]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - crypto/cryptd.c
Merge tag 'rtc-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[mirror_ubuntu-eoan-kernel.git] / crypto / cryptd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Software async crypto daemon.
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 *
7 * Added AEAD support to cryptd.
8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com)
9 * Adrian Hoban <adrian.hoban@intel.com>
10 * Gabriele Paoloni <gabriele.paoloni@intel.com>
11 * Aidan O'Mahony (aidan.o.mahony@intel.com)
12 * Copyright (c) 2010, Intel Corporation.
13 */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/aead.h>
17 #include <crypto/internal/skcipher.h>
18 #include <crypto/cryptd.h>
19 #include <linux/atomic.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/workqueue.h>
29
30 static unsigned int cryptd_max_cpu_qlen = 1000;
31 module_param(cryptd_max_cpu_qlen, uint, 0);
32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth");
33
34 static struct workqueue_struct *cryptd_wq;
35
36 struct cryptd_cpu_queue {
37 struct crypto_queue queue;
38 struct work_struct work;
39 };
40
41 struct cryptd_queue {
42 struct cryptd_cpu_queue __percpu *cpu_queue;
43 };
44
45 struct cryptd_instance_ctx {
46 struct crypto_spawn spawn;
47 struct cryptd_queue *queue;
48 };
49
50 struct skcipherd_instance_ctx {
51 struct crypto_skcipher_spawn spawn;
52 struct cryptd_queue *queue;
53 };
54
55 struct hashd_instance_ctx {
56 struct crypto_shash_spawn spawn;
57 struct cryptd_queue *queue;
58 };
59
60 struct aead_instance_ctx {
61 struct crypto_aead_spawn aead_spawn;
62 struct cryptd_queue *queue;
63 };
64
65 struct cryptd_skcipher_ctx {
66 atomic_t refcnt;
67 struct crypto_sync_skcipher *child;
68 };
69
70 struct cryptd_skcipher_request_ctx {
71 crypto_completion_t complete;
72 };
73
74 struct cryptd_hash_ctx {
75 atomic_t refcnt;
76 struct crypto_shash *child;
77 };
78
79 struct cryptd_hash_request_ctx {
80 crypto_completion_t complete;
81 struct shash_desc desc;
82 };
83
84 struct cryptd_aead_ctx {
85 atomic_t refcnt;
86 struct crypto_aead *child;
87 };
88
89 struct cryptd_aead_request_ctx {
90 crypto_completion_t complete;
91 };
92
93 static void cryptd_queue_worker(struct work_struct *work);
94
95 static int cryptd_init_queue(struct cryptd_queue *queue,
96 unsigned int max_cpu_qlen)
97 {
98 int cpu;
99 struct cryptd_cpu_queue *cpu_queue;
100
101 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
102 if (!queue->cpu_queue)
103 return -ENOMEM;
104 for_each_possible_cpu(cpu) {
105 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
106 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
107 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
108 }
109 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen);
110 return 0;
111 }
112
113 static void cryptd_fini_queue(struct cryptd_queue *queue)
114 {
115 int cpu;
116 struct cryptd_cpu_queue *cpu_queue;
117
118 for_each_possible_cpu(cpu) {
119 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
120 BUG_ON(cpu_queue->queue.qlen);
121 }
122 free_percpu(queue->cpu_queue);
123 }
124
125 static int cryptd_enqueue_request(struct cryptd_queue *queue,
126 struct crypto_async_request *request)
127 {
128 int cpu, err;
129 struct cryptd_cpu_queue *cpu_queue;
130 atomic_t *refcnt;
131
132 cpu = get_cpu();
133 cpu_queue = this_cpu_ptr(queue->cpu_queue);
134 err = crypto_enqueue_request(&cpu_queue->queue, request);
135
136 refcnt = crypto_tfm_ctx(request->tfm);
137
138 if (err == -ENOSPC)
139 goto out_put_cpu;
140
141 queue_work_on(cpu, cryptd_wq, &cpu_queue->work);
142
143 if (!atomic_read(refcnt))
144 goto out_put_cpu;
145
146 atomic_inc(refcnt);
147
148 out_put_cpu:
149 put_cpu();
150
151 return err;
152 }
153
154 /* Called in workqueue context, do one real cryption work (via
155 * req->complete) and reschedule itself if there are more work to
156 * do. */
157 static void cryptd_queue_worker(struct work_struct *work)
158 {
159 struct cryptd_cpu_queue *cpu_queue;
160 struct crypto_async_request *req, *backlog;
161
162 cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
163 /*
164 * Only handle one request at a time to avoid hogging crypto workqueue.
165 * preempt_disable/enable is used to prevent being preempted by
166 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
167 * cryptd_enqueue_request() being accessed from software interrupts.
168 */
169 local_bh_disable();
170 preempt_disable();
171 backlog = crypto_get_backlog(&cpu_queue->queue);
172 req = crypto_dequeue_request(&cpu_queue->queue);
173 preempt_enable();
174 local_bh_enable();
175
176 if (!req)
177 return;
178
179 if (backlog)
180 backlog->complete(backlog, -EINPROGRESS);
181 req->complete(req, 0);
182
183 if (cpu_queue->queue.qlen)
184 queue_work(cryptd_wq, &cpu_queue->work);
185 }
186
187 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
188 {
189 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
190 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
191 return ictx->queue;
192 }
193
194 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type,
195 u32 *mask)
196 {
197 struct crypto_attr_type *algt;
198
199 algt = crypto_get_attr_type(tb);
200 if (IS_ERR(algt))
201 return;
202
203 *type |= algt->type & CRYPTO_ALG_INTERNAL;
204 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
205 }
206
207 static int cryptd_init_instance(struct crypto_instance *inst,
208 struct crypto_alg *alg)
209 {
210 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
211 "cryptd(%s)",
212 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
213 return -ENAMETOOLONG;
214
215 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
216
217 inst->alg.cra_priority = alg->cra_priority + 50;
218 inst->alg.cra_blocksize = alg->cra_blocksize;
219 inst->alg.cra_alignmask = alg->cra_alignmask;
220
221 return 0;
222 }
223
224 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225 unsigned int tail)
226 {
227 char *p;
228 struct crypto_instance *inst;
229 int err;
230
231 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
232 if (!p)
233 return ERR_PTR(-ENOMEM);
234
235 inst = (void *)(p + head);
236
237 err = cryptd_init_instance(inst, alg);
238 if (err)
239 goto out_free_inst;
240
241 out:
242 return p;
243
244 out_free_inst:
245 kfree(p);
246 p = ERR_PTR(err);
247 goto out;
248 }
249
250 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent,
251 const u8 *key, unsigned int keylen)
252 {
253 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent);
254 struct crypto_sync_skcipher *child = ctx->child;
255 int err;
256
257 crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
258 crypto_sync_skcipher_set_flags(child,
259 crypto_skcipher_get_flags(parent) &
260 CRYPTO_TFM_REQ_MASK);
261 err = crypto_sync_skcipher_setkey(child, key, keylen);
262 crypto_skcipher_set_flags(parent,
263 crypto_sync_skcipher_get_flags(child) &
264 CRYPTO_TFM_RES_MASK);
265 return err;
266 }
267
268 static void cryptd_skcipher_complete(struct skcipher_request *req, int err)
269 {
270 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
271 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
272 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
273 int refcnt = atomic_read(&ctx->refcnt);
274
275 local_bh_disable();
276 rctx->complete(&req->base, err);
277 local_bh_enable();
278
279 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
280 crypto_free_skcipher(tfm);
281 }
282
283 static void cryptd_skcipher_encrypt(struct crypto_async_request *base,
284 int err)
285 {
286 struct skcipher_request *req = skcipher_request_cast(base);
287 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
288 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
289 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
290 struct crypto_sync_skcipher *child = ctx->child;
291 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
292
293 if (unlikely(err == -EINPROGRESS))
294 goto out;
295
296 skcipher_request_set_sync_tfm(subreq, child);
297 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
298 NULL, NULL);
299 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
300 req->iv);
301
302 err = crypto_skcipher_encrypt(subreq);
303 skcipher_request_zero(subreq);
304
305 req->base.complete = rctx->complete;
306
307 out:
308 cryptd_skcipher_complete(req, err);
309 }
310
311 static void cryptd_skcipher_decrypt(struct crypto_async_request *base,
312 int err)
313 {
314 struct skcipher_request *req = skcipher_request_cast(base);
315 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
316 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
317 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
318 struct crypto_sync_skcipher *child = ctx->child;
319 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child);
320
321 if (unlikely(err == -EINPROGRESS))
322 goto out;
323
324 skcipher_request_set_sync_tfm(subreq, child);
325 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP,
326 NULL, NULL);
327 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
328 req->iv);
329
330 err = crypto_skcipher_decrypt(subreq);
331 skcipher_request_zero(subreq);
332
333 req->base.complete = rctx->complete;
334
335 out:
336 cryptd_skcipher_complete(req, err);
337 }
338
339 static int cryptd_skcipher_enqueue(struct skcipher_request *req,
340 crypto_completion_t compl)
341 {
342 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req);
343 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
344 struct cryptd_queue *queue;
345
346 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm));
347 rctx->complete = req->base.complete;
348 req->base.complete = compl;
349
350 return cryptd_enqueue_request(queue, &req->base);
351 }
352
353 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req)
354 {
355 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt);
356 }
357
358 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req)
359 {
360 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt);
361 }
362
363 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm)
364 {
365 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
366 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst);
367 struct crypto_skcipher_spawn *spawn = &ictx->spawn;
368 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
369 struct crypto_skcipher *cipher;
370
371 cipher = crypto_spawn_skcipher(spawn);
372 if (IS_ERR(cipher))
373 return PTR_ERR(cipher);
374
375 ctx->child = (struct crypto_sync_skcipher *)cipher;
376 crypto_skcipher_set_reqsize(
377 tfm, sizeof(struct cryptd_skcipher_request_ctx));
378 return 0;
379 }
380
381 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm)
382 {
383 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
384
385 crypto_free_sync_skcipher(ctx->child);
386 }
387
388 static void cryptd_skcipher_free(struct skcipher_instance *inst)
389 {
390 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst);
391
392 crypto_drop_skcipher(&ctx->spawn);
393 kfree(inst);
394 }
395
396 static int cryptd_create_skcipher(struct crypto_template *tmpl,
397 struct rtattr **tb,
398 struct cryptd_queue *queue)
399 {
400 struct skcipherd_instance_ctx *ctx;
401 struct skcipher_instance *inst;
402 struct skcipher_alg *alg;
403 const char *name;
404 u32 type;
405 u32 mask;
406 int err;
407
408 type = 0;
409 mask = CRYPTO_ALG_ASYNC;
410
411 cryptd_check_internal(tb, &type, &mask);
412
413 name = crypto_attr_alg_name(tb[1]);
414 if (IS_ERR(name))
415 return PTR_ERR(name);
416
417 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
418 if (!inst)
419 return -ENOMEM;
420
421 ctx = skcipher_instance_ctx(inst);
422 ctx->queue = queue;
423
424 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
425 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask);
426 if (err)
427 goto out_free_inst;
428
429 alg = crypto_spawn_skcipher_alg(&ctx->spawn);
430 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base);
431 if (err)
432 goto out_drop_skcipher;
433
434 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
435 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
436
437 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg);
438 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg);
439 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg);
440 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg);
441
442 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx);
443
444 inst->alg.init = cryptd_skcipher_init_tfm;
445 inst->alg.exit = cryptd_skcipher_exit_tfm;
446
447 inst->alg.setkey = cryptd_skcipher_setkey;
448 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue;
449 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue;
450
451 inst->free = cryptd_skcipher_free;
452
453 err = skcipher_register_instance(tmpl, inst);
454 if (err) {
455 out_drop_skcipher:
456 crypto_drop_skcipher(&ctx->spawn);
457 out_free_inst:
458 kfree(inst);
459 }
460 return err;
461 }
462
463 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
464 {
465 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
466 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
467 struct crypto_shash_spawn *spawn = &ictx->spawn;
468 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
469 struct crypto_shash *hash;
470
471 hash = crypto_spawn_shash(spawn);
472 if (IS_ERR(hash))
473 return PTR_ERR(hash);
474
475 ctx->child = hash;
476 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
477 sizeof(struct cryptd_hash_request_ctx) +
478 crypto_shash_descsize(hash));
479 return 0;
480 }
481
482 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
483 {
484 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
485
486 crypto_free_shash(ctx->child);
487 }
488
489 static int cryptd_hash_setkey(struct crypto_ahash *parent,
490 const u8 *key, unsigned int keylen)
491 {
492 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
493 struct crypto_shash *child = ctx->child;
494 int err;
495
496 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
497 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
498 CRYPTO_TFM_REQ_MASK);
499 err = crypto_shash_setkey(child, key, keylen);
500 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
501 CRYPTO_TFM_RES_MASK);
502 return err;
503 }
504
505 static int cryptd_hash_enqueue(struct ahash_request *req,
506 crypto_completion_t compl)
507 {
508 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
509 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
510 struct cryptd_queue *queue =
511 cryptd_get_queue(crypto_ahash_tfm(tfm));
512
513 rctx->complete = req->base.complete;
514 req->base.complete = compl;
515
516 return cryptd_enqueue_request(queue, &req->base);
517 }
518
519 static void cryptd_hash_complete(struct ahash_request *req, int err)
520 {
521 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
522 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
523 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
524 int refcnt = atomic_read(&ctx->refcnt);
525
526 local_bh_disable();
527 rctx->complete(&req->base, err);
528 local_bh_enable();
529
530 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
531 crypto_free_ahash(tfm);
532 }
533
534 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
535 {
536 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
537 struct crypto_shash *child = ctx->child;
538 struct ahash_request *req = ahash_request_cast(req_async);
539 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
540 struct shash_desc *desc = &rctx->desc;
541
542 if (unlikely(err == -EINPROGRESS))
543 goto out;
544
545 desc->tfm = child;
546
547 err = crypto_shash_init(desc);
548
549 req->base.complete = rctx->complete;
550
551 out:
552 cryptd_hash_complete(req, err);
553 }
554
555 static int cryptd_hash_init_enqueue(struct ahash_request *req)
556 {
557 return cryptd_hash_enqueue(req, cryptd_hash_init);
558 }
559
560 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
561 {
562 struct ahash_request *req = ahash_request_cast(req_async);
563 struct cryptd_hash_request_ctx *rctx;
564
565 rctx = ahash_request_ctx(req);
566
567 if (unlikely(err == -EINPROGRESS))
568 goto out;
569
570 err = shash_ahash_update(req, &rctx->desc);
571
572 req->base.complete = rctx->complete;
573
574 out:
575 cryptd_hash_complete(req, err);
576 }
577
578 static int cryptd_hash_update_enqueue(struct ahash_request *req)
579 {
580 return cryptd_hash_enqueue(req, cryptd_hash_update);
581 }
582
583 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
584 {
585 struct ahash_request *req = ahash_request_cast(req_async);
586 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
587
588 if (unlikely(err == -EINPROGRESS))
589 goto out;
590
591 err = crypto_shash_final(&rctx->desc, req->result);
592
593 req->base.complete = rctx->complete;
594
595 out:
596 cryptd_hash_complete(req, err);
597 }
598
599 static int cryptd_hash_final_enqueue(struct ahash_request *req)
600 {
601 return cryptd_hash_enqueue(req, cryptd_hash_final);
602 }
603
604 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
605 {
606 struct ahash_request *req = ahash_request_cast(req_async);
607 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
608
609 if (unlikely(err == -EINPROGRESS))
610 goto out;
611
612 err = shash_ahash_finup(req, &rctx->desc);
613
614 req->base.complete = rctx->complete;
615
616 out:
617 cryptd_hash_complete(req, err);
618 }
619
620 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
621 {
622 return cryptd_hash_enqueue(req, cryptd_hash_finup);
623 }
624
625 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
626 {
627 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
628 struct crypto_shash *child = ctx->child;
629 struct ahash_request *req = ahash_request_cast(req_async);
630 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
631 struct shash_desc *desc = &rctx->desc;
632
633 if (unlikely(err == -EINPROGRESS))
634 goto out;
635
636 desc->tfm = child;
637
638 err = shash_ahash_digest(req, desc);
639
640 req->base.complete = rctx->complete;
641
642 out:
643 cryptd_hash_complete(req, err);
644 }
645
646 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
647 {
648 return cryptd_hash_enqueue(req, cryptd_hash_digest);
649 }
650
651 static int cryptd_hash_export(struct ahash_request *req, void *out)
652 {
653 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
654
655 return crypto_shash_export(&rctx->desc, out);
656 }
657
658 static int cryptd_hash_import(struct ahash_request *req, const void *in)
659 {
660 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
661 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
662 struct shash_desc *desc = cryptd_shash_desc(req);
663
664 desc->tfm = ctx->child;
665
666 return crypto_shash_import(desc, in);
667 }
668
669 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
670 struct cryptd_queue *queue)
671 {
672 struct hashd_instance_ctx *ctx;
673 struct ahash_instance *inst;
674 struct shash_alg *salg;
675 struct crypto_alg *alg;
676 u32 type = 0;
677 u32 mask = 0;
678 int err;
679
680 cryptd_check_internal(tb, &type, &mask);
681
682 salg = shash_attr_alg(tb[1], type, mask);
683 if (IS_ERR(salg))
684 return PTR_ERR(salg);
685
686 alg = &salg->base;
687 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
688 sizeof(*ctx));
689 err = PTR_ERR(inst);
690 if (IS_ERR(inst))
691 goto out_put_alg;
692
693 ctx = ahash_instance_ctx(inst);
694 ctx->queue = queue;
695
696 err = crypto_init_shash_spawn(&ctx->spawn, salg,
697 ahash_crypto_instance(inst));
698 if (err)
699 goto out_free_inst;
700
701 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
702 (alg->cra_flags & (CRYPTO_ALG_INTERNAL |
703 CRYPTO_ALG_OPTIONAL_KEY));
704
705 inst->alg.halg.digestsize = salg->digestsize;
706 inst->alg.halg.statesize = salg->statesize;
707 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
708
709 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
710 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
711
712 inst->alg.init = cryptd_hash_init_enqueue;
713 inst->alg.update = cryptd_hash_update_enqueue;
714 inst->alg.final = cryptd_hash_final_enqueue;
715 inst->alg.finup = cryptd_hash_finup_enqueue;
716 inst->alg.export = cryptd_hash_export;
717 inst->alg.import = cryptd_hash_import;
718 if (crypto_shash_alg_has_setkey(salg))
719 inst->alg.setkey = cryptd_hash_setkey;
720 inst->alg.digest = cryptd_hash_digest_enqueue;
721
722 err = ahash_register_instance(tmpl, inst);
723 if (err) {
724 crypto_drop_shash(&ctx->spawn);
725 out_free_inst:
726 kfree(inst);
727 }
728
729 out_put_alg:
730 crypto_mod_put(alg);
731 return err;
732 }
733
734 static int cryptd_aead_setkey(struct crypto_aead *parent,
735 const u8 *key, unsigned int keylen)
736 {
737 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
738 struct crypto_aead *child = ctx->child;
739
740 return crypto_aead_setkey(child, key, keylen);
741 }
742
743 static int cryptd_aead_setauthsize(struct crypto_aead *parent,
744 unsigned int authsize)
745 {
746 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent);
747 struct crypto_aead *child = ctx->child;
748
749 return crypto_aead_setauthsize(child, authsize);
750 }
751
752 static void cryptd_aead_crypt(struct aead_request *req,
753 struct crypto_aead *child,
754 int err,
755 int (*crypt)(struct aead_request *req))
756 {
757 struct cryptd_aead_request_ctx *rctx;
758 struct cryptd_aead_ctx *ctx;
759 crypto_completion_t compl;
760 struct crypto_aead *tfm;
761 int refcnt;
762
763 rctx = aead_request_ctx(req);
764 compl = rctx->complete;
765
766 tfm = crypto_aead_reqtfm(req);
767
768 if (unlikely(err == -EINPROGRESS))
769 goto out;
770 aead_request_set_tfm(req, child);
771 err = crypt( req );
772
773 out:
774 ctx = crypto_aead_ctx(tfm);
775 refcnt = atomic_read(&ctx->refcnt);
776
777 local_bh_disable();
778 compl(&req->base, err);
779 local_bh_enable();
780
781 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt))
782 crypto_free_aead(tfm);
783 }
784
785 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
786 {
787 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
788 struct crypto_aead *child = ctx->child;
789 struct aead_request *req;
790
791 req = container_of(areq, struct aead_request, base);
792 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt);
793 }
794
795 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
796 {
797 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
798 struct crypto_aead *child = ctx->child;
799 struct aead_request *req;
800
801 req = container_of(areq, struct aead_request, base);
802 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt);
803 }
804
805 static int cryptd_aead_enqueue(struct aead_request *req,
806 crypto_completion_t compl)
807 {
808 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
809 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
810 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
811
812 rctx->complete = req->base.complete;
813 req->base.complete = compl;
814 return cryptd_enqueue_request(queue, &req->base);
815 }
816
817 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
818 {
819 return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
820 }
821
822 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
823 {
824 return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
825 }
826
827 static int cryptd_aead_init_tfm(struct crypto_aead *tfm)
828 {
829 struct aead_instance *inst = aead_alg_instance(tfm);
830 struct aead_instance_ctx *ictx = aead_instance_ctx(inst);
831 struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
832 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
833 struct crypto_aead *cipher;
834
835 cipher = crypto_spawn_aead(spawn);
836 if (IS_ERR(cipher))
837 return PTR_ERR(cipher);
838
839 ctx->child = cipher;
840 crypto_aead_set_reqsize(
841 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx),
842 crypto_aead_reqsize(cipher)));
843 return 0;
844 }
845
846 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm)
847 {
848 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm);
849 crypto_free_aead(ctx->child);
850 }
851
852 static int cryptd_create_aead(struct crypto_template *tmpl,
853 struct rtattr **tb,
854 struct cryptd_queue *queue)
855 {
856 struct aead_instance_ctx *ctx;
857 struct aead_instance *inst;
858 struct aead_alg *alg;
859 const char *name;
860 u32 type = 0;
861 u32 mask = CRYPTO_ALG_ASYNC;
862 int err;
863
864 cryptd_check_internal(tb, &type, &mask);
865
866 name = crypto_attr_alg_name(tb[1]);
867 if (IS_ERR(name))
868 return PTR_ERR(name);
869
870 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
871 if (!inst)
872 return -ENOMEM;
873
874 ctx = aead_instance_ctx(inst);
875 ctx->queue = queue;
876
877 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst));
878 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask);
879 if (err)
880 goto out_free_inst;
881
882 alg = crypto_spawn_aead_alg(&ctx->aead_spawn);
883 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base);
884 if (err)
885 goto out_drop_aead;
886
887 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC |
888 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL);
889 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
890
891 inst->alg.ivsize = crypto_aead_alg_ivsize(alg);
892 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg);
893
894 inst->alg.init = cryptd_aead_init_tfm;
895 inst->alg.exit = cryptd_aead_exit_tfm;
896 inst->alg.setkey = cryptd_aead_setkey;
897 inst->alg.setauthsize = cryptd_aead_setauthsize;
898 inst->alg.encrypt = cryptd_aead_encrypt_enqueue;
899 inst->alg.decrypt = cryptd_aead_decrypt_enqueue;
900
901 err = aead_register_instance(tmpl, inst);
902 if (err) {
903 out_drop_aead:
904 crypto_drop_aead(&ctx->aead_spawn);
905 out_free_inst:
906 kfree(inst);
907 }
908 return err;
909 }
910
911 static struct cryptd_queue queue;
912
913 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
914 {
915 struct crypto_attr_type *algt;
916
917 algt = crypto_get_attr_type(tb);
918 if (IS_ERR(algt))
919 return PTR_ERR(algt);
920
921 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
922 case CRYPTO_ALG_TYPE_BLKCIPHER:
923 return cryptd_create_skcipher(tmpl, tb, &queue);
924 case CRYPTO_ALG_TYPE_HASH:
925 return cryptd_create_hash(tmpl, tb, &queue);
926 case CRYPTO_ALG_TYPE_AEAD:
927 return cryptd_create_aead(tmpl, tb, &queue);
928 }
929
930 return -EINVAL;
931 }
932
933 static void cryptd_free(struct crypto_instance *inst)
934 {
935 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
936 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
937 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
938
939 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
940 case CRYPTO_ALG_TYPE_AHASH:
941 crypto_drop_shash(&hctx->spawn);
942 kfree(ahash_instance(inst));
943 return;
944 case CRYPTO_ALG_TYPE_AEAD:
945 crypto_drop_aead(&aead_ctx->aead_spawn);
946 kfree(aead_instance(inst));
947 return;
948 default:
949 crypto_drop_spawn(&ctx->spawn);
950 kfree(inst);
951 }
952 }
953
954 static struct crypto_template cryptd_tmpl = {
955 .name = "cryptd",
956 .create = cryptd_create,
957 .free = cryptd_free,
958 .module = THIS_MODULE,
959 };
960
961 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name,
962 u32 type, u32 mask)
963 {
964 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
965 struct cryptd_skcipher_ctx *ctx;
966 struct crypto_skcipher *tfm;
967
968 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
969 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
970 return ERR_PTR(-EINVAL);
971
972 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask);
973 if (IS_ERR(tfm))
974 return ERR_CAST(tfm);
975
976 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
977 crypto_free_skcipher(tfm);
978 return ERR_PTR(-EINVAL);
979 }
980
981 ctx = crypto_skcipher_ctx(tfm);
982 atomic_set(&ctx->refcnt, 1);
983
984 return container_of(tfm, struct cryptd_skcipher, base);
985 }
986 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher);
987
988 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm)
989 {
990 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
991
992 return &ctx->child->base;
993 }
994 EXPORT_SYMBOL_GPL(cryptd_skcipher_child);
995
996 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm)
997 {
998 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
999
1000 return atomic_read(&ctx->refcnt) - 1;
1001 }
1002 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued);
1003
1004 void cryptd_free_skcipher(struct cryptd_skcipher *tfm)
1005 {
1006 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base);
1007
1008 if (atomic_dec_and_test(&ctx->refcnt))
1009 crypto_free_skcipher(&tfm->base);
1010 }
1011 EXPORT_SYMBOL_GPL(cryptd_free_skcipher);
1012
1013 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
1014 u32 type, u32 mask)
1015 {
1016 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1017 struct cryptd_hash_ctx *ctx;
1018 struct crypto_ahash *tfm;
1019
1020 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1021 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1022 return ERR_PTR(-EINVAL);
1023 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
1024 if (IS_ERR(tfm))
1025 return ERR_CAST(tfm);
1026 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1027 crypto_free_ahash(tfm);
1028 return ERR_PTR(-EINVAL);
1029 }
1030
1031 ctx = crypto_ahash_ctx(tfm);
1032 atomic_set(&ctx->refcnt, 1);
1033
1034 return __cryptd_ahash_cast(tfm);
1035 }
1036 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
1037
1038 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
1039 {
1040 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1041
1042 return ctx->child;
1043 }
1044 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
1045
1046 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
1047 {
1048 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
1049 return &rctx->desc;
1050 }
1051 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
1052
1053 bool cryptd_ahash_queued(struct cryptd_ahash *tfm)
1054 {
1055 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1056
1057 return atomic_read(&ctx->refcnt) - 1;
1058 }
1059 EXPORT_SYMBOL_GPL(cryptd_ahash_queued);
1060
1061 void cryptd_free_ahash(struct cryptd_ahash *tfm)
1062 {
1063 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
1064
1065 if (atomic_dec_and_test(&ctx->refcnt))
1066 crypto_free_ahash(&tfm->base);
1067 }
1068 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
1069
1070 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
1071 u32 type, u32 mask)
1072 {
1073 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
1074 struct cryptd_aead_ctx *ctx;
1075 struct crypto_aead *tfm;
1076
1077 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
1078 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
1079 return ERR_PTR(-EINVAL);
1080 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
1081 if (IS_ERR(tfm))
1082 return ERR_CAST(tfm);
1083 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
1084 crypto_free_aead(tfm);
1085 return ERR_PTR(-EINVAL);
1086 }
1087
1088 ctx = crypto_aead_ctx(tfm);
1089 atomic_set(&ctx->refcnt, 1);
1090
1091 return __cryptd_aead_cast(tfm);
1092 }
1093 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
1094
1095 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
1096 {
1097 struct cryptd_aead_ctx *ctx;
1098 ctx = crypto_aead_ctx(&tfm->base);
1099 return ctx->child;
1100 }
1101 EXPORT_SYMBOL_GPL(cryptd_aead_child);
1102
1103 bool cryptd_aead_queued(struct cryptd_aead *tfm)
1104 {
1105 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1106
1107 return atomic_read(&ctx->refcnt) - 1;
1108 }
1109 EXPORT_SYMBOL_GPL(cryptd_aead_queued);
1110
1111 void cryptd_free_aead(struct cryptd_aead *tfm)
1112 {
1113 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base);
1114
1115 if (atomic_dec_and_test(&ctx->refcnt))
1116 crypto_free_aead(&tfm->base);
1117 }
1118 EXPORT_SYMBOL_GPL(cryptd_free_aead);
1119
1120 static int __init cryptd_init(void)
1121 {
1122 int err;
1123
1124 cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE,
1125 1);
1126 if (!cryptd_wq)
1127 return -ENOMEM;
1128
1129 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen);
1130 if (err)
1131 goto err_destroy_wq;
1132
1133 err = crypto_register_template(&cryptd_tmpl);
1134 if (err)
1135 goto err_fini_queue;
1136
1137 return 0;
1138
1139 err_fini_queue:
1140 cryptd_fini_queue(&queue);
1141 err_destroy_wq:
1142 destroy_workqueue(cryptd_wq);
1143 return err;
1144 }
1145
1146 static void __exit cryptd_exit(void)
1147 {
1148 destroy_workqueue(cryptd_wq);
1149 cryptd_fini_queue(&queue);
1150 crypto_unregister_template(&cryptd_tmpl);
1151 }
1152
1153 subsys_initcall(cryptd_init);
1154 module_exit(cryptd_exit);
1155
1156 MODULE_LICENSE("GPL");
1157 MODULE_DESCRIPTION("Software async crypto daemon");
1158 MODULE_ALIAS_CRYPTO("cryptd");