]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - crypto/cryptd.c
x86/unwind/orc: Move ORC sorting variables under !CONFIG_MODULES
[mirror_ubuntu-jammy-kernel.git] / crypto / cryptd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Software async crypto daemon.
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 *
7 * Added AEAD support to cryptd.
8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9 * Adrian Hoban <adrian.hoban@intel.com>
10 * Gabriele Paoloni <gabriele.paoloni@intel.com>
11 * Aidan O'Mahony (aidan.o.mahony@intel.com)
12 * Copyright (c) 2010, Intel Corporation.
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33
34 static struct workqueue_struct *cryptd_wq;
35
36 struct cryptd_cpu_queue {
37 struct crypto_queue queue;
38 struct work_struct work;
39 };
40
41 struct cryptd_queue {
42 struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44
45 struct cryptd_instance_ctx {
46 struct crypto_spawn spawn;
47 struct cryptd_queue *queue;
48 };
49
50 struct skcipherd_instance_ctx {
51 struct crypto_skcipher_spawn spawn;
52 struct cryptd_queue *queue;
53 };
54
55 struct hashd_instance_ctx {
56 struct crypto_shash_spawn spawn;
57 struct cryptd_queue *queue;
58 };
59
60 struct aead_instance_ctx {
61 struct crypto_aead_spawn aead_spawn;
62 struct cryptd_queue *queue;
63 };
64
65 struct cryptd_skcipher_ctx {
66 refcount_t refcnt;
67 struct crypto_sync_skcipher *child;
68 };
69
70 struct cryptd_skcipher_request_ctx {
71 crypto_completion_t complete;
72 };
73
74 struct cryptd_hash_ctx {
75 refcount_t refcnt;
76 struct crypto_shash *child;
77 };
78
79 struct cryptd_hash_request_ctx {
80 crypto_completion_t complete;
81 struct shash_desc desc;
82 };
83
84 struct cryptd_aead_ctx {
85 refcount_t refcnt;
86 struct crypto_aead *child;
87 };
88
89 struct cryptd_aead_request_ctx {
90 crypto_completion_t complete;
91 };
92
93 static void cryptd_queue_worker(struct work_struct *work);
94
95 static int cryptd_init_queue(struct cryptd_queue *queue,
96 unsigned int max_cpu_qlen)
97 {
98 int cpu;
99 struct cryptd_cpu_queue *cpu_queue;
100
101 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
102 if (!queue->cpu_queue)
103 return -ENOMEM;
104 for_each_possible_cpu(cpu) {
105 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
106 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
107 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
108 }
109 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
110 return 0;
111 }
112
113 static void cryptd_fini_queue(struct cryptd_queue *queue)
114 {
115 int cpu;
116 struct cryptd_cpu_queue *cpu_queue;
117
118 for_each_possible_cpu(cpu) {
119 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
120 BUG_ON(cpu_queue->queue.qlen);
121 }
122 free_percpu(queue->cpu_queue);
123 }
124
125 static int cryptd_enqueue_request(struct cryptd_queue *queue,
126 struct crypto_async_request *request)
127 {
128 int cpu, err;
129 struct cryptd_cpu_queue *cpu_queue;
130 refcount_t *refcnt;
131
132 cpu = get_cpu();
133 cpu_queue = this_cpu_ptr(queue->cpu_queue);
134 err = crypto_enqueue_request(&cpu_queue->queue, request);
135
136 refcnt = crypto_tfm_ctx(request->tfm);
137
138 if (err == -ENOSPC)
139 goto out_put_cpu;
140
141 queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
142
143 if (!refcount_read(refcnt))
144 goto out_put_cpu;
145
146 refcount_inc(refcnt);
147
148 out_put_cpu:
149 put_cpu();
150
151 return err;
152 }
153
154 /* Called in workqueue context, do one real cryption work (via
155 * req->complete) and reschedule itself if there are more work to
156 * do. */
157 static void cryptd_queue_worker(struct work_struct *work)
158 {
159 struct cryptd_cpu_queue *cpu_queue;
160 struct crypto_async_request *req, *backlog;
161
162 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
163 /*
164 * Only handle one request at a time to avoid hogging crypto workqueue.
165 * preempt_disable/enable is used to prevent being preempted by
166 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
167 * cryptd_enqueue_request() being accessed from software interrupts.
168 */
169 local_bh_disable();
170 preempt_disable();
171 backlog = crypto_get_backlog(&cpu_queue->queue);
172 req = crypto_dequeue_request(&cpu_queue->queue);
173 preempt_enable();
174 local_bh_enable();
175
176 if (!req)
177 return;
178
179 if (backlog)
180 backlog->complete(backlog, -EINPROGRESS);
181 req->complete(req, 0);
182
183 if (cpu_queue->queue.qlen)
184 queue_work(cryptd_wq, &cpu_queue->work);
185 }
186
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 return ictx->queue;
192 }
193
194 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
195 u32 *mask)
196 {
197 struct crypto_attr_type *algt;
198
199 algt = crypto_get_attr_type(tb);
200 if (IS_ERR(algt))
201 return;
202
203 *type |= algt->type & CRYPTO_ALG_INTERNAL;
204 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
205 }
206
207 static int cryptd_init_instance(struct crypto_instance *inst,
208 struct crypto_alg *alg)
209 {
210 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
211 "cryptd(%s)",
212 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
213 return -ENAMETOOLONG;
214
215 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
216
217 inst->alg.cra_priority = alg->cra_priority + 50;
218 inst->alg.cra_blocksize = alg->cra_blocksize;
219 inst->alg.cra_alignmask = alg->cra_alignmask;
220
221 return 0;
222 }
223
224 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
225 const u8 *key, unsigned int keylen)
226 {
227 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
228 struct crypto_sync_skcipher *child = ctx->child;
229
230 crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
231 crypto_sync_skcipher_set_flags(child,
232 crypto_skcipher_get_flags(parent) &
233 CRYPTO_TFM_REQ_MASK);
234 return crypto_sync_skcipher_setkey(child, key, keylen);
235 }
236
237 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
238 {
239 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
240 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
241 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
242 int refcnt = refcount_read(&ctx->refcnt);
243
244 local_bh_disable();
245 rctx->complete(&req->base, err);
246 local_bh_enable();
247
248 if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
249 crypto_free_skcipher(tfm);
250 }
251
252 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
253 int err)
254 {
255 struct skcipher_request *req = skcipher_request_cast(base);
256 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
257 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
258 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
259 struct crypto_sync_skcipher *child = ctx->child;
260 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
261
262 if (unlikely(err == -EINPROGRESS))
263 goto out;
264
265 skcipher_request_set_sync_tfm(subreq, child);
266 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
267 NULL, NULL);
268 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
269 req->iv);
270
271 err = crypto_skcipher_encrypt(subreq);
272 skcipher_request_zero(subreq);
273
274 req->base.complete = rctx->complete;
275
276 out:
277 cryptd_skcipher_complete(req, err);
278 }
279
280 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
281 int err)
282 {
283 struct skcipher_request *req = skcipher_request_cast(base);
284 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
285 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
286 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
287 struct crypto_sync_skcipher *child = ctx->child;
288 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
289
290 if (unlikely(err == -EINPROGRESS))
291 goto out;
292
293 skcipher_request_set_sync_tfm(subreq, child);
294 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
295 NULL, NULL);
296 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
297 req->iv);
298
299 err = crypto_skcipher_decrypt(subreq);
300 skcipher_request_zero(subreq);
301
302 req->base.complete = rctx->complete;
303
304 out:
305 cryptd_skcipher_complete(req, err);
306 }
307
308 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
309 crypto_completion_t compl)
310 {
311 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
312 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
313 struct cryptd_queue *queue;
314
315 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
316 rctx->complete = req->base.complete;
317 req->base.complete = compl;
318
319 return cryptd_enqueue_request(queue, &req->base);
320 }
321
322 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
323 {
324 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
325 }
326
327 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
328 {
329 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
330 }
331
332 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
333 {
334 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
335 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
336 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
337 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
338 struct crypto_skcipher *cipher;
339
340 cipher = crypto_spawn_skcipher(spawn);
341 if (IS_ERR(cipher))
342 return PTR_ERR(cipher);
343
344 ctx->child = (struct crypto_sync_skcipher *)cipher;
345 crypto_skcipher_set_reqsize(
346 tfm, sizeof(struct cryptd_skcipher_request_ctx));
347 return 0;
348 }
349
350 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
351 {
352 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
353
354 crypto_free_sync_skcipher(ctx->child);
355 }
356
357 static void cryptd_skcipher_free(struct skcipher_instance *inst)
358 {
359 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
360
361 crypto_drop_skcipher(&ctx->spawn);
362 kfree(inst);
363 }
364
365 static int cryptd_create_skcipher(struct crypto_template *tmpl,
366 struct rtattr **tb,
367 struct cryptd_queue *queue)
368 {
369 struct skcipherd_instance_ctx *ctx;
370 struct skcipher_instance *inst;
371 struct skcipher_alg *alg;
372 u32 type;
373 u32 mask;
374 int err;
375
376 type = 0;
377 mask = CRYPTO_ALG_ASYNC;
378
379 cryptd_check_internal(tb, &type, &mask);
380
381 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
382 if (!inst)
383 return -ENOMEM;
384
385 ctx = skcipher_instance_ctx(inst);
386 ctx->queue = queue;
387
388 err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
389 crypto_attr_alg_name(tb[1]), type, mask);
390 if (err)
391 goto err_free_inst;
392
393 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
394 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
395 if (err)
396 goto err_free_inst;
397
398 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
399 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
400
401 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
402 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
403 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
404 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
405
406 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
407
408 inst->alg.init = cryptd_skcipher_init_tfm;
409 inst->alg.exit = cryptd_skcipher_exit_tfm;
410
411 inst->alg.setkey = cryptd_skcipher_setkey;
412 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
413 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
414
415 inst->free = cryptd_skcipher_free;
416
417 err = skcipher_register_instance(tmpl, inst);
418 if (err) {
419 err_free_inst:
420 cryptd_skcipher_free(inst);
421 }
422 return err;
423 }
424
425 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
426 {
427 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
428 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
429 struct crypto_shash_spawn *spawn = &ictx->spawn;
430 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
431 struct crypto_shash *hash;
432
433 hash = crypto_spawn_shash(spawn);
434 if (IS_ERR(hash))
435 return PTR_ERR(hash);
436
437 ctx->child = hash;
438 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
439 sizeof(struct cryptd_hash_request_ctx) +
440 crypto_shash_descsize(hash));
441 return 0;
442 }
443
444 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
445 {
446 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
447
448 crypto_free_shash(ctx->child);
449 }
450
451 static int cryptd_hash_setkey(struct crypto_ahash *parent,
452 const u8 *key, unsigned int keylen)
453 {
454 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
455 struct crypto_shash *child = ctx->child;
456
457 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
458 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
459 CRYPTO_TFM_REQ_MASK);
460 return crypto_shash_setkey(child, key, keylen);
461 }
462
463 static int cryptd_hash_enqueue(struct ahash_request *req,
464 crypto_completion_t compl)
465 {
466 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
467 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
468 struct cryptd_queue *queue =
469 cryptd_get_queue(crypto_ahash_tfm(tfm));
470
471 rctx->complete = req->base.complete;
472 req->base.complete = compl;
473
474 return cryptd_enqueue_request(queue, &req->base);
475 }
476
477 static void cryptd_hash_complete(struct ahash_request *req, int err)
478 {
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
480 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
482 int refcnt = refcount_read(&ctx->refcnt);
483
484 local_bh_disable();
485 rctx->complete(&req->base, err);
486 local_bh_enable();
487
488 if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
489 crypto_free_ahash(tfm);
490 }
491
492 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
493 {
494 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
495 struct crypto_shash *child = ctx->child;
496 struct ahash_request *req = ahash_request_cast(req_async);
497 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
498 struct shash_desc *desc = &rctx->desc;
499
500 if (unlikely(err == -EINPROGRESS))
501 goto out;
502
503 desc->tfm = child;
504
505 err = crypto_shash_init(desc);
506
507 req->base.complete = rctx->complete;
508
509 out:
510 cryptd_hash_complete(req, err);
511 }
512
513 static int cryptd_hash_init_enqueue(struct ahash_request *req)
514 {
515 return cryptd_hash_enqueue(req, cryptd_hash_init);
516 }
517
518 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
519 {
520 struct ahash_request *req = ahash_request_cast(req_async);
521 struct cryptd_hash_request_ctx *rctx;
522
523 rctx = ahash_request_ctx(req);
524
525 if (unlikely(err == -EINPROGRESS))
526 goto out;
527
528 err = shash_ahash_update(req, &rctx->desc);
529
530 req->base.complete = rctx->complete;
531
532 out:
533 cryptd_hash_complete(req, err);
534 }
535
536 static int cryptd_hash_update_enqueue(struct ahash_request *req)
537 {
538 return cryptd_hash_enqueue(req, cryptd_hash_update);
539 }
540
541 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
542 {
543 struct ahash_request *req = ahash_request_cast(req_async);
544 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
545
546 if (unlikely(err == -EINPROGRESS))
547 goto out;
548
549 err = crypto_shash_final(&rctx->desc, req->result);
550
551 req->base.complete = rctx->complete;
552
553 out:
554 cryptd_hash_complete(req, err);
555 }
556
557 static int cryptd_hash_final_enqueue(struct ahash_request *req)
558 {
559 return cryptd_hash_enqueue(req, cryptd_hash_final);
560 }
561
562 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
563 {
564 struct ahash_request *req = ahash_request_cast(req_async);
565 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
566
567 if (unlikely(err == -EINPROGRESS))
568 goto out;
569
570 err = shash_ahash_finup(req, &rctx->desc);
571
572 req->base.complete = rctx->complete;
573
574 out:
575 cryptd_hash_complete(req, err);
576 }
577
578 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
579 {
580 return cryptd_hash_enqueue(req, cryptd_hash_finup);
581 }
582
583 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
584 {
585 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
586 struct crypto_shash *child = ctx->child;
587 struct ahash_request *req = ahash_request_cast(req_async);
588 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
589 struct shash_desc *desc = &rctx->desc;
590
591 if (unlikely(err == -EINPROGRESS))
592 goto out;
593
594 desc->tfm = child;
595
596 err = shash_ahash_digest(req, desc);
597
598 req->base.complete = rctx->complete;
599
600 out:
601 cryptd_hash_complete(req, err);
602 }
603
604 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
605 {
606 return cryptd_hash_enqueue(req, cryptd_hash_digest);
607 }
608
609 static int cryptd_hash_export(struct ahash_request *req, void *out)
610 {
611 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
612
613 return crypto_shash_export(&rctx->desc, out);
614 }
615
616 static int cryptd_hash_import(struct ahash_request *req, const void *in)
617 {
618 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
619 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
620 struct shash_desc *desc = cryptd_shash_desc(req);
621
622 desc->tfm = ctx->child;
623
624 return crypto_shash_import(desc, in);
625 }
626
627 static void cryptd_hash_free(struct ahash_instance *inst)
628 {
629 struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
630
631 crypto_drop_shash(&ctx->spawn);
632 kfree(inst);
633 }
634
635 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
636 struct cryptd_queue *queue)
637 {
638 struct hashd_instance_ctx *ctx;
639 struct ahash_instance *inst;
640 struct shash_alg *alg;
641 u32 type = 0;
642 u32 mask = 0;
643 int err;
644
645 cryptd_check_internal(tb, &type, &mask);
646
647 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
648 if (!inst)
649 return -ENOMEM;
650
651 ctx = ahash_instance_ctx(inst);
652 ctx->queue = queue;
653
654 err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
655 crypto_attr_alg_name(tb[1]), type, mask);
656 if (err)
657 goto err_free_inst;
658 alg = crypto_spawn_shash_alg(&ctx->spawn);
659
660 err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
661 if (err)
662 goto err_free_inst;
663
664 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
665 (alg->base.cra_flags & (CRYPTO_ALG_INTERNAL |
666 CRYPTO_ALG_OPTIONAL_KEY));
667
668 inst->alg.halg.digestsize = alg->digestsize;
669 inst->alg.halg.statesize = alg->statesize;
670 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
671
672 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
673 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
674
675 inst->alg.init = cryptd_hash_init_enqueue;
676 inst->alg.update = cryptd_hash_update_enqueue;
677 inst->alg.final = cryptd_hash_final_enqueue;
678 inst->alg.finup = cryptd_hash_finup_enqueue;
679 inst->alg.export = cryptd_hash_export;
680 inst->alg.import = cryptd_hash_import;
681 if (crypto_shash_alg_has_setkey(alg))
682 inst->alg.setkey = cryptd_hash_setkey;
683 inst->alg.digest = cryptd_hash_digest_enqueue;
684
685 inst->free = cryptd_hash_free;
686
687 err = ahash_register_instance(tmpl, inst);
688 if (err) {
689 err_free_inst:
690 cryptd_hash_free(inst);
691 }
692 return err;
693 }
694
695 static int cryptd_aead_setkey(struct crypto_aead *parent,
696 const u8 *key, unsigned int keylen)
697 {
698 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
699 struct crypto_aead *child = ctx->child;
700
701 return crypto_aead_setkey(child, key, keylen);
702 }
703
704 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
705 unsigned int authsize)
706 {
707 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
708 struct crypto_aead *child = ctx->child;
709
710 return crypto_aead_setauthsize(child, authsize);
711 }
712
713 static void cryptd_aead_crypt(struct aead_request *req,
714 struct crypto_aead *child,
715 int err,
716 int (*crypt)(struct aead_request *req))
717 {
718 struct cryptd_aead_request_ctx *rctx;
719 struct cryptd_aead_ctx *ctx;
720 crypto_completion_t compl;
721 struct crypto_aead *tfm;
722 int refcnt;
723
724 rctx = aead_request_ctx(req);
725 compl = rctx->complete;
726
727 tfm = crypto_aead_reqtfm(req);
728
729 if (unlikely(err == -EINPROGRESS))
730 goto out;
731 aead_request_set_tfm(req, child);
732 err = crypt( req );
733
734 out:
735 ctx = crypto_aead_ctx(tfm);
736 refcnt = refcount_read(&ctx->refcnt);
737
738 local_bh_disable();
739 compl(&req->base, err);
740 local_bh_enable();
741
742 if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
743 crypto_free_aead(tfm);
744 }
745
746 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
747 {
748 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
749 struct crypto_aead *child = ctx->child;
750 struct aead_request *req;
751
752 req = container_of(areq, struct aead_request, base);
753 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
754 }
755
756 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
757 {
758 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
759 struct crypto_aead *child = ctx->child;
760 struct aead_request *req;
761
762 req = container_of(areq, struct aead_request, base);
763 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
764 }
765
766 static int cryptd_aead_enqueue(struct aead_request *req,
767 crypto_completion_t compl)
768 {
769 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
770 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
771 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
772
773 rctx->complete = req->base.complete;
774 req->base.complete = compl;
775 return cryptd_enqueue_request(queue, &req->base);
776 }
777
778 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
779 {
780 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
781 }
782
783 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
784 {
785 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
786 }
787
788 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
789 {
790 struct aead_instance *inst = aead_alg_instance(tfm);
791 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
792 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
793 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
794 struct crypto_aead *cipher;
795
796 cipher = crypto_spawn_aead(spawn);
797 if (IS_ERR(cipher))
798 return PTR_ERR(cipher);
799
800 ctx->child = cipher;
801 crypto_aead_set_reqsize(
802 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
803 crypto_aead_reqsize(cipher)));
804 return 0;
805 }
806
807 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
808 {
809 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
810 crypto_free_aead(ctx->child);
811 }
812
813 static void cryptd_aead_free(struct aead_instance *inst)
814 {
815 struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
816
817 crypto_drop_aead(&ctx->aead_spawn);
818 kfree(inst);
819 }
820
821 static int cryptd_create_aead(struct crypto_template *tmpl,
822 struct rtattr **tb,
823 struct cryptd_queue *queue)
824 {
825 struct aead_instance_ctx *ctx;
826 struct aead_instance *inst;
827 struct aead_alg *alg;
828 u32 type = 0;
829 u32 mask = CRYPTO_ALG_ASYNC;
830 int err;
831
832 cryptd_check_internal(tb, &type, &mask);
833
834 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
835 if (!inst)
836 return -ENOMEM;
837
838 ctx = aead_instance_ctx(inst);
839 ctx->queue = queue;
840
841 err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
842 crypto_attr_alg_name(tb[1]), type, mask);
843 if (err)
844 goto err_free_inst;
845
846 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
847 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
848 if (err)
849 goto err_free_inst;
850
851 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
852 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
853 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
854
855 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
856 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
857
858 inst->alg.init = cryptd_aead_init_tfm;
859 inst->alg.exit = cryptd_aead_exit_tfm;
860 inst->alg.setkey = cryptd_aead_setkey;
861 inst->alg.setauthsize = cryptd_aead_setauthsize;
862 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
863 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
864
865 inst->free = cryptd_aead_free;
866
867 err = aead_register_instance(tmpl, inst);
868 if (err) {
869 err_free_inst:
870 cryptd_aead_free(inst);
871 }
872 return err;
873 }
874
875 static struct cryptd_queue queue;
876
877 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
878 {
879 struct crypto_attr_type *algt;
880
881 algt = crypto_get_attr_type(tb);
882 if (IS_ERR(algt))
883 return PTR_ERR(algt);
884
885 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
886 case CRYPTO_ALG_TYPE_SKCIPHER:
887 return cryptd_create_skcipher(tmpl, tb, &queue);
888 case CRYPTO_ALG_TYPE_HASH:
889 return cryptd_create_hash(tmpl, tb, &queue);
890 case CRYPTO_ALG_TYPE_AEAD:
891 return cryptd_create_aead(tmpl, tb, &queue);
892 }
893
894 return -EINVAL;
895 }
896
897 static struct crypto_template cryptd_tmpl = {
898 .name = "cryptd",
899 .create = cryptd_create,
900 .module = THIS_MODULE,
901 };
902
903 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
904 u32 type, u32 mask)
905 {
906 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
907 struct cryptd_skcipher_ctx *ctx;
908 struct crypto_skcipher *tfm;
909
910 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
911 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
912 return ERR_PTR(-EINVAL);
913
914 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
915 if (IS_ERR(tfm))
916 return ERR_CAST(tfm);
917
918 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
919 crypto_free_skcipher(tfm);
920 return ERR_PTR(-EINVAL);
921 }
922
923 ctx = crypto_skcipher_ctx(tfm);
924 refcount_set(&ctx->refcnt, 1);
925
926 return container_of(tfm, struct cryptd_skcipher, base);
927 }
928 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
929
930 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
931 {
932 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
933
934 return &ctx->child->base;
935 }
936 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
937
938 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
939 {
940 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
941
942 return refcount_read(&ctx->refcnt) - 1;
943 }
944 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
945
946 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
947 {
948 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
949
950 if (refcount_dec_and_test(&ctx->refcnt))
951 crypto_free_skcipher(&tfm->base);
952 }
953 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
954
955 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
956 u32 type, u32 mask)
957 {
958 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
959 struct cryptd_hash_ctx *ctx;
960 struct crypto_ahash *tfm;
961
962 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
963 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
964 return ERR_PTR(-EINVAL);
965 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
966 if (IS_ERR(tfm))
967 return ERR_CAST(tfm);
968 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
969 crypto_free_ahash(tfm);
970 return ERR_PTR(-EINVAL);
971 }
972
973 ctx = crypto_ahash_ctx(tfm);
974 refcount_set(&ctx->refcnt, 1);
975
976 return __cryptd_ahash_cast(tfm);
977 }
978 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
979
980 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
981 {
982 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
983
984 return ctx->child;
985 }
986 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
987
988 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
989 {
990 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
991 return &rctx->desc;
992 }
993 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
994
995 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
996 {
997 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
998
999 return refcount_read(&ctx->refcnt) - 1;
1000 }
1001 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1002
1003 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1004 {
1005 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1006
1007 if (refcount_dec_and_test(&ctx->refcnt))
1008 crypto_free_ahash(&tfm->base);
1009 }
1010 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1011
1012 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1013 u32 type, u32 mask)
1014 {
1015 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1016 struct cryptd_aead_ctx *ctx;
1017 struct crypto_aead *tfm;
1018
1019 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1020 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1021 return ERR_PTR(-EINVAL);
1022 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1023 if (IS_ERR(tfm))
1024 return ERR_CAST(tfm);
1025 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1026 crypto_free_aead(tfm);
1027 return ERR_PTR(-EINVAL);
1028 }
1029
1030 ctx = crypto_aead_ctx(tfm);
1031 refcount_set(&ctx->refcnt, 1);
1032
1033 return __cryptd_aead_cast(tfm);
1034 }
1035 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1036
1037 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1038 {
1039 struct cryptd_aead_ctx *ctx;
1040 ctx = crypto_aead_ctx(&tfm->base);
1041 return ctx->child;
1042 }
1043 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1044
1045 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1046 {
1047 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1048
1049 return refcount_read(&ctx->refcnt) - 1;
1050 }
1051 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1052
1053 void cryptd_free_aead(struct cryptd_aead *tfm)
1054 {
1055 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1056
1057 if (refcount_dec_and_test(&ctx->refcnt))
1058 crypto_free_aead(&tfm->base);
1059 }
1060 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1061
1062 static int __init cryptd_init(void)
1063 {
1064 int err;
1065
1066 cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1067 1);
1068 if (!cryptd_wq)
1069 return -ENOMEM;
1070
1071 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1072 if (err)
1073 goto err_destroy_wq;
1074
1075 err = crypto_register_template(&cryptd_tmpl);
1076 if (err)
1077 goto err_fini_queue;
1078
1079 return 0;
1080
1081 err_fini_queue:
1082 cryptd_fini_queue(&queue);
1083 err_destroy_wq:
1084 destroy_workqueue(cryptd_wq);
1085 return err;
1086 }
1087
1088 static void __exit cryptd_exit(void)
1089 {
1090 destroy_workqueue(cryptd_wq);
1091 cryptd_fini_queue(&queue);
1092 crypto_unregister_template(&cryptd_tmpl);
1093 }
1094
1095 subsys_initcall(cryptd_init);
1096 module_exit(cryptd_exit);
1097
1098 MODULE_LICENSE("GPL");
1099 MODULE_DESCRIPTION("Software async crypto daemon");
1100 MODULE_ALIAS_CRYPTO("cryptd");