addr
;
63 u8
*dst
= walk
->dst
.virt
.addr
;
67 crypto_cfb_encrypt_one(tfm
, iv
, dst
);
68 crypto_xor(dst
, src
, bsize
);
73 } while ((nbytes
-= bsize
) >= bsize
);
75 memcpy(walk
->iv
, iv
, bsize
);
80 static int crypto_cfb_encrypt_inplace(struct skcipher_walk
*walk
,
81 struct crypto_skcipher
*tfm
)
83 const unsigned int bsize
= crypto_cfb_bsize(tfm
);
84 unsigned int nbytes
= walk
->nbytes
;
85 u8
*src
= walk
->src
.virt
.addr
;
87 u8 tmp
[MAX_CIPHER_BLOCKSIZE
];
90 crypto_cfb_encrypt_one(tfm
, iv
, tmp
);
91 crypto_xor(src
, tmp
, bsize
);
95 } while ((nbytes
-= bsize
) >= bsize
);
97 memcpy(walk
->iv
, iv
, bsize
);
102 static int crypto_cfb_encrypt(struct skcipher_request
*req
)
104 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
105 struct skcipher_walk walk
;
106 unsigned int bsize
= crypto_cfb_bsize(tfm
);
109 err
= skcipher_walk_virt(&walk
, req
, false);
111 while (walk
.nbytes
>= bsize
) {
112 if (walk
.src
.virt
.addr
== walk
.dst
.virt
.addr
)
113 err
= crypto_cfb_encrypt_inplace(&walk
, tfm
);
115 err
= crypto_cfb_encrypt_segment(&walk
, tfm
);
116 err
= skcipher_walk_done(&walk
, err
);
120 crypto_cfb_final(&walk
, tfm
);
121 err
= skcipher_walk_done(&walk
, 0);
127 static int crypto_cfb_decrypt_segment(struct skcipher_walk
*walk
,
128 struct crypto_skcipher
*tfm
)
130 const unsigned int bsize
= crypto_cfb_bsize(tfm
);
131 unsigned int nbytes
= walk
->nbytes
;
132 u8
*src
= walk
->src
.virt
.addr
;
133 u8
*dst
= walk
->dst
.virt
.addr
;
137 crypto_cfb_encrypt_one(tfm
, iv
, dst
);
138 crypto_xor(dst
, src
, bsize
);
143 } while ((nbytes
-= bsize
) >= bsize
);
145 memcpy(walk
->iv
, iv
, bsize
);
150 static int crypto_cfb_decrypt_inplace(struct skcipher_walk
*walk
,
151 struct crypto_skcipher
*tfm
)
153 const unsigned int bsize
= crypto_cfb_bsize(tfm
);
154 unsigned int nbytes
= walk
->nbytes
;
155 u8
*src
= walk
->src
.virt
.addr
;
156 u8
* const iv
= walk
->iv
;
157 u8 tmp
[MAX_CIPHER_BLOCKSIZE
];
160 crypto_cfb_encrypt_one(tfm
, iv
, tmp
);
161 memcpy(iv
, src
, bsize
);
162 crypto_xor(src
, tmp
, bsize
);
164 } while ((nbytes
-= bsize
) >= bsize
);
169 static int crypto_cfb_decrypt_blocks(struct skcipher_walk
*walk
,
170 struct crypto_skcipher
*tfm
)
172 if (walk
->src
.virt
.addr
== walk
->dst
.virt
.addr
)
173 return crypto_cfb_decrypt_inplace(walk
, tfm
);
175 return crypto_cfb_decrypt_segment(walk
, tfm
);
178 static int crypto_cfb_decrypt(struct skcipher_request
*req
)
180 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
181 struct skcipher_walk walk
;
182 const unsigned int bsize
= crypto_cfb_bsize(tfm
);
185 err
= skcipher_walk_virt(&walk
, req
, false);
187 while (walk
.nbytes
>= bsize
) {
188 err
= crypto_cfb_decrypt_blocks(&walk
, tfm
);
189 err
= skcipher_walk_done(&walk
, err
);
193 crypto_cfb_final(&walk
, tfm
);
194 err
= skcipher_walk_done(&walk
, 0);
200 static int crypto_cfb_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
202 struct skcipher_instance
*inst
;
203 struct crypto_alg
*alg
;
206 inst
= skcipher_alloc_instance_simple(tmpl
, tb
);
208 return PTR_ERR(inst
);
210 alg
= skcipher_ialg_simple(inst
);
212 /* CFB mode is a stream cipher. */
213 inst
->alg
.base
.cra_blocksize
= 1;
216 * To simplify the implementation, configure the skcipher walk to only
217 * give a partial block at the very end, never earlier.
219 inst
->alg
.chunksize
= alg
->cra_blocksize
;
221 inst
->alg
.encrypt
= crypto_cfb_encrypt
;
222 inst
->alg
.decrypt
= crypto_cfb_decrypt
;
224 err
= skcipher_register_instance(tmpl
, inst
);
231 static struct crypto_template crypto_cfb_tmpl
= {
233 .create
= crypto_cfb_create
,
234 .module
= THIS_MODULE
,
237 static int __init
crypto_cfb_module_init(void)
239 return crypto_register_template(&crypto_cfb_tmpl
);
242 static void __exit
crypto_cfb_module_exit(void)
244 crypto_unregister_template(&crypto_cfb_tmpl
);
247 subsys_initcall(crypto_cfb_module_init
);
248 module_exit(crypto_cfb_module_exit
);
250 MODULE_LICENSE("GPL");
251 MODULE_DESCRIPTION("CFB block cipher mode of operation");
252 MODULE_ALIAS_CRYPTO("cfb");