]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - crypto/crypto_engine.c
Merge tag 'armsoc-late' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-jammy-kernel.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Handle async block request by crypto hardware engine.
4 *
5 * Copyright (C) 2016 Linaro, Inc.
6 *
7 * Author: Baolin Wang <baolin.wang@linaro.org>
8 */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <crypto/engine.h>
13 #include <uapi/linux/sched/types.h>
14 #include "internal.h"
15
16 #define CRYPTO_ENGINE_MAX_QLEN 10
17
18 /**
19 * crypto_finalize_request - finalize one request if the request is done
20 * @engine: the hardware engine
21 * @req: the request need to be finalized
22 * @err: error number
23 */
24 static void crypto_finalize_request(struct crypto_engine *engine,
25 struct crypto_async_request *req, int err)
26 {
27 unsigned long flags;
28 bool finalize_cur_req = false;
29 int ret;
30 struct crypto_engine_ctx *enginectx;
31
32 spin_lock_irqsave(&engine->queue_lock, flags);
33 if (engine->cur_req == req)
34 finalize_cur_req = true;
35 spin_unlock_irqrestore(&engine->queue_lock, flags);
36
37 if (finalize_cur_req) {
38 enginectx = crypto_tfm_ctx(req->tfm);
39 if (engine->cur_req_prepared &&
40 enginectx->op.unprepare_request) {
41 ret = enginectx->op.unprepare_request(engine, req);
42 if (ret)
43 dev_err(engine->dev, "failed to unprepare request\n");
44 }
45 spin_lock_irqsave(&engine->queue_lock, flags);
46 engine->cur_req = NULL;
47 engine->cur_req_prepared = false;
48 spin_unlock_irqrestore(&engine->queue_lock, flags);
49 }
50
51 req->complete(req, err);
52
53 kthread_queue_work(engine->kworker, &engine->pump_requests);
54 }
55
56 /**
57 * crypto_pump_requests - dequeue one request from engine queue to process
58 * @engine: the hardware engine
59 * @in_kthread: true if we are in the context of the request pump thread
60 *
61 * This function checks if there is any request in the engine queue that
62 * needs processing and if so call out to the driver to initialize hardware
63 * and handle each request.
64 */
65 static void crypto_pump_requests(struct crypto_engine *engine,
66 bool in_kthread)
67 {
68 struct crypto_async_request *async_req, *backlog;
69 unsigned long flags;
70 bool was_busy = false;
71 int ret;
72 struct crypto_engine_ctx *enginectx;
73
74 spin_lock_irqsave(&engine->queue_lock, flags);
75
76 /* Make sure we are not already running a request */
77 if (engine->cur_req)
78 goto out;
79
80 /* If another context is idling then defer */
81 if (engine->idling) {
82 kthread_queue_work(engine->kworker, &engine->pump_requests);
83 goto out;
84 }
85
86 /* Check if the engine queue is idle */
87 if (!crypto_queue_len(&engine->queue) || !engine->running) {
88 if (!engine->busy)
89 goto out;
90
91 /* Only do teardown in the thread */
92 if (!in_kthread) {
93 kthread_queue_work(engine->kworker,
94 &engine->pump_requests);
95 goto out;
96 }
97
98 engine->busy = false;
99 engine->idling = true;
100 spin_unlock_irqrestore(&engine->queue_lock, flags);
101
102 if (engine->unprepare_crypt_hardware &&
103 engine->unprepare_crypt_hardware(engine))
104 dev_err(engine->dev, "failed to unprepare crypt hardware\n");
105
106 spin_lock_irqsave(&engine->queue_lock, flags);
107 engine->idling = false;
108 goto out;
109 }
110
111 /* Get the fist request from the engine queue to handle */
112 backlog = crypto_get_backlog(&engine->queue);
113 async_req = crypto_dequeue_request(&engine->queue);
114 if (!async_req)
115 goto out;
116
117 engine->cur_req = async_req;
118 if (backlog)
119 backlog->complete(backlog, -EINPROGRESS);
120
121 if (engine->busy)
122 was_busy = true;
123 else
124 engine->busy = true;
125
126 spin_unlock_irqrestore(&engine->queue_lock, flags);
127
128 /* Until here we get the request need to be encrypted successfully */
129 if (!was_busy && engine->prepare_crypt_hardware) {
130 ret = engine->prepare_crypt_hardware(engine);
131 if (ret) {
132 dev_err(engine->dev, "failed to prepare crypt hardware\n");
133 goto req_err;
134 }
135 }
136
137 enginectx = crypto_tfm_ctx(async_req->tfm);
138
139 if (enginectx->op.prepare_request) {
140 ret = enginectx->op.prepare_request(engine, async_req);
141 if (ret) {
142 dev_err(engine->dev, "failed to prepare request: %d\n",
143 ret);
144 goto req_err;
145 }
146 engine->cur_req_prepared = true;
147 }
148 if (!enginectx->op.do_one_request) {
149 dev_err(engine->dev, "failed to do request\n");
150 ret = -EINVAL;
151 goto req_err;
152 }
153 ret = enginectx->op.do_one_request(engine, async_req);
154 if (ret) {
155 dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret);
156 goto req_err;
157 }
158 return;
159
160 req_err:
161 crypto_finalize_request(engine, async_req, ret);
162 return;
163
164 out:
165 spin_unlock_irqrestore(&engine->queue_lock, flags);
166 }
167
168 static void crypto_pump_work(struct kthread_work *work)
169 {
170 struct crypto_engine *engine =
171 container_of(work, struct crypto_engine, pump_requests);
172
173 crypto_pump_requests(engine, true);
174 }
175
176 /**
177 * crypto_transfer_request - transfer the new request into the engine queue
178 * @engine: the hardware engine
179 * @req: the request need to be listed into the engine queue
180 */
181 static int crypto_transfer_request(struct crypto_engine *engine,
182 struct crypto_async_request *req,
183 bool need_pump)
184 {
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&engine->queue_lock, flags);
189
190 if (!engine->running) {
191 spin_unlock_irqrestore(&engine->queue_lock, flags);
192 return -ESHUTDOWN;
193 }
194
195 ret = crypto_enqueue_request(&engine->queue, req);
196
197 if (!engine->busy && need_pump)
198 kthread_queue_work(engine->kworker, &engine->pump_requests);
199
200 spin_unlock_irqrestore(&engine->queue_lock, flags);
201 return ret;
202 }
203
204 /**
205 * crypto_transfer_request_to_engine - transfer one request to list
206 * into the engine queue
207 * @engine: the hardware engine
208 * @req: the request need to be listed into the engine queue
209 */
210 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
211 struct crypto_async_request *req)
212 {
213 return crypto_transfer_request(engine, req, true);
214 }
215
216 /**
217 * crypto_transfer_aead_request_to_engine - transfer one aead_request
218 * to list into the engine queue
219 * @engine: the hardware engine
220 * @req: the request need to be listed into the engine queue
221 */
222 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
223 struct aead_request *req)
224 {
225 return crypto_transfer_request_to_engine(engine, &req->base);
226 }
227 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
228
229 /**
230 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
231 * to list into the engine queue
232 * @engine: the hardware engine
233 * @req: the request need to be listed into the engine queue
234 */
235 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
236 struct akcipher_request *req)
237 {
238 return crypto_transfer_request_to_engine(engine, &req->base);
239 }
240 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
241
242 /**
243 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
244 * to list into the engine queue
245 * @engine: the hardware engine
246 * @req: the request need to be listed into the engine queue
247 */
248 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
249 struct ahash_request *req)
250 {
251 return crypto_transfer_request_to_engine(engine, &req->base);
252 }
253 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
254
255 /**
256 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
257 * to list into the engine queue
258 * @engine: the hardware engine
259 * @req: the request need to be listed into the engine queue
260 */
261 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
262 struct skcipher_request *req)
263 {
264 return crypto_transfer_request_to_engine(engine, &req->base);
265 }
266 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
267
268 /**
269 * crypto_finalize_aead_request - finalize one aead_request if
270 * the request is done
271 * @engine: the hardware engine
272 * @req: the request need to be finalized
273 * @err: error number
274 */
275 void crypto_finalize_aead_request(struct crypto_engine *engine,
276 struct aead_request *req, int err)
277 {
278 return crypto_finalize_request(engine, &req->base, err);
279 }
280 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
281
282 /**
283 * crypto_finalize_akcipher_request - finalize one akcipher_request if
284 * the request is done
285 * @engine: the hardware engine
286 * @req: the request need to be finalized
287 * @err: error number
288 */
289 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
290 struct akcipher_request *req, int err)
291 {
292 return crypto_finalize_request(engine, &req->base, err);
293 }
294 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
295
296 /**
297 * crypto_finalize_hash_request - finalize one ahash_request if
298 * the request is done
299 * @engine: the hardware engine
300 * @req: the request need to be finalized
301 * @err: error number
302 */
303 void crypto_finalize_hash_request(struct crypto_engine *engine,
304 struct ahash_request *req, int err)
305 {
306 return crypto_finalize_request(engine, &req->base, err);
307 }
308 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
309
310 /**
311 * crypto_finalize_skcipher_request - finalize one skcipher_request if
312 * the request is done
313 * @engine: the hardware engine
314 * @req: the request need to be finalized
315 * @err: error number
316 */
317 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
318 struct skcipher_request *req, int err)
319 {
320 return crypto_finalize_request(engine, &req->base, err);
321 }
322 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
323
324 /**
325 * crypto_engine_start - start the hardware engine
326 * @engine: the hardware engine need to be started
327 *
328 * Return 0 on success, else on fail.
329 */
330 int crypto_engine_start(struct crypto_engine *engine)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(&engine->queue_lock, flags);
335
336 if (engine->running || engine->busy) {
337 spin_unlock_irqrestore(&engine->queue_lock, flags);
338 return -EBUSY;
339 }
340
341 engine->running = true;
342 spin_unlock_irqrestore(&engine->queue_lock, flags);
343
344 kthread_queue_work(engine->kworker, &engine->pump_requests);
345
346 return 0;
347 }
348 EXPORT_SYMBOL_GPL(crypto_engine_start);
349
350 /**
351 * crypto_engine_stop - stop the hardware engine
352 * @engine: the hardware engine need to be stopped
353 *
354 * Return 0 on success, else on fail.
355 */
356 int crypto_engine_stop(struct crypto_engine *engine)
357 {
358 unsigned long flags;
359 unsigned int limit = 500;
360 int ret = 0;
361
362 spin_lock_irqsave(&engine->queue_lock, flags);
363
364 /*
365 * If the engine queue is not empty or the engine is on busy state,
366 * we need to wait for a while to pump the requests of engine queue.
367 */
368 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
369 spin_unlock_irqrestore(&engine->queue_lock, flags);
370 msleep(20);
371 spin_lock_irqsave(&engine->queue_lock, flags);
372 }
373
374 if (crypto_queue_len(&engine->queue) || engine->busy)
375 ret = -EBUSY;
376 else
377 engine->running = false;
378
379 spin_unlock_irqrestore(&engine->queue_lock, flags);
380
381 if (ret)
382 dev_warn(engine->dev, "could not stop engine\n");
383
384 return ret;
385 }
386 EXPORT_SYMBOL_GPL(crypto_engine_stop);
387
388 /**
389 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
390 * initialize it.
391 * @dev: the device attached with one hardware engine
392 * @rt: whether this queue is set to run as a realtime task
393 *
394 * This must be called from context that can sleep.
395 * Return: the crypto engine structure on success, else NULL.
396 */
397 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
398 {
399 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
400 struct crypto_engine *engine;
401
402 if (!dev)
403 return NULL;
404
405 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
406 if (!engine)
407 return NULL;
408
409 engine->dev = dev;
410 engine->rt = rt;
411 engine->running = false;
412 engine->busy = false;
413 engine->idling = false;
414 engine->cur_req_prepared = false;
415 engine->priv_data = dev;
416 snprintf(engine->name, sizeof(engine->name),
417 "%s-engine", dev_name(dev));
418
419 crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
420 spin_lock_init(&engine->queue_lock);
421
422 engine->kworker = kthread_create_worker(0, "%s", engine->name);
423 if (IS_ERR(engine->kworker)) {
424 dev_err(dev, "failed to create crypto request pump task\n");
425 return NULL;
426 }
427 kthread_init_work(&engine->pump_requests, crypto_pump_work);
428
429 if (engine->rt) {
430 dev_info(dev, "will run requests pump with realtime priority\n");
431 sched_setscheduler(engine->kworker->task, SCHED_FIFO, &param);
432 }
433
434 return engine;
435 }
436 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
437
438 /**
439 * crypto_engine_exit - free the resources of hardware engine when exit
440 * @engine: the hardware engine need to be freed
441 *
442 * Return 0 for success.
443 */
444 int crypto_engine_exit(struct crypto_engine *engine)
445 {
446 int ret;
447
448 ret = crypto_engine_stop(engine);
449 if (ret)
450 return ret;
451
452 kthread_destroy_worker(engine->kworker);
453
454 return 0;
455 }
456 EXPORT_SYMBOL_GPL(crypto_engine_exit);
457
458 MODULE_LICENSE("GPL");
459 MODULE_DESCRIPTION("Crypto hardware engine framework");