]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - crypto/crypto_engine.c
Merge tag 'pinctrl-v5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-hirsute-kernel.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Handle async block request by crypto hardware engine.
4 *
5 * Copyright (C) 2016 Linaro, Inc.
6 *
7 * Author: Baolin Wang <baolin.wang@linaro.org>
8 */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <crypto/engine.h>
13 #include <uapi/linux/sched/types.h>
14 #include "internal.h"
15
16 #define CRYPTO_ENGINE_MAX_QLEN 10
17
18 /**
19 * crypto_finalize_request - finalize one request if the request is done
20 * @engine: the hardware engine
21 * @req: the request need to be finalized
22 * @err: error number
23 */
24 static void crypto_finalize_request(struct crypto_engine *engine,
25 struct crypto_async_request *req, int err)
26 {
27 unsigned long flags;
28 bool finalize_req = false;
29 int ret;
30 struct crypto_engine_ctx *enginectx;
31
32 /*
33 * If hardware cannot enqueue more requests
34 * and retry mechanism is not supported
35 * make sure we are completing the current request
36 */
37 if (!engine->retry_support) {
38 spin_lock_irqsave(&engine->queue_lock, flags);
39 if (engine->cur_req == req) {
40 finalize_req = true;
41 engine->cur_req = NULL;
42 }
43 spin_unlock_irqrestore(&engine->queue_lock, flags);
44 }
45
46 if (finalize_req || engine->retry_support) {
47 enginectx = crypto_tfm_ctx(req->tfm);
48 if (enginectx->op.prepare_request &&
49 enginectx->op.unprepare_request) {
50 ret = enginectx->op.unprepare_request(engine, req);
51 if (ret)
52 dev_err(engine->dev, "failed to unprepare request\n");
53 }
54 }
55 req->complete(req, err);
56
57 kthread_queue_work(engine->kworker, &engine->pump_requests);
58 }
59
60 /**
61 * crypto_pump_requests - dequeue one request from engine queue to process
62 * @engine: the hardware engine
63 * @in_kthread: true if we are in the context of the request pump thread
64 *
65 * This function checks if there is any request in the engine queue that
66 * needs processing and if so call out to the driver to initialize hardware
67 * and handle each request.
68 */
69 static void crypto_pump_requests(struct crypto_engine *engine,
70 bool in_kthread)
71 {
72 struct crypto_async_request *async_req, *backlog;
73 unsigned long flags;
74 bool was_busy = false;
75 int ret;
76 struct crypto_engine_ctx *enginectx;
77
78 spin_lock_irqsave(&engine->queue_lock, flags);
79
80 /* Make sure we are not already running a request */
81 if (!engine->retry_support && engine->cur_req)
82 goto out;
83
84 /* If another context is idling then defer */
85 if (engine->idling) {
86 kthread_queue_work(engine->kworker, &engine->pump_requests);
87 goto out;
88 }
89
90 /* Check if the engine queue is idle */
91 if (!crypto_queue_len(&engine->queue) || !engine->running) {
92 if (!engine->busy)
93 goto out;
94
95 /* Only do teardown in the thread */
96 if (!in_kthread) {
97 kthread_queue_work(engine->kworker,
98 &engine->pump_requests);
99 goto out;
100 }
101
102 engine->busy = false;
103 engine->idling = true;
104 spin_unlock_irqrestore(&engine->queue_lock, flags);
105
106 if (engine->unprepare_crypt_hardware &&
107 engine->unprepare_crypt_hardware(engine))
108 dev_err(engine->dev, "failed to unprepare crypt hardware\n");
109
110 spin_lock_irqsave(&engine->queue_lock, flags);
111 engine->idling = false;
112 goto out;
113 }
114
115 start_request:
116 /* Get the fist request from the engine queue to handle */
117 backlog = crypto_get_backlog(&engine->queue);
118 async_req = crypto_dequeue_request(&engine->queue);
119 if (!async_req)
120 goto out;
121
122 /*
123 * If hardware doesn't support the retry mechanism,
124 * keep track of the request we are processing now.
125 * We'll need it on completion (crypto_finalize_request).
126 */
127 if (!engine->retry_support)
128 engine->cur_req = async_req;
129
130 if (backlog)
131 backlog->complete(backlog, -EINPROGRESS);
132
133 if (engine->busy)
134 was_busy = true;
135 else
136 engine->busy = true;
137
138 spin_unlock_irqrestore(&engine->queue_lock, flags);
139
140 /* Until here we get the request need to be encrypted successfully */
141 if (!was_busy && engine->prepare_crypt_hardware) {
142 ret = engine->prepare_crypt_hardware(engine);
143 if (ret) {
144 dev_err(engine->dev, "failed to prepare crypt hardware\n");
145 goto req_err_2;
146 }
147 }
148
149 enginectx = crypto_tfm_ctx(async_req->tfm);
150
151 if (enginectx->op.prepare_request) {
152 ret = enginectx->op.prepare_request(engine, async_req);
153 if (ret) {
154 dev_err(engine->dev, "failed to prepare request: %d\n",
155 ret);
156 goto req_err_2;
157 }
158 }
159 if (!enginectx->op.do_one_request) {
160 dev_err(engine->dev, "failed to do request\n");
161 ret = -EINVAL;
162 goto req_err_1;
163 }
164
165 ret = enginectx->op.do_one_request(engine, async_req);
166
167 /* Request unsuccessfully executed by hardware */
168 if (ret < 0) {
169 /*
170 * If hardware queue is full (-ENOSPC), requeue request
171 * regardless of backlog flag.
172 * Otherwise, unprepare and complete the request.
173 */
174 if (!engine->retry_support ||
175 (ret != -ENOSPC)) {
176 dev_err(engine->dev,
177 "Failed to do one request from queue: %d\n",
178 ret);
179 goto req_err_1;
180 }
181 /*
182 * If retry mechanism is supported,
183 * unprepare current request and
184 * enqueue it back into crypto-engine queue.
185 */
186 if (enginectx->op.unprepare_request) {
187 ret = enginectx->op.unprepare_request(engine,
188 async_req);
189 if (ret)
190 dev_err(engine->dev,
191 "failed to unprepare request\n");
192 }
193 spin_lock_irqsave(&engine->queue_lock, flags);
194 /*
195 * If hardware was unable to execute request, enqueue it
196 * back in front of crypto-engine queue, to keep the order
197 * of requests.
198 */
199 crypto_enqueue_request_head(&engine->queue, async_req);
200
201 kthread_queue_work(engine->kworker, &engine->pump_requests);
202 goto out;
203 }
204
205 goto retry;
206
207 req_err_1:
208 if (enginectx->op.unprepare_request) {
209 ret = enginectx->op.unprepare_request(engine, async_req);
210 if (ret)
211 dev_err(engine->dev, "failed to unprepare request\n");
212 }
213
214 req_err_2:
215 async_req->complete(async_req, ret);
216
217 retry:
218 /* If retry mechanism is supported, send new requests to engine */
219 if (engine->retry_support) {
220 spin_lock_irqsave(&engine->queue_lock, flags);
221 goto start_request;
222 }
223 return;
224
225 out:
226 spin_unlock_irqrestore(&engine->queue_lock, flags);
227
228 /*
229 * Batch requests is possible only if
230 * hardware can enqueue multiple requests
231 */
232 if (engine->do_batch_requests) {
233 ret = engine->do_batch_requests(engine);
234 if (ret)
235 dev_err(engine->dev, "failed to do batch requests: %d\n",
236 ret);
237 }
238
239 return;
240 }
241
242 static void crypto_pump_work(struct kthread_work *work)
243 {
244 struct crypto_engine *engine =
245 container_of(work, struct crypto_engine, pump_requests);
246
247 crypto_pump_requests(engine, true);
248 }
249
250 /**
251 * crypto_transfer_request - transfer the new request into the engine queue
252 * @engine: the hardware engine
253 * @req: the request need to be listed into the engine queue
254 */
255 static int crypto_transfer_request(struct crypto_engine *engine,
256 struct crypto_async_request *req,
257 bool need_pump)
258 {
259 unsigned long flags;
260 int ret;
261
262 spin_lock_irqsave(&engine->queue_lock, flags);
263
264 if (!engine->running) {
265 spin_unlock_irqrestore(&engine->queue_lock, flags);
266 return -ESHUTDOWN;
267 }
268
269 ret = crypto_enqueue_request(&engine->queue, req);
270
271 if (!engine->busy && need_pump)
272 kthread_queue_work(engine->kworker, &engine->pump_requests);
273
274 spin_unlock_irqrestore(&engine->queue_lock, flags);
275 return ret;
276 }
277
278 /**
279 * crypto_transfer_request_to_engine - transfer one request to list
280 * into the engine queue
281 * @engine: the hardware engine
282 * @req: the request need to be listed into the engine queue
283 */
284 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
285 struct crypto_async_request *req)
286 {
287 return crypto_transfer_request(engine, req, true);
288 }
289
290 /**
291 * crypto_transfer_aead_request_to_engine - transfer one aead_request
292 * to list into the engine queue
293 * @engine: the hardware engine
294 * @req: the request need to be listed into the engine queue
295 */
296 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
297 struct aead_request *req)
298 {
299 return crypto_transfer_request_to_engine(engine, &req->base);
300 }
301 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
302
303 /**
304 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
305 * to list into the engine queue
306 * @engine: the hardware engine
307 * @req: the request need to be listed into the engine queue
308 */
309 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
310 struct akcipher_request *req)
311 {
312 return crypto_transfer_request_to_engine(engine, &req->base);
313 }
314 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
315
316 /**
317 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
318 * to list into the engine queue
319 * @engine: the hardware engine
320 * @req: the request need to be listed into the engine queue
321 */
322 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
323 struct ahash_request *req)
324 {
325 return crypto_transfer_request_to_engine(engine, &req->base);
326 }
327 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
328
329 /**
330 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
331 * to list into the engine queue
332 * @engine: the hardware engine
333 * @req: the request need to be listed into the engine queue
334 */
335 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
336 struct skcipher_request *req)
337 {
338 return crypto_transfer_request_to_engine(engine, &req->base);
339 }
340 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
341
342 /**
343 * crypto_finalize_aead_request - finalize one aead_request if
344 * the request is done
345 * @engine: the hardware engine
346 * @req: the request need to be finalized
347 * @err: error number
348 */
349 void crypto_finalize_aead_request(struct crypto_engine *engine,
350 struct aead_request *req, int err)
351 {
352 return crypto_finalize_request(engine, &req->base, err);
353 }
354 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
355
356 /**
357 * crypto_finalize_akcipher_request - finalize one akcipher_request if
358 * the request is done
359 * @engine: the hardware engine
360 * @req: the request need to be finalized
361 * @err: error number
362 */
363 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
364 struct akcipher_request *req, int err)
365 {
366 return crypto_finalize_request(engine, &req->base, err);
367 }
368 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
369
370 /**
371 * crypto_finalize_hash_request - finalize one ahash_request if
372 * the request is done
373 * @engine: the hardware engine
374 * @req: the request need to be finalized
375 * @err: error number
376 */
377 void crypto_finalize_hash_request(struct crypto_engine *engine,
378 struct ahash_request *req, int err)
379 {
380 return crypto_finalize_request(engine, &req->base, err);
381 }
382 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
383
384 /**
385 * crypto_finalize_skcipher_request - finalize one skcipher_request if
386 * the request is done
387 * @engine: the hardware engine
388 * @req: the request need to be finalized
389 * @err: error number
390 */
391 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
392 struct skcipher_request *req, int err)
393 {
394 return crypto_finalize_request(engine, &req->base, err);
395 }
396 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
397
398 /**
399 * crypto_engine_start - start the hardware engine
400 * @engine: the hardware engine need to be started
401 *
402 * Return 0 on success, else on fail.
403 */
404 int crypto_engine_start(struct crypto_engine *engine)
405 {
406 unsigned long flags;
407
408 spin_lock_irqsave(&engine->queue_lock, flags);
409
410 if (engine->running || engine->busy) {
411 spin_unlock_irqrestore(&engine->queue_lock, flags);
412 return -EBUSY;
413 }
414
415 engine->running = true;
416 spin_unlock_irqrestore(&engine->queue_lock, flags);
417
418 kthread_queue_work(engine->kworker, &engine->pump_requests);
419
420 return 0;
421 }
422 EXPORT_SYMBOL_GPL(crypto_engine_start);
423
424 /**
425 * crypto_engine_stop - stop the hardware engine
426 * @engine: the hardware engine need to be stopped
427 *
428 * Return 0 on success, else on fail.
429 */
430 int crypto_engine_stop(struct crypto_engine *engine)
431 {
432 unsigned long flags;
433 unsigned int limit = 500;
434 int ret = 0;
435
436 spin_lock_irqsave(&engine->queue_lock, flags);
437
438 /*
439 * If the engine queue is not empty or the engine is on busy state,
440 * we need to wait for a while to pump the requests of engine queue.
441 */
442 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
443 spin_unlock_irqrestore(&engine->queue_lock, flags);
444 msleep(20);
445 spin_lock_irqsave(&engine->queue_lock, flags);
446 }
447
448 if (crypto_queue_len(&engine->queue) || engine->busy)
449 ret = -EBUSY;
450 else
451 engine->running = false;
452
453 spin_unlock_irqrestore(&engine->queue_lock, flags);
454
455 if (ret)
456 dev_warn(engine->dev, "could not stop engine\n");
457
458 return ret;
459 }
460 EXPORT_SYMBOL_GPL(crypto_engine_stop);
461
462 /**
463 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
464 * and initialize it by setting the maximum number of entries in the software
465 * crypto-engine queue.
466 * @dev: the device attached with one hardware engine
467 * @retry_support: whether hardware has support for retry mechanism
468 * @cbk_do_batch: pointer to a callback function to be invoked when executing a
469 * a batch of requests.
470 * This has the form:
471 * callback(struct crypto_engine *engine)
472 * where:
473 * @engine: the crypto engine structure.
474 * @rt: whether this queue is set to run as a realtime task
475 * @qlen: maximum size of the crypto-engine queue
476 *
477 * This must be called from context that can sleep.
478 * Return: the crypto engine structure on success, else NULL.
479 */
480 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
481 bool retry_support,
482 int (*cbk_do_batch)(struct crypto_engine *engine),
483 bool rt, int qlen)
484 {
485 struct crypto_engine *engine;
486
487 if (!dev)
488 return NULL;
489
490 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
491 if (!engine)
492 return NULL;
493
494 engine->dev = dev;
495 engine->rt = rt;
496 engine->running = false;
497 engine->busy = false;
498 engine->idling = false;
499 engine->retry_support = retry_support;
500 engine->priv_data = dev;
501 /*
502 * Batch requests is possible only if
503 * hardware has support for retry mechanism.
504 */
505 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
506
507 snprintf(engine->name, sizeof(engine->name),
508 "%s-engine", dev_name(dev));
509
510 crypto_init_queue(&engine->queue, qlen);
511 spin_lock_init(&engine->queue_lock);
512
513 engine->kworker = kthread_create_worker(0, "%s", engine->name);
514 if (IS_ERR(engine->kworker)) {
515 dev_err(dev, "failed to create crypto request pump task\n");
516 return NULL;
517 }
518 kthread_init_work(&engine->pump_requests, crypto_pump_work);
519
520 if (engine->rt) {
521 dev_info(dev, "will run requests pump with realtime priority\n");
522 sched_set_fifo(engine->kworker->task);
523 }
524
525 return engine;
526 }
527 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
528
529 /**
530 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
531 * initialize it.
532 * @dev: the device attached with one hardware engine
533 * @rt: whether this queue is set to run as a realtime task
534 *
535 * This must be called from context that can sleep.
536 * Return: the crypto engine structure on success, else NULL.
537 */
538 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
539 {
540 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
541 CRYPTO_ENGINE_MAX_QLEN);
542 }
543 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
544
545 /**
546 * crypto_engine_exit - free the resources of hardware engine when exit
547 * @engine: the hardware engine need to be freed
548 *
549 * Return 0 for success.
550 */
551 int crypto_engine_exit(struct crypto_engine *engine)
552 {
553 int ret;
554
555 ret = crypto_engine_stop(engine);
556 if (ret)
557 return ret;
558
559 kthread_destroy_worker(engine->kworker);
560
561 return 0;
562 }
563 EXPORT_SYMBOL_GPL(crypto_engine_exit);
564
565 MODULE_LICENSE("GPL");
566 MODULE_DESCRIPTION("Crypto hardware engine framework");