]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - crypto/cryptd.c
net: ena: update driver's rx drop statistics
[mirror_ubuntu-zesty-kernel.git] / crypto / cryptd.c
1 /*
2 * Software async crypto daemon.
3 *
4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * Added AEAD support to cryptd.
7 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
8 * Adrian Hoban <adrian.hoban@intel.com>
9 * Gabriele Paoloni <gabriele.paoloni@intel.com>
10 * Aidan O'Mahony (aidan.o.mahony@intel.com)
11 * Copyright (c) 2010, Intel Corporation.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 */
19
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 #include <crypto/cryptd.h>
24 #include <crypto/crypto_wq.h>
25 #include <linux/atomic.h>
26 #include <linux/err.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/scatterlist.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34
35 #define CRYPTD_MAX_CPU_QLEN 1000
36
37 struct cryptd_cpu_queue {
38 struct crypto_queue queue;
39 struct work_struct work;
40 };
41
42 struct cryptd_queue {
43 struct cryptd_cpu_queue __percpu *cpu_queue;
44 };
45
46 struct cryptd_instance_ctx {
47 struct crypto_spawn spawn;
48 struct cryptd_queue *queue;
49 };
50
51 struct skcipherd_instance_ctx {
52 struct crypto_skcipher_spawn spawn;
53 struct cryptd_queue *queue;
54 };
55
56 struct hashd_instance_ctx {
57 struct crypto_shash_spawn spawn;
58 struct cryptd_queue *queue;
59 };
60
61 struct aead_instance_ctx {
62 struct crypto_aead_spawn aead_spawn;
63 struct cryptd_queue *queue;
64 };
65
66 struct cryptd_blkcipher_ctx {
67 atomic_t refcnt;
68 struct crypto_blkcipher *child;
69 };
70
71 struct cryptd_blkcipher_request_ctx {
72 crypto_completion_t complete;
73 };
74
75 struct cryptd_skcipher_ctx {
76 atomic_t refcnt;
77 struct crypto_skcipher *child;
78 };
79
80 struct cryptd_skcipher_request_ctx {
81 crypto_completion_t complete;
82 };
83
84 struct cryptd_hash_ctx {
85 atomic_t refcnt;
86 struct crypto_shash *child;
87 };
88
89 struct cryptd_hash_request_ctx {
90 crypto_completion_t complete;
91 struct shash_desc desc;
92 };
93
94 struct cryptd_aead_ctx {
95 atomic_t refcnt;
96 struct crypto_aead *child;
97 };
98
99 struct cryptd_aead_request_ctx {
100 crypto_completion_t complete;
101 };
102
103 static void cryptd_queue_worker(struct work_struct *work);
104
105 static int cryptd_init_queue(struct cryptd_queue *queue,
106 unsigned int max_cpu_qlen)
107 {
108 int cpu;
109 struct cryptd_cpu_queue *cpu_queue;
110
111 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
112 if (!queue->cpu_queue)
113 return -ENOMEM;
114 for_each_possible_cpu(cpu) {
115 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
116 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
117 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
118 }
119 return 0;
120 }
121
122 static void cryptd_fini_queue(struct cryptd_queue *queue)
123 {
124 int cpu;
125 struct cryptd_cpu_queue *cpu_queue;
126
127 for_each_possible_cpu(cpu) {
128 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
129 BUG_ON(cpu_queue->queue.qlen);
130 }
131 free_percpu(queue->cpu_queue);
132 }
133
134 static int cryptd_enqueue_request(struct cryptd_queue *queue,
135 struct crypto_async_request *request)
136 {
137 int cpu, err;
138 struct cryptd_cpu_queue *cpu_queue;
139 atomic_t *refcnt;
140 bool may_backlog;
141
142 cpu = get_cpu();
143 cpu_queue = this_cpu_ptr(queue->cpu_queue);
144 err = crypto_enqueue_request(&cpu_queue->queue, request);
145
146 refcnt = crypto_tfm_ctx(request->tfm);
147 may_backlog = request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG;
148
149 if (err == -EBUSY && !may_backlog)
150 goto out_put_cpu;
151
152 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
153
154 if (!atomic_read(refcnt))
155 goto out_put_cpu;
156
157 atomic_inc(refcnt);
158
159 out_put_cpu:
160 put_cpu();
161
162 return err;
163 }
164
165 /* Called in workqueue context, do one real cryption work (via
166 * req->complete) and reschedule itself if there are more work to
167 * do. */
168 static void cryptd_queue_worker(struct work_struct *work)
169 {
170 struct cryptd_cpu_queue *cpu_queue;
171 struct crypto_async_request *req, *backlog;
172
173 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
174 /*
175 * Only handle one request at a time to avoid hogging crypto workqueue.
176 * preempt_disable/enable is used to prevent being preempted by
177 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
178 * cryptd_enqueue_request() being accessed from software interrupts.
179 */
180 local_bh_disable();
181 preempt_disable();
182 backlog = crypto_get_backlog(&cpu_queue->queue);
183 req = crypto_dequeue_request(&cpu_queue->queue);
184 preempt_enable();
185 local_bh_enable();
186
187 if (!req)
188 return;
189
190 if (backlog)
191 backlog->complete(backlog, -EINPROGRESS);
192 req->complete(req, 0);
193
194 if (cpu_queue->queue.qlen)
195 queue_work(kcrypto_wq, &cpu_queue->work);
196 }
197
198 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
199 {
200 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
201 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
202 return ictx->queue;
203 }
204
205 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
206 u32 *mask)
207 {
208 struct crypto_attr_type *algt;
209
210 algt = crypto_get_attr_type(tb);
211 if (IS_ERR(algt))
212 return;
213
214 *type |= algt->type & CRYPTO_ALG_INTERNAL;
215 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
216 }
217
218 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
219 const u8 *key, unsigned int keylen)
220 {
221 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
222 struct crypto_blkcipher *child = ctx->child;
223 int err;
224
225 crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
226 crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
227 CRYPTO_TFM_REQ_MASK);
228 err = crypto_blkcipher_setkey(child, key, keylen);
229 crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
230 CRYPTO_TFM_RES_MASK);
231 return err;
232 }
233
234 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
235 struct crypto_blkcipher *child,
236 int err,
237 int (*crypt)(struct blkcipher_desc *desc,
238 struct scatterlist *dst,
239 struct scatterlist *src,
240 unsigned int len))
241 {
242 struct cryptd_blkcipher_request_ctx *rctx;
243 struct cryptd_blkcipher_ctx *ctx;
244 struct crypto_ablkcipher *tfm;
245 struct blkcipher_desc desc;
246 int refcnt;
247
248 rctx = ablkcipher_request_ctx(req);
249
250 if (unlikely(err == -EINPROGRESS))
251 goto out;
252
253 desc.tfm = child;
254 desc.info = req->info;
255 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
256
257 err = crypt(&desc, req->dst, req->src, req->nbytes);
258
259 req->base.complete = rctx->complete;
260
261 out:
262 tfm = crypto_ablkcipher_reqtfm(req);
263 ctx = crypto_ablkcipher_ctx(tfm);
264 refcnt = atomic_read(&ctx->refcnt);
265
266 local_bh_disable();
267 rctx->complete(&req->base, err);
268 local_bh_enable();
269
270 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
271 crypto_free_ablkcipher(tfm);
272 }
273
274 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
275 {
276 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
277 struct crypto_blkcipher *child = ctx->child;
278
279 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
280 crypto_blkcipher_crt(child)->encrypt);
281 }
282
283 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
284 {
285 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
286 struct crypto_blkcipher *child = ctx->child;
287
288 cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
289 crypto_blkcipher_crt(child)->decrypt);
290 }
291
292 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
293 crypto_completion_t compl)
294 {
295 struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
296 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
297 struct cryptd_queue *queue;
298
299 queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
300 rctx->complete = req->base.complete;
301 req->base.complete = compl;
302
303 return cryptd_enqueue_request(queue, &req->base);
304 }
305
306 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
307 {
308 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
309 }
310
311 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
312 {
313 return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
314 }
315
316 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
317 {
318 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
319 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
320 struct crypto_spawn *spawn = &ictx->spawn;
321 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
322 struct crypto_blkcipher *cipher;
323
324 cipher = crypto_spawn_blkcipher(spawn);
325 if (IS_ERR(cipher))
326 return PTR_ERR(cipher);
327
328 ctx->child = cipher;
329 tfm->crt_ablkcipher.reqsize =
330 sizeof(struct cryptd_blkcipher_request_ctx);
331 return 0;
332 }
333
334 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
335 {
336 struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
337
338 crypto_free_blkcipher(ctx->child);
339 }
340
341 static int cryptd_init_instance(struct crypto_instance *inst,
342 struct crypto_alg *alg)
343 {
344 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
345 "cryptd(%s)",
346 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
347 return -ENAMETOOLONG;
348
349 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
350
351 inst->alg.cra_priority = alg->cra_priority + 50;
352 inst->alg.cra_blocksize = alg->cra_blocksize;
353 inst->alg.cra_alignmask = alg->cra_alignmask;
354
355 return 0;
356 }
357
358 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
359 unsigned int tail)
360 {
361 char *p;
362 struct crypto_instance *inst;
363 int err;
364
365 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
366 if (!p)
367 return ERR_PTR(-ENOMEM);
368
369 inst = (void *)(p + head);
370
371 err = cryptd_init_instance(inst, alg);
372 if (err)
373 goto out_free_inst;
374
375 out:
376 return p;
377
378 out_free_inst:
379 kfree(p);
380 p = ERR_PTR(err);
381 goto out;
382 }
383
384 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
385 struct rtattr **tb,
386 struct cryptd_queue *queue)
387 {
388 struct cryptd_instance_ctx *ctx;
389 struct crypto_instance *inst;
390 struct crypto_alg *alg;
391 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
392 u32 mask = CRYPTO_ALG_TYPE_MASK;
393 int err;
394
395 cryptd_check_internal(tb, &type, &mask);
396
397 alg = crypto_get_attr_alg(tb, type, mask);
398 if (IS_ERR(alg))
399 return PTR_ERR(alg);
400
401 inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
402 err = PTR_ERR(inst);
403 if (IS_ERR(inst))
404 goto out_put_alg;
405
406 ctx = crypto_instance_ctx(inst);
407 ctx->queue = queue;
408
409 err = crypto_init_spawn(&ctx->spawn, alg, inst,
410 CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
411 if (err)
412 goto out_free_inst;
413
414 type = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
415 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
416 type |= CRYPTO_ALG_INTERNAL;
417 inst->alg.cra_flags = type;
418 inst->alg.cra_type = &crypto_ablkcipher_type;
419
420 inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
421 inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
422 inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
423
424 inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
425
426 inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
427
428 inst->alg.cra_init = cryptd_blkcipher_init_tfm;
429 inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
430
431 inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
432 inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
433 inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
434
435 err = crypto_register_instance(tmpl, inst);
436 if (err) {
437 crypto_drop_spawn(&ctx->spawn);
438 out_free_inst:
439 kfree(inst);
440 }
441
442 out_put_alg:
443 crypto_mod_put(alg);
444 return err;
445 }
446
447 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
448 const u8 *key, unsigned int keylen)
449 {
450 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
451 struct crypto_skcipher *child = ctx->child;
452 int err;
453
454 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
455 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
456 CRYPTO_TFM_REQ_MASK);
457 err = crypto_skcipher_setkey(child, key, keylen);
458 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
459 CRYPTO_TFM_RES_MASK);
460 return err;
461 }
462
463 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
464 {
465 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
466 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
467 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
468 int refcnt = atomic_read(&ctx->refcnt);
469
470 local_bh_disable();
471 rctx->complete(&req->base, err);
472 local_bh_enable();
473
474 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
475 crypto_free_skcipher(tfm);
476 }
477
478 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
479 int err)
480 {
481 struct skcipher_request *req = skcipher_request_cast(base);
482 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
483 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
484 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
485 struct crypto_skcipher *child = ctx->child;
486 SKCIPHER_REQUEST_ON_STACK(subreq, child);
487
488 if (unlikely(err == -EINPROGRESS))
489 goto out;
490
491 skcipher_request_set_tfm(subreq, child);
492 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
493 NULL, NULL);
494 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
495 req->iv);
496
497 err = crypto_skcipher_encrypt(subreq);
498 skcipher_request_zero(subreq);
499
500 req->base.complete = rctx->complete;
501
502 out:
503 cryptd_skcipher_complete(req, err);
504 }
505
506 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
507 int err)
508 {
509 struct skcipher_request *req = skcipher_request_cast(base);
510 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
511 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
512 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
513 struct crypto_skcipher *child = ctx->child;
514 SKCIPHER_REQUEST_ON_STACK(subreq, child);
515
516 if (unlikely(err == -EINPROGRESS))
517 goto out;
518
519 skcipher_request_set_tfm(subreq, child);
520 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
521 NULL, NULL);
522 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
523 req->iv);
524
525 err = crypto_skcipher_decrypt(subreq);
526 skcipher_request_zero(subreq);
527
528 req->base.complete = rctx->complete;
529
530 out:
531 cryptd_skcipher_complete(req, err);
532 }
533
534 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
535 crypto_completion_t compl)
536 {
537 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
538 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
539 struct cryptd_queue *queue;
540
541 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
542 rctx->complete = req->base.complete;
543 req->base.complete = compl;
544
545 return cryptd_enqueue_request(queue, &req->base);
546 }
547
548 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
549 {
550 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
551 }
552
553 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
554 {
555 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
556 }
557
558 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
559 {
560 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
561 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
562 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
563 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
564 struct crypto_skcipher *cipher;
565
566 cipher = crypto_spawn_skcipher(spawn);
567 if (IS_ERR(cipher))
568 return PTR_ERR(cipher);
569
570 ctx->child = cipher;
571 crypto_skcipher_set_reqsize(
572 tfm, sizeof(struct cryptd_skcipher_request_ctx));
573 return 0;
574 }
575
576 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
577 {
578 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
579
580 crypto_free_skcipher(ctx->child);
581 }
582
583 static void cryptd_skcipher_free(struct skcipher_instance *inst)
584 {
585 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
586
587 crypto_drop_skcipher(&ctx->spawn);
588 }
589
590 static int cryptd_create_skcipher(struct crypto_template *tmpl,
591 struct rtattr **tb,
592 struct cryptd_queue *queue)
593 {
594 struct skcipherd_instance_ctx *ctx;
595 struct skcipher_instance *inst;
596 struct skcipher_alg *alg;
597 const char *name;
598 u32 type;
599 u32 mask;
600 int err;
601
602 type = 0;
603 mask = CRYPTO_ALG_ASYNC;
604
605 cryptd_check_internal(tb, &type, &mask);
606
607 name = crypto_attr_alg_name(tb[1]);
608 if (IS_ERR(name))
609 return PTR_ERR(name);
610
611 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
612 if (!inst)
613 return -ENOMEM;
614
615 ctx = skcipher_instance_ctx(inst);
616 ctx->queue = queue;
617
618 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
619 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
620 if (err)
621 goto out_free_inst;
622
623 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
624 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
625 if (err)
626 goto out_drop_skcipher;
627
628 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
629 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
630
631 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
632 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
633 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
634 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
635
636 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
637
638 inst->alg.init = cryptd_skcipher_init_tfm;
639 inst->alg.exit = cryptd_skcipher_exit_tfm;
640
641 inst->alg.setkey = cryptd_skcipher_setkey;
642 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
643 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
644
645 inst->free = cryptd_skcipher_free;
646
647 err = skcipher_register_instance(tmpl, inst);
648 if (err) {
649 out_drop_skcipher:
650 crypto_drop_skcipher(&ctx->spawn);
651 out_free_inst:
652 kfree(inst);
653 }
654 return err;
655 }
656
657 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
658 {
659 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
660 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
661 struct crypto_shash_spawn *spawn = &ictx->spawn;
662 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
663 struct crypto_shash *hash;
664
665 hash = crypto_spawn_shash(spawn);
666 if (IS_ERR(hash))
667 return PTR_ERR(hash);
668
669 ctx->child = hash;
670 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
671 sizeof(struct cryptd_hash_request_ctx) +
672 crypto_shash_descsize(hash));
673 return 0;
674 }
675
676 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
677 {
678 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
679
680 crypto_free_shash(ctx->child);
681 }
682
683 static int cryptd_hash_setkey(struct crypto_ahash *parent,
684 const u8 *key, unsigned int keylen)
685 {
686 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
687 struct crypto_shash *child = ctx->child;
688 int err;
689
690 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
691 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
692 CRYPTO_TFM_REQ_MASK);
693 err = crypto_shash_setkey(child, key, keylen);
694 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
695 CRYPTO_TFM_RES_MASK);
696 return err;
697 }
698
699 static int cryptd_hash_enqueue(struct ahash_request *req,
700 crypto_completion_t compl)
701 {
702 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
703 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
704 struct cryptd_queue *queue =
705 cryptd_get_queue(crypto_ahash_tfm(tfm));
706
707 rctx->complete = req->base.complete;
708 req->base.complete = compl;
709
710 return cryptd_enqueue_request(queue, &req->base);
711 }
712
713 static void cryptd_hash_complete(struct ahash_request *req, int err)
714 {
715 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
716 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
717 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
718 int refcnt = atomic_read(&ctx->refcnt);
719
720 local_bh_disable();
721 rctx->complete(&req->base, err);
722 local_bh_enable();
723
724 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
725 crypto_free_ahash(tfm);
726 }
727
728 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
729 {
730 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
731 struct crypto_shash *child = ctx->child;
732 struct ahash_request *req = ahash_request_cast(req_async);
733 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
734 struct shash_desc *desc = &rctx->desc;
735
736 if (unlikely(err == -EINPROGRESS))
737 goto out;
738
739 desc->tfm = child;
740 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
741
742 err = crypto_shash_init(desc);
743
744 req->base.complete = rctx->complete;
745
746 out:
747 cryptd_hash_complete(req, err);
748 }
749
750 static int cryptd_hash_init_enqueue(struct ahash_request *req)
751 {
752 return cryptd_hash_enqueue(req, cryptd_hash_init);
753 }
754
755 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
756 {
757 struct ahash_request *req = ahash_request_cast(req_async);
758 struct cryptd_hash_request_ctx *rctx;
759
760 rctx = ahash_request_ctx(req);
761
762 if (unlikely(err == -EINPROGRESS))
763 goto out;
764
765 err = shash_ahash_update(req, &rctx->desc);
766
767 req->base.complete = rctx->complete;
768
769 out:
770 cryptd_hash_complete(req, err);
771 }
772
773 static int cryptd_hash_update_enqueue(struct ahash_request *req)
774 {
775 return cryptd_hash_enqueue(req, cryptd_hash_update);
776 }
777
778 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
779 {
780 struct ahash_request *req = ahash_request_cast(req_async);
781 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
782
783 if (unlikely(err == -EINPROGRESS))
784 goto out;
785
786 err = crypto_shash_final(&rctx->desc, req->result);
787
788 req->base.complete = rctx->complete;
789
790 out:
791 cryptd_hash_complete(req, err);
792 }
793
794 static int cryptd_hash_final_enqueue(struct ahash_request *req)
795 {
796 return cryptd_hash_enqueue(req, cryptd_hash_final);
797 }
798
799 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
800 {
801 struct ahash_request *req = ahash_request_cast(req_async);
802 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
803
804 if (unlikely(err == -EINPROGRESS))
805 goto out;
806
807 err = shash_ahash_finup(req, &rctx->desc);
808
809 req->base.complete = rctx->complete;
810
811 out:
812 cryptd_hash_complete(req, err);
813 }
814
815 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
816 {
817 return cryptd_hash_enqueue(req, cryptd_hash_finup);
818 }
819
820 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
821 {
822 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
823 struct crypto_shash *child = ctx->child;
824 struct ahash_request *req = ahash_request_cast(req_async);
825 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
826 struct shash_desc *desc = &rctx->desc;
827
828 if (unlikely(err == -EINPROGRESS))
829 goto out;
830
831 desc->tfm = child;
832 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
833
834 err = shash_ahash_digest(req, desc);
835
836 req->base.complete = rctx->complete;
837
838 out:
839 cryptd_hash_complete(req, err);
840 }
841
842 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
843 {
844 return cryptd_hash_enqueue(req, cryptd_hash_digest);
845 }
846
847 static int cryptd_hash_export(struct ahash_request *req, void *out)
848 {
849 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
850
851 return crypto_shash_export(&rctx->desc, out);
852 }
853
854 static int cryptd_hash_import(struct ahash_request *req, const void *in)
855 {
856 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
858 struct shash_desc *desc = cryptd_shash_desc(req);
859
860 desc->tfm = ctx->child;
861 desc->flags = req->base.flags;
862
863 return crypto_shash_import(desc, in);
864 }
865
866 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
867 struct cryptd_queue *queue)
868 {
869 struct hashd_instance_ctx *ctx;
870 struct ahash_instance *inst;
871 struct shash_alg *salg;
872 struct crypto_alg *alg;
873 u32 type = 0;
874 u32 mask = 0;
875 int err;
876
877 cryptd_check_internal(tb, &type, &mask);
878
879 salg = shash_attr_alg(tb[1], type, mask);
880 if (IS_ERR(salg))
881 return PTR_ERR(salg);
882
883 alg = &salg->base;
884 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
885 sizeof(*ctx));
886 err = PTR_ERR(inst);
887 if (IS_ERR(inst))
888 goto out_put_alg;
889
890 ctx = ahash_instance_ctx(inst);
891 ctx->queue = queue;
892
893 err = crypto_init_shash_spawn(&ctx->spawn, salg,
894 ahash_crypto_instance(inst));
895 if (err)
896 goto out_free_inst;
897
898 type = CRYPTO_ALG_ASYNC;
899 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
900 type |= CRYPTO_ALG_INTERNAL;
901 inst->alg.halg.base.cra_flags = type;
902
903 inst->alg.halg.digestsize = salg->digestsize;
904 inst->alg.halg.statesize = salg->statesize;
905 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
906
907 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
908 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
909
910 inst->alg.init = cryptd_hash_init_enqueue;
911 inst->alg.update = cryptd_hash_update_enqueue;
912 inst->alg.final = cryptd_hash_final_enqueue;
913 inst->alg.finup = cryptd_hash_finup_enqueue;
914 inst->alg.export = cryptd_hash_export;
915 inst->alg.import = cryptd_hash_import;
916 inst->alg.setkey = cryptd_hash_setkey;
917 inst->alg.digest = cryptd_hash_digest_enqueue;
918
919 err = ahash_register_instance(tmpl, inst);
920 if (err) {
921 crypto_drop_shash(&ctx->spawn);
922 out_free_inst:
923 kfree(inst);
924 }
925
926 out_put_alg:
927 crypto_mod_put(alg);
928 return err;
929 }
930
931 static int cryptd_aead_setkey(struct crypto_aead *parent,
932 const u8 *key, unsigned int keylen)
933 {
934 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
935 struct crypto_aead *child = ctx->child;
936
937 return crypto_aead_setkey(child, key, keylen);
938 }
939
940 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
941 unsigned int authsize)
942 {
943 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
944 struct crypto_aead *child = ctx->child;
945
946 return crypto_aead_setauthsize(child, authsize);
947 }
948
949 static void cryptd_aead_crypt(struct aead_request *req,
950 struct crypto_aead *child,
951 int err,
952 int (*crypt)(struct aead_request *req))
953 {
954 struct cryptd_aead_request_ctx *rctx;
955 struct cryptd_aead_ctx *ctx;
956 crypto_completion_t compl;
957 struct crypto_aead *tfm;
958 int refcnt;
959
960 rctx = aead_request_ctx(req);
961 compl = rctx->complete;
962
963 tfm = crypto_aead_reqtfm(req);
964
965 if (unlikely(err == -EINPROGRESS))
966 goto out;
967 aead_request_set_tfm(req, child);
968 err = crypt( req );
969
970 out:
971 ctx = crypto_aead_ctx(tfm);
972 refcnt = atomic_read(&ctx->refcnt);
973
974 local_bh_disable();
975 compl(&req->base, err);
976 local_bh_enable();
977
978 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
979 crypto_free_aead(tfm);
980 }
981
982 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
983 {
984 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
985 struct crypto_aead *child = ctx->child;
986 struct aead_request *req;
987
988 req = container_of(areq, struct aead_request, base);
989 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
990 }
991
992 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
993 {
994 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
995 struct crypto_aead *child = ctx->child;
996 struct aead_request *req;
997
998 req = container_of(areq, struct aead_request, base);
999 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
1000 }
1001
1002 static int cryptd_aead_enqueue(struct aead_request *req,
1003 crypto_completion_t compl)
1004 {
1005 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
1006 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1007 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
1008
1009 rctx->complete = req->base.complete;
1010 req->base.complete = compl;
1011 return cryptd_enqueue_request(queue, &req->base);
1012 }
1013
1014 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
1015 {
1016 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
1017 }
1018
1019 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
1020 {
1021 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
1022 }
1023
1024 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
1025 {
1026 struct aead_instance *inst = aead_alg_instance(tfm);
1027 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
1028 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
1029 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1030 struct crypto_aead *cipher;
1031
1032 cipher = crypto_spawn_aead(spawn);
1033 if (IS_ERR(cipher))
1034 return PTR_ERR(cipher);
1035
1036 ctx->child = cipher;
1037 crypto_aead_set_reqsize(
1038 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
1039 crypto_aead_reqsize(cipher)));
1040 return 0;
1041 }
1042
1043 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
1044 {
1045 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
1046 crypto_free_aead(ctx->child);
1047 }
1048
1049 static int cryptd_create_aead(struct crypto_template *tmpl,
1050 struct rtattr **tb,
1051 struct cryptd_queue *queue)
1052 {
1053 struct aead_instance_ctx *ctx;
1054 struct aead_instance *inst;
1055 struct aead_alg *alg;
1056 const char *name;
1057 u32 type = 0;
1058 u32 mask = CRYPTO_ALG_ASYNC;
1059 int err;
1060
1061 cryptd_check_internal(tb, &type, &mask);
1062
1063 name = crypto_attr_alg_name(tb[1]);
1064 if (IS_ERR(name))
1065 return PTR_ERR(name);
1066
1067 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
1068 if (!inst)
1069 return -ENOMEM;
1070
1071 ctx = aead_instance_ctx(inst);
1072 ctx->queue = queue;
1073
1074 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
1075 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
1076 if (err)
1077 goto out_free_inst;
1078
1079 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
1080 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
1081 if (err)
1082 goto out_drop_aead;
1083
1084 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
1085 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
1086 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
1087
1088 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
1089 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
1090
1091 inst->alg.init = cryptd_aead_init_tfm;
1092 inst->alg.exit = cryptd_aead_exit_tfm;
1093 inst->alg.setkey = cryptd_aead_setkey;
1094 inst->alg.setauthsize = cryptd_aead_setauthsize;
1095 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
1096 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
1097
1098 err = aead_register_instance(tmpl, inst);
1099 if (err) {
1100 out_drop_aead:
1101 crypto_drop_aead(&ctx->aead_spawn);
1102 out_free_inst:
1103 kfree(inst);
1104 }
1105 return err;
1106 }
1107
1108 static struct cryptd_queue queue;
1109
1110 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
1111 {
1112 struct crypto_attr_type *algt;
1113
1114 algt = crypto_get_attr_type(tb);
1115 if (IS_ERR(algt))
1116 return PTR_ERR(algt);
1117
1118 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
1119 case CRYPTO_ALG_TYPE_BLKCIPHER:
1120 if ((algt->type & CRYPTO_ALG_TYPE_MASK) ==
1121 CRYPTO_ALG_TYPE_BLKCIPHER)
1122 return cryptd_create_blkcipher(tmpl, tb, &queue);
1123
1124 return cryptd_create_skcipher(tmpl, tb, &queue);
1125 case CRYPTO_ALG_TYPE_DIGEST:
1126 return cryptd_create_hash(tmpl, tb, &queue);
1127 case CRYPTO_ALG_TYPE_AEAD:
1128 return cryptd_create_aead(tmpl, tb, &queue);
1129 }
1130
1131 return -EINVAL;
1132 }
1133
1134 static void cryptd_free(struct crypto_instance *inst)
1135 {
1136 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
1137 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
1138 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
1139
1140 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
1141 case CRYPTO_ALG_TYPE_AHASH:
1142 crypto_drop_shash(&hctx->spawn);
1143 kfree(ahash_instance(inst));
1144 return;
1145 case CRYPTO_ALG_TYPE_AEAD:
1146 crypto_drop_aead(&aead_ctx->aead_spawn);
1147 kfree(aead_instance(inst));
1148 return;
1149 default:
1150 crypto_drop_spawn(&ctx->spawn);
1151 kfree(inst);
1152 }
1153 }
1154
1155 static struct crypto_template cryptd_tmpl = {
1156 .name = "cryptd",
1157 .create = cryptd_create,
1158 .free = cryptd_free,
1159 .module = THIS_MODULE,
1160 };
1161
1162 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
1163 u32 type, u32 mask)
1164 {
1165 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1166 struct cryptd_blkcipher_ctx *ctx;
1167 struct crypto_tfm *tfm;
1168
1169 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1170 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1171 return ERR_PTR(-EINVAL);
1172 type = crypto_skcipher_type(type);
1173 mask &= ~CRYPTO_ALG_TYPE_MASK;
1174 mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
1175 tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
1176 if (IS_ERR(tfm))
1177 return ERR_CAST(tfm);
1178 if (tfm->__crt_alg->cra_module != THIS_MODULE) {
1179 crypto_free_tfm(tfm);
1180 return ERR_PTR(-EINVAL);
1181 }
1182
1183 ctx = crypto_tfm_ctx(tfm);
1184 atomic_set(&ctx->refcnt, 1);
1185
1186 return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
1187 }
1188 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
1189
1190 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
1191 {
1192 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1193 return ctx->child;
1194 }
1195 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
1196
1197 bool cryptd_ablkcipher_queued(struct cryptd_ablkcipher *tfm)
1198 {
1199 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1200
1201 return atomic_read(&ctx->refcnt) - 1;
1202 }
1203 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_queued);
1204
1205 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
1206 {
1207 struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
1208
1209 if (atomic_dec_and_test(&ctx->refcnt))
1210 crypto_free_ablkcipher(&tfm->base);
1211 }
1212 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
1213
1214 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
1215 u32 type, u32 mask)
1216 {
1217 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1218 struct cryptd_skcipher_ctx *ctx;
1219 struct crypto_skcipher *tfm;
1220
1221 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1222 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1223 return ERR_PTR(-EINVAL);
1224
1225 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
1226 if (IS_ERR(tfm))
1227 return ERR_CAST(tfm);
1228
1229 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1230 crypto_free_skcipher(tfm);
1231 return ERR_PTR(-EINVAL);
1232 }
1233
1234 ctx = crypto_skcipher_ctx(tfm);
1235 atomic_set(&ctx->refcnt, 1);
1236
1237 return container_of(tfm, struct cryptd_skcipher, base);
1238 }
1239 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
1240
1241 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
1242 {
1243 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1244
1245 return ctx->child;
1246 }
1247 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
1248
1249 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
1250 {
1251 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1252
1253 return atomic_read(&ctx->refcnt) - 1;
1254 }
1255 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1256
1257 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1258 {
1259 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1260
1261 if (atomic_dec_and_test(&ctx->refcnt))
1262 crypto_free_skcipher(&tfm->base);
1263 }
1264 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1265
1266 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1267 u32 type, u32 mask)
1268 {
1269 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1270 struct cryptd_hash_ctx *ctx;
1271 struct crypto_ahash *tfm;
1272
1273 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1274 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1275 return ERR_PTR(-EINVAL);
1276 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1277 if (IS_ERR(tfm))
1278 return ERR_CAST(tfm);
1279 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1280 crypto_free_ahash(tfm);
1281 return ERR_PTR(-EINVAL);
1282 }
1283
1284 ctx = crypto_ahash_ctx(tfm);
1285 atomic_set(&ctx->refcnt, 1);
1286
1287 return __cryptd_ahash_cast(tfm);
1288 }
1289 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1290
1291 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1292 {
1293 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1294
1295 return ctx->child;
1296 }
1297 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1298
1299 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1300 {
1301 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1302 return &rctx->desc;
1303 }
1304 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1305
1306 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1307 {
1308 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1309
1310 return atomic_read(&ctx->refcnt) - 1;
1311 }
1312 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1313
1314 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1315 {
1316 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1317
1318 if (atomic_dec_and_test(&ctx->refcnt))
1319 crypto_free_ahash(&tfm->base);
1320 }
1321 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1322
1323 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1324 u32 type, u32 mask)
1325 {
1326 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1327 struct cryptd_aead_ctx *ctx;
1328 struct crypto_aead *tfm;
1329
1330 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1331 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1332 return ERR_PTR(-EINVAL);
1333 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1334 if (IS_ERR(tfm))
1335 return ERR_CAST(tfm);
1336 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1337 crypto_free_aead(tfm);
1338 return ERR_PTR(-EINVAL);
1339 }
1340
1341 ctx = crypto_aead_ctx(tfm);
1342 atomic_set(&ctx->refcnt, 1);
1343
1344 return __cryptd_aead_cast(tfm);
1345 }
1346 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1347
1348 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1349 {
1350 struct cryptd_aead_ctx *ctx;
1351 ctx = crypto_aead_ctx(&tfm->base);
1352 return ctx->child;
1353 }
1354 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1355
1356 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1357 {
1358 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1359
1360 return atomic_read(&ctx->refcnt) - 1;
1361 }
1362 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1363
1364 void cryptd_free_aead(struct cryptd_aead *tfm)
1365 {
1366 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1367
1368 if (atomic_dec_and_test(&ctx->refcnt))
1369 crypto_free_aead(&tfm->base);
1370 }
1371 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1372
1373 static int __init cryptd_init(void)
1374 {
1375 int err;
1376
1377 err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
1378 if (err)
1379 return err;
1380
1381 err = crypto_register_template(&cryptd_tmpl);
1382 if (err)
1383 cryptd_fini_queue(&queue);
1384
1385 return err;
1386 }
1387
1388 static void __exit cryptd_exit(void)
1389 {
1390 cryptd_fini_queue(&queue);
1391 crypto_unregister_template(&cryptd_tmpl);
1392 }
1393
1394 subsys_initcall(cryptd_init);
1395 module_exit(cryptd_exit);
1396
1397 MODULE_LICENSE("GPL");
1398 MODULE_DESCRIPTION("Software async crypto daemon");
1399 MODULE_ALIAS_CRYPTO("cryptd");