]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - crypto/cryptd.c
UBUNTU: Start new release
[mirror_ubuntu-jammy-kernel.git] / crypto / cryptd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Software async crypto daemon.
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 *
7 * Added AEAD support to cryptd.
8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9 * Adrian Hoban <adrian.hoban@intel.com>
10 * Gabriele Paoloni <gabriele.paoloni@intel.com>
11 * Aidan O'Mahony (aidan.o.mahony@intel.com)
12 * Copyright (c) 2010, Intel Corporation.
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/refcount.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33
34 static struct workqueue_struct *cryptd_wq;
35
36 struct cryptd_cpu_queue {
37 struct crypto_queue queue;
38 struct work_struct work;
39 };
40
41 struct cryptd_queue {
42 struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44
45 struct cryptd_instance_ctx {
46 struct crypto_spawn spawn;
47 struct cryptd_queue *queue;
48 };
49
50 struct skcipherd_instance_ctx {
51 struct crypto_skcipher_spawn spawn;
52 struct cryptd_queue *queue;
53 };
54
55 struct hashd_instance_ctx {
56 struct crypto_shash_spawn spawn;
57 struct cryptd_queue *queue;
58 };
59
60 struct aead_instance_ctx {
61 struct crypto_aead_spawn aead_spawn;
62 struct cryptd_queue *queue;
63 };
64
65 struct cryptd_skcipher_ctx {
66 refcount_t refcnt;
67 struct crypto_sync_skcipher *child;
68 };
69
70 struct cryptd_skcipher_request_ctx {
71 crypto_completion_t complete;
72 };
73
74 struct cryptd_hash_ctx {
75 refcount_t refcnt;
76 struct crypto_shash *child;
77 };
78
79 struct cryptd_hash_request_ctx {
80 crypto_completion_t complete;
81 struct shash_desc desc;
82 };
83
84 struct cryptd_aead_ctx {
85 refcount_t refcnt;
86 struct crypto_aead *child;
87 };
88
89 struct cryptd_aead_request_ctx {
90 crypto_completion_t complete;
91 };
92
93 static void cryptd_queue_worker(struct work_struct *work);
94
95 static int cryptd_init_queue(struct cryptd_queue *queue,
96 unsigned int max_cpu_qlen)
97 {
98 int cpu;
99 struct cryptd_cpu_queue *cpu_queue;
100
101 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
102 if (!queue->cpu_queue)
103 return -ENOMEM;
104 for_each_possible_cpu(cpu) {
105 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
106 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
107 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
108 }
109 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
110 return 0;
111 }
112
113 static void cryptd_fini_queue(struct cryptd_queue *queue)
114 {
115 int cpu;
116 struct cryptd_cpu_queue *cpu_queue;
117
118 for_each_possible_cpu(cpu) {
119 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
120 BUG_ON(cpu_queue->queue.qlen);
121 }
122 free_percpu(queue->cpu_queue);
123 }
124
125 static int cryptd_enqueue_request(struct cryptd_queue *queue,
126 struct crypto_async_request *request)
127 {
128 int cpu, err;
129 struct cryptd_cpu_queue *cpu_queue;
130 refcount_t *refcnt;
131
132 cpu = get_cpu();
133 cpu_queue = this_cpu_ptr(queue->cpu_queue);
134 err = crypto_enqueue_request(&cpu_queue->queue, request);
135
136 refcnt = crypto_tfm_ctx(request->tfm);
137
138 if (err == -ENOSPC)
139 goto out_put_cpu;
140
141 queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
142
143 if (!refcount_read(refcnt))
144 goto out_put_cpu;
145
146 refcount_inc(refcnt);
147
148 out_put_cpu:
149 put_cpu();
150
151 return err;
152 }
153
154 /* Called in workqueue context, do one real cryption work (via
155 * req->complete) and reschedule itself if there are more work to
156 * do. */
157 static void cryptd_queue_worker(struct work_struct *work)
158 {
159 struct cryptd_cpu_queue *cpu_queue;
160 struct crypto_async_request *req, *backlog;
161
162 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
163 /*
164 * Only handle one request at a time to avoid hogging crypto workqueue.
165 * preempt_disable/enable is used to prevent being preempted by
166 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
167 * cryptd_enqueue_request() being accessed from software interrupts.
168 */
169 local_bh_disable();
170 preempt_disable();
171 backlog = crypto_get_backlog(&cpu_queue->queue);
172 req = crypto_dequeue_request(&cpu_queue->queue);
173 preempt_enable();
174 local_bh_enable();
175
176 if (!req)
177 return;
178
179 if (backlog)
180 backlog->complete(backlog, -EINPROGRESS);
181 req->complete(req, 0);
182
183 if (cpu_queue->queue.qlen)
184 queue_work(cryptd_wq, &cpu_queue->work);
185 }
186
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 return ictx->queue;
192 }
193
194 static void cryptd_type_and_mask(struct crypto_attr_type *algt,
195 u32 *type, u32 *mask)
196 {
197 /*
198 * cryptd is allowed to wrap internal algorithms, but in that case the
199 * resulting cryptd instance will be marked as internal as well.
200 */
201 *type = algt->type & CRYPTO_ALG_INTERNAL;
202 *mask = algt->mask & CRYPTO_ALG_INTERNAL;
203
204 /* No point in cryptd wrapping an algorithm that's already async. */
205 *mask |= CRYPTO_ALG_ASYNC;
206
207 *mask |= crypto_algt_inherited_mask(algt);
208 }
209
210 static int cryptd_init_instance(struct crypto_instance *inst,
211 struct crypto_alg *alg)
212 {
213 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
214 "cryptd(%s)",
215 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
216 return -ENAMETOOLONG;
217
218 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
219
220 inst->alg.cra_priority = alg->cra_priority + 50;
221 inst->alg.cra_blocksize = alg->cra_blocksize;
222 inst->alg.cra_alignmask = alg->cra_alignmask;
223
224 return 0;
225 }
226
227 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
228 const u8 *key, unsigned int keylen)
229 {
230 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
231 struct crypto_sync_skcipher *child = ctx->child;
232
233 crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
234 crypto_sync_skcipher_set_flags(child,
235 crypto_skcipher_get_flags(parent) &
236 CRYPTO_TFM_REQ_MASK);
237 return crypto_sync_skcipher_setkey(child, key, keylen);
238 }
239
240 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
241 {
242 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
243 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
244 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
245 int refcnt = refcount_read(&ctx->refcnt);
246
247 local_bh_disable();
248 rctx->complete(&req->base, err);
249 local_bh_enable();
250
251 if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
252 crypto_free_skcipher(tfm);
253 }
254
255 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
256 int err)
257 {
258 struct skcipher_request *req = skcipher_request_cast(base);
259 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
260 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
261 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
262 struct crypto_sync_skcipher *child = ctx->child;
263 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
264
265 if (unlikely(err == -EINPROGRESS))
266 goto out;
267
268 skcipher_request_set_sync_tfm(subreq, child);
269 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
270 NULL, NULL);
271 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
272 req->iv);
273
274 err = crypto_skcipher_encrypt(subreq);
275 skcipher_request_zero(subreq);
276
277 req->base.complete = rctx->complete;
278
279 out:
280 cryptd_skcipher_complete(req, err);
281 }
282
283 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
284 int err)
285 {
286 struct skcipher_request *req = skcipher_request_cast(base);
287 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
288 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
289 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
290 struct crypto_sync_skcipher *child = ctx->child;
291 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
292
293 if (unlikely(err == -EINPROGRESS))
294 goto out;
295
296 skcipher_request_set_sync_tfm(subreq, child);
297 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
298 NULL, NULL);
299 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
300 req->iv);
301
302 err = crypto_skcipher_decrypt(subreq);
303 skcipher_request_zero(subreq);
304
305 req->base.complete = rctx->complete;
306
307 out:
308 cryptd_skcipher_complete(req, err);
309 }
310
311 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
312 crypto_completion_t compl)
313 {
314 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
315 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
316 struct cryptd_queue *queue;
317
318 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
319 rctx->complete = req->base.complete;
320 req->base.complete = compl;
321
322 return cryptd_enqueue_request(queue, &req->base);
323 }
324
325 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
326 {
327 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
328 }
329
330 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
331 {
332 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
333 }
334
335 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
336 {
337 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
338 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
339 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
340 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
341 struct crypto_skcipher *cipher;
342
343 cipher = crypto_spawn_skcipher(spawn);
344 if (IS_ERR(cipher))
345 return PTR_ERR(cipher);
346
347 ctx->child = (struct crypto_sync_skcipher *)cipher;
348 crypto_skcipher_set_reqsize(
349 tfm, sizeof(struct cryptd_skcipher_request_ctx));
350 return 0;
351 }
352
353 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
354 {
355 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
356
357 crypto_free_sync_skcipher(ctx->child);
358 }
359
360 static void cryptd_skcipher_free(struct skcipher_instance *inst)
361 {
362 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
363
364 crypto_drop_skcipher(&ctx->spawn);
365 kfree(inst);
366 }
367
368 static int cryptd_create_skcipher(struct crypto_template *tmpl,
369 struct rtattr **tb,
370 struct crypto_attr_type *algt,
371 struct cryptd_queue *queue)
372 {
373 struct skcipherd_instance_ctx *ctx;
374 struct skcipher_instance *inst;
375 struct skcipher_alg *alg;
376 u32 type;
377 u32 mask;
378 int err;
379
380 cryptd_type_and_mask(algt, &type, &mask);
381
382 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
383 if (!inst)
384 return -ENOMEM;
385
386 ctx = skcipher_instance_ctx(inst);
387 ctx->queue = queue;
388
389 err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
390 crypto_attr_alg_name(tb[1]), type, mask);
391 if (err)
392 goto err_free_inst;
393
394 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
395 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
396 if (err)
397 goto err_free_inst;
398
399 inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
400 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
401 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
402 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
403 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
404 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
405
406 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
407
408 inst->alg.init = cryptd_skcipher_init_tfm;
409 inst->alg.exit = cryptd_skcipher_exit_tfm;
410
411 inst->alg.setkey = cryptd_skcipher_setkey;
412 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
413 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
414
415 inst->free = cryptd_skcipher_free;
416
417 err = skcipher_register_instance(tmpl, inst);
418 if (err) {
419 err_free_inst:
420 cryptd_skcipher_free(inst);
421 }
422 return err;
423 }
424
425 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
426 {
427 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
428 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
429 struct crypto_shash_spawn *spawn = &ictx->spawn;
430 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
431 struct crypto_shash *hash;
432
433 hash = crypto_spawn_shash(spawn);
434 if (IS_ERR(hash))
435 return PTR_ERR(hash);
436
437 ctx->child = hash;
438 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
439 sizeof(struct cryptd_hash_request_ctx) +
440 crypto_shash_descsize(hash));
441 return 0;
442 }
443
444 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
445 {
446 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
447
448 crypto_free_shash(ctx->child);
449 }
450
451 static int cryptd_hash_setkey(struct crypto_ahash *parent,
452 const u8 *key, unsigned int keylen)
453 {
454 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
455 struct crypto_shash *child = ctx->child;
456
457 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
458 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
459 CRYPTO_TFM_REQ_MASK);
460 return crypto_shash_setkey(child, key, keylen);
461 }
462
463 static int cryptd_hash_enqueue(struct ahash_request *req,
464 crypto_completion_t compl)
465 {
466 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
467 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
468 struct cryptd_queue *queue =
469 cryptd_get_queue(crypto_ahash_tfm(tfm));
470
471 rctx->complete = req->base.complete;
472 req->base.complete = compl;
473
474 return cryptd_enqueue_request(queue, &req->base);
475 }
476
477 static void cryptd_hash_complete(struct ahash_request *req, int err)
478 {
479 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
480 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
482 int refcnt = refcount_read(&ctx->refcnt);
483
484 local_bh_disable();
485 rctx->complete(&req->base, err);
486 local_bh_enable();
487
488 if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
489 crypto_free_ahash(tfm);
490 }
491
492 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
493 {
494 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
495 struct crypto_shash *child = ctx->child;
496 struct ahash_request *req = ahash_request_cast(req_async);
497 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
498 struct shash_desc *desc = &rctx->desc;
499
500 if (unlikely(err == -EINPROGRESS))
501 goto out;
502
503 desc->tfm = child;
504
505 err = crypto_shash_init(desc);
506
507 req->base.complete = rctx->complete;
508
509 out:
510 cryptd_hash_complete(req, err);
511 }
512
513 static int cryptd_hash_init_enqueue(struct ahash_request *req)
514 {
515 return cryptd_hash_enqueue(req, cryptd_hash_init);
516 }
517
518 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
519 {
520 struct ahash_request *req = ahash_request_cast(req_async);
521 struct cryptd_hash_request_ctx *rctx;
522
523 rctx = ahash_request_ctx(req);
524
525 if (unlikely(err == -EINPROGRESS))
526 goto out;
527
528 err = shash_ahash_update(req, &rctx->desc);
529
530 req->base.complete = rctx->complete;
531
532 out:
533 cryptd_hash_complete(req, err);
534 }
535
536 static int cryptd_hash_update_enqueue(struct ahash_request *req)
537 {
538 return cryptd_hash_enqueue(req, cryptd_hash_update);
539 }
540
541 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
542 {
543 struct ahash_request *req = ahash_request_cast(req_async);
544 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
545
546 if (unlikely(err == -EINPROGRESS))
547 goto out;
548
549 err = crypto_shash_final(&rctx->desc, req->result);
550
551 req->base.complete = rctx->complete;
552
553 out:
554 cryptd_hash_complete(req, err);
555 }
556
557 static int cryptd_hash_final_enqueue(struct ahash_request *req)
558 {
559 return cryptd_hash_enqueue(req, cryptd_hash_final);
560 }
561
562 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
563 {
564 struct ahash_request *req = ahash_request_cast(req_async);
565 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
566
567 if (unlikely(err == -EINPROGRESS))
568 goto out;
569
570 err = shash_ahash_finup(req, &rctx->desc);
571
572 req->base.complete = rctx->complete;
573
574 out:
575 cryptd_hash_complete(req, err);
576 }
577
578 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
579 {
580 return cryptd_hash_enqueue(req, cryptd_hash_finup);
581 }
582
583 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
584 {
585 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
586 struct crypto_shash *child = ctx->child;
587 struct ahash_request *req = ahash_request_cast(req_async);
588 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
589 struct shash_desc *desc = &rctx->desc;
590
591 if (unlikely(err == -EINPROGRESS))
592 goto out;
593
594 desc->tfm = child;
595
596 err = shash_ahash_digest(req, desc);
597
598 req->base.complete = rctx->complete;
599
600 out:
601 cryptd_hash_complete(req, err);
602 }
603
604 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
605 {
606 return cryptd_hash_enqueue(req, cryptd_hash_digest);
607 }
608
609 static int cryptd_hash_export(struct ahash_request *req, void *out)
610 {
611 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
612
613 return crypto_shash_export(&rctx->desc, out);
614 }
615
616 static int cryptd_hash_import(struct ahash_request *req, const void *in)
617 {
618 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
619 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
620 struct shash_desc *desc = cryptd_shash_desc(req);
621
622 desc->tfm = ctx->child;
623
624 return crypto_shash_import(desc, in);
625 }
626
627 static void cryptd_hash_free(struct ahash_instance *inst)
628 {
629 struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst);
630
631 crypto_drop_shash(&ctx->spawn);
632 kfree(inst);
633 }
634
635 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
636 struct crypto_attr_type *algt,
637 struct cryptd_queue *queue)
638 {
639 struct hashd_instance_ctx *ctx;
640 struct ahash_instance *inst;
641 struct shash_alg *alg;
642 u32 type;
643 u32 mask;
644 int err;
645
646 cryptd_type_and_mask(algt, &type, &mask);
647
648 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
649 if (!inst)
650 return -ENOMEM;
651
652 ctx = ahash_instance_ctx(inst);
653 ctx->queue = queue;
654
655 err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst),
656 crypto_attr_alg_name(tb[1]), type, mask);
657 if (err)
658 goto err_free_inst;
659 alg = crypto_spawn_shash_alg(&ctx->spawn);
660
661 err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base);
662 if (err)
663 goto err_free_inst;
664
665 inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC |
666 (alg->base.cra_flags & (CRYPTO_ALG_INTERNAL|
667 CRYPTO_ALG_OPTIONAL_KEY));
668 inst->alg.halg.digestsize = alg->digestsize;
669 inst->alg.halg.statesize = alg->statesize;
670 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
671
672 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
673 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
674
675 inst->alg.init = cryptd_hash_init_enqueue;
676 inst->alg.update = cryptd_hash_update_enqueue;
677 inst->alg.final = cryptd_hash_final_enqueue;
678 inst->alg.finup = cryptd_hash_finup_enqueue;
679 inst->alg.export = cryptd_hash_export;
680 inst->alg.import = cryptd_hash_import;
681 if (crypto_shash_alg_has_setkey(alg))
682 inst->alg.setkey = cryptd_hash_setkey;
683 inst->alg.digest = cryptd_hash_digest_enqueue;
684
685 inst->free = cryptd_hash_free;
686
687 err = ahash_register_instance(tmpl, inst);
688 if (err) {
689 err_free_inst:
690 cryptd_hash_free(inst);
691 }
692 return err;
693 }
694
695 static int cryptd_aead_setkey(struct crypto_aead *parent,
696 const u8 *key, unsigned int keylen)
697 {
698 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
699 struct crypto_aead *child = ctx->child;
700
701 return crypto_aead_setkey(child, key, keylen);
702 }
703
704 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
705 unsigned int authsize)
706 {
707 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
708 struct crypto_aead *child = ctx->child;
709
710 return crypto_aead_setauthsize(child, authsize);
711 }
712
713 static void cryptd_aead_crypt(struct aead_request *req,
714 struct crypto_aead *child,
715 int err,
716 int (*crypt)(struct aead_request *req))
717 {
718 struct cryptd_aead_request_ctx *rctx;
719 struct cryptd_aead_ctx *ctx;
720 crypto_completion_t compl;
721 struct crypto_aead *tfm;
722 int refcnt;
723
724 rctx = aead_request_ctx(req);
725 compl = rctx->complete;
726
727 tfm = crypto_aead_reqtfm(req);
728
729 if (unlikely(err == -EINPROGRESS))
730 goto out;
731 aead_request_set_tfm(req, child);
732 err = crypt( req );
733
734 out:
735 ctx = crypto_aead_ctx(tfm);
736 refcnt = refcount_read(&ctx->refcnt);
737
738 local_bh_disable();
739 compl(&req->base, err);
740 local_bh_enable();
741
742 if (err != -EINPROGRESS && refcnt && refcount_dec_and_test(&ctx->refcnt))
743 crypto_free_aead(tfm);
744 }
745
746 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
747 {
748 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
749 struct crypto_aead *child = ctx->child;
750 struct aead_request *req;
751
752 req = container_of(areq, struct aead_request, base);
753 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
754 }
755
756 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
757 {
758 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
759 struct crypto_aead *child = ctx->child;
760 struct aead_request *req;
761
762 req = container_of(areq, struct aead_request, base);
763 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
764 }
765
766 static int cryptd_aead_enqueue(struct aead_request *req,
767 crypto_completion_t compl)
768 {
769 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
770 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
771 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
772
773 rctx->complete = req->base.complete;
774 req->base.complete = compl;
775 return cryptd_enqueue_request(queue, &req->base);
776 }
777
778 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
779 {
780 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
781 }
782
783 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
784 {
785 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
786 }
787
788 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
789 {
790 struct aead_instance *inst = aead_alg_instance(tfm);
791 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
792 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
793 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
794 struct crypto_aead *cipher;
795
796 cipher = crypto_spawn_aead(spawn);
797 if (IS_ERR(cipher))
798 return PTR_ERR(cipher);
799
800 ctx->child = cipher;
801 crypto_aead_set_reqsize(
802 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
803 crypto_aead_reqsize(cipher)));
804 return 0;
805 }
806
807 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
808 {
809 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
810 crypto_free_aead(ctx->child);
811 }
812
813 static void cryptd_aead_free(struct aead_instance *inst)
814 {
815 struct aead_instance_ctx *ctx = aead_instance_ctx(inst);
816
817 crypto_drop_aead(&ctx->aead_spawn);
818 kfree(inst);
819 }
820
821 static int cryptd_create_aead(struct crypto_template *tmpl,
822 struct rtattr **tb,
823 struct crypto_attr_type *algt,
824 struct cryptd_queue *queue)
825 {
826 struct aead_instance_ctx *ctx;
827 struct aead_instance *inst;
828 struct aead_alg *alg;
829 u32 type;
830 u32 mask;
831 int err;
832
833 cryptd_type_and_mask(algt, &type, &mask);
834
835 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
836 if (!inst)
837 return -ENOMEM;
838
839 ctx = aead_instance_ctx(inst);
840 ctx->queue = queue;
841
842 err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst),
843 crypto_attr_alg_name(tb[1]), type, mask);
844 if (err)
845 goto err_free_inst;
846
847 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
848 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
849 if (err)
850 goto err_free_inst;
851
852 inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC |
853 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
854 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
855
856 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
857 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
858
859 inst->alg.init = cryptd_aead_init_tfm;
860 inst->alg.exit = cryptd_aead_exit_tfm;
861 inst->alg.setkey = cryptd_aead_setkey;
862 inst->alg.setauthsize = cryptd_aead_setauthsize;
863 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
864 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
865
866 inst->free = cryptd_aead_free;
867
868 err = aead_register_instance(tmpl, inst);
869 if (err) {
870 err_free_inst:
871 cryptd_aead_free(inst);
872 }
873 return err;
874 }
875
876 static struct cryptd_queue queue;
877
878 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
879 {
880 struct crypto_attr_type *algt;
881
882 algt = crypto_get_attr_type(tb);
883 if (IS_ERR(algt))
884 return PTR_ERR(algt);
885
886 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
887 case CRYPTO_ALG_TYPE_SKCIPHER:
888 return cryptd_create_skcipher(tmpl, tb, algt, &queue);
889 case CRYPTO_ALG_TYPE_HASH:
890 return cryptd_create_hash(tmpl, tb, algt, &queue);
891 case CRYPTO_ALG_TYPE_AEAD:
892 return cryptd_create_aead(tmpl, tb, algt, &queue);
893 }
894
895 return -EINVAL;
896 }
897
898 static struct crypto_template cryptd_tmpl = {
899 .name = "cryptd",
900 .create = cryptd_create,
901 .module = THIS_MODULE,
902 };
903
904 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
905 u32 type, u32 mask)
906 {
907 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
908 struct cryptd_skcipher_ctx *ctx;
909 struct crypto_skcipher *tfm;
910
911 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
912 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
913 return ERR_PTR(-EINVAL);
914
915 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
916 if (IS_ERR(tfm))
917 return ERR_CAST(tfm);
918
919 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
920 crypto_free_skcipher(tfm);
921 return ERR_PTR(-EINVAL);
922 }
923
924 ctx = crypto_skcipher_ctx(tfm);
925 refcount_set(&ctx->refcnt, 1);
926
927 return container_of(tfm, struct cryptd_skcipher, base);
928 }
929 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
930
931 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
932 {
933 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
934
935 return &ctx->child->base;
936 }
937 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
938
939 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
940 {
941 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
942
943 return refcount_read(&ctx->refcnt) - 1;
944 }
945 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
946
947 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
948 {
949 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
950
951 if (refcount_dec_and_test(&ctx->refcnt))
952 crypto_free_skcipher(&tfm->base);
953 }
954 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
955
956 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
957 u32 type, u32 mask)
958 {
959 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
960 struct cryptd_hash_ctx *ctx;
961 struct crypto_ahash *tfm;
962
963 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
964 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
965 return ERR_PTR(-EINVAL);
966 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
967 if (IS_ERR(tfm))
968 return ERR_CAST(tfm);
969 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
970 crypto_free_ahash(tfm);
971 return ERR_PTR(-EINVAL);
972 }
973
974 ctx = crypto_ahash_ctx(tfm);
975 refcount_set(&ctx->refcnt, 1);
976
977 return __cryptd_ahash_cast(tfm);
978 }
979 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
980
981 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
982 {
983 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
984
985 return ctx->child;
986 }
987 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
988
989 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
990 {
991 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
992 return &rctx->desc;
993 }
994 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
995
996 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
997 {
998 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
999
1000 return refcount_read(&ctx->refcnt) - 1;
1001 }
1002 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1003
1004 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1005 {
1006 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1007
1008 if (refcount_dec_and_test(&ctx->refcnt))
1009 crypto_free_ahash(&tfm->base);
1010 }
1011 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1012
1013 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1014 u32 type, u32 mask)
1015 {
1016 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1017 struct cryptd_aead_ctx *ctx;
1018 struct crypto_aead *tfm;
1019
1020 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1021 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1022 return ERR_PTR(-EINVAL);
1023 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1024 if (IS_ERR(tfm))
1025 return ERR_CAST(tfm);
1026 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1027 crypto_free_aead(tfm);
1028 return ERR_PTR(-EINVAL);
1029 }
1030
1031 ctx = crypto_aead_ctx(tfm);
1032 refcount_set(&ctx->refcnt, 1);
1033
1034 return __cryptd_aead_cast(tfm);
1035 }
1036 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1037
1038 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1039 {
1040 struct cryptd_aead_ctx *ctx;
1041 ctx = crypto_aead_ctx(&tfm->base);
1042 return ctx->child;
1043 }
1044 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1045
1046 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1047 {
1048 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1049
1050 return refcount_read(&ctx->refcnt) - 1;
1051 }
1052 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1053
1054 void cryptd_free_aead(struct cryptd_aead *tfm)
1055 {
1056 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1057
1058 if (refcount_dec_and_test(&ctx->refcnt))
1059 crypto_free_aead(&tfm->base);
1060 }
1061 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1062
1063 static int __init cryptd_init(void)
1064 {
1065 int err;
1066
1067 cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1068 1);
1069 if (!cryptd_wq)
1070 return -ENOMEM;
1071
1072 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1073 if (err)
1074 goto err_destroy_wq;
1075
1076 err = crypto_register_template(&cryptd_tmpl);
1077 if (err)
1078 goto err_fini_queue;
1079
1080 return 0;
1081
1082 err_fini_queue:
1083 cryptd_fini_queue(&queue);
1084 err_destroy_wq:
1085 destroy_workqueue(cryptd_wq);
1086 return err;
1087 }
1088
1089 static void __exit cryptd_exit(void)
1090 {
1091 destroy_workqueue(cryptd_wq);
1092 cryptd_fini_queue(&queue);
1093 crypto_unregister_template(&cryptd_tmpl);
1094 }
1095
1096 subsys_initcall(cryptd_init);
1097 module_exit(cryptd_exit);
1098
1099 MODULE_LICENSE("GPL");
1100 MODULE_DESCRIPTION("Software async crypto daemon");
1101 MODULE_ALIAS_CRYPTO("cryptd");