]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - crypto/drbg.c
crypto: drbg - leave cipher handles operational
[mirror_ubuntu-zesty-kernel.git] / crypto / drbg.c
1 /*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100 #include <crypto/drbg.h>
101
102 /***************************************************************
103 * Backend cipher definitions available to DRBG
104 ***************************************************************/
105
106 /*
107 * The order of the DRBG definitions here matter: every DRBG is registered
108 * as stdrng. Each DRBG receives an increasing cra_priority values the later
109 * they are defined in this array (see drbg_fill_array).
110 *
111 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
112 * the SHA256 / AES 256 over other ciphers. Thus, the favored
113 * DRBGs are the latest entries in this array.
114 */
115 static const struct drbg_core drbg_cores[] = {
116 #ifdef CONFIG_CRYPTO_DRBG_CTR
117 {
118 .flags = DRBG_CTR | DRBG_STRENGTH128,
119 .statelen = 32, /* 256 bits as defined in 10.2.1 */
120 .blocklen_bytes = 16,
121 .cra_name = "ctr_aes128",
122 .backend_cra_name = "aes",
123 }, {
124 .flags = DRBG_CTR | DRBG_STRENGTH192,
125 .statelen = 40, /* 320 bits as defined in 10.2.1 */
126 .blocklen_bytes = 16,
127 .cra_name = "ctr_aes192",
128 .backend_cra_name = "aes",
129 }, {
130 .flags = DRBG_CTR | DRBG_STRENGTH256,
131 .statelen = 48, /* 384 bits as defined in 10.2.1 */
132 .blocklen_bytes = 16,
133 .cra_name = "ctr_aes256",
134 .backend_cra_name = "aes",
135 },
136 #endif /* CONFIG_CRYPTO_DRBG_CTR */
137 #ifdef CONFIG_CRYPTO_DRBG_HASH
138 {
139 .flags = DRBG_HASH | DRBG_STRENGTH128,
140 .statelen = 55, /* 440 bits */
141 .blocklen_bytes = 20,
142 .cra_name = "sha1",
143 .backend_cra_name = "sha1",
144 }, {
145 .flags = DRBG_HASH | DRBG_STRENGTH256,
146 .statelen = 111, /* 888 bits */
147 .blocklen_bytes = 48,
148 .cra_name = "sha384",
149 .backend_cra_name = "sha384",
150 }, {
151 .flags = DRBG_HASH | DRBG_STRENGTH256,
152 .statelen = 111, /* 888 bits */
153 .blocklen_bytes = 64,
154 .cra_name = "sha512",
155 .backend_cra_name = "sha512",
156 }, {
157 .flags = DRBG_HASH | DRBG_STRENGTH256,
158 .statelen = 55, /* 440 bits */
159 .blocklen_bytes = 32,
160 .cra_name = "sha256",
161 .backend_cra_name = "sha256",
162 },
163 #endif /* CONFIG_CRYPTO_DRBG_HASH */
164 #ifdef CONFIG_CRYPTO_DRBG_HMAC
165 {
166 .flags = DRBG_HMAC | DRBG_STRENGTH128,
167 .statelen = 20, /* block length of cipher */
168 .blocklen_bytes = 20,
169 .cra_name = "hmac_sha1",
170 .backend_cra_name = "hmac(sha1)",
171 }, {
172 .flags = DRBG_HMAC | DRBG_STRENGTH256,
173 .statelen = 48, /* block length of cipher */
174 .blocklen_bytes = 48,
175 .cra_name = "hmac_sha384",
176 .backend_cra_name = "hmac(sha384)",
177 }, {
178 .flags = DRBG_HMAC | DRBG_STRENGTH256,
179 .statelen = 64, /* block length of cipher */
180 .blocklen_bytes = 64,
181 .cra_name = "hmac_sha512",
182 .backend_cra_name = "hmac(sha512)",
183 }, {
184 .flags = DRBG_HMAC | DRBG_STRENGTH256,
185 .statelen = 32, /* block length of cipher */
186 .blocklen_bytes = 32,
187 .cra_name = "hmac_sha256",
188 .backend_cra_name = "hmac(sha256)",
189 },
190 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
191 };
192
193 /******************************************************************
194 * Generic helper functions
195 ******************************************************************/
196
197 /*
198 * Return strength of DRBG according to SP800-90A section 8.4
199 *
200 * @flags DRBG flags reference
201 *
202 * Return: normalized strength in *bytes* value or 32 as default
203 * to counter programming errors
204 */
205 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
206 {
207 switch (flags & DRBG_STRENGTH_MASK) {
208 case DRBG_STRENGTH128:
209 return 16;
210 case DRBG_STRENGTH192:
211 return 24;
212 case DRBG_STRENGTH256:
213 return 32;
214 default:
215 return 32;
216 }
217 }
218
219 /*
220 * FIPS 140-2 continuous self test
221 * The test is performed on the result of one round of the output
222 * function. Thus, the function implicitly knows the size of the
223 * buffer.
224 *
225 * @drbg DRBG handle
226 * @buf output buffer of random data to be checked
227 *
228 * return:
229 * true on success
230 * false on error
231 */
232 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
233 const unsigned char *buf)
234 {
235 #ifdef CONFIG_CRYPTO_FIPS
236 int ret = 0;
237 /* skip test if we test the overall system */
238 if (drbg->test_data)
239 return true;
240 /* only perform test in FIPS mode */
241 if (0 == fips_enabled)
242 return true;
243 if (!drbg->fips_primed) {
244 /* Priming of FIPS test */
245 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
246 drbg->fips_primed = true;
247 /* return false due to priming, i.e. another round is needed */
248 return false;
249 }
250 ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
251 if (!ret)
252 panic("DRBG continuous self test failed\n");
253 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
254 /* the test shall pass when the two compared values are not equal */
255 return ret != 0;
256 #else
257 return true;
258 #endif /* CONFIG_CRYPTO_FIPS */
259 }
260
261 /*
262 * Convert an integer into a byte representation of this integer.
263 * The byte representation is big-endian
264 *
265 * @val value to be converted
266 * @buf buffer holding the converted integer -- caller must ensure that
267 * buffer size is at least 32 bit
268 */
269 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
270 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
271 {
272 struct s {
273 __be32 conv;
274 };
275 struct s *conversion = (struct s *) buf;
276
277 conversion->conv = cpu_to_be32(val);
278 }
279 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
280
281 /******************************************************************
282 * CTR DRBG callback functions
283 ******************************************************************/
284
285 #ifdef CONFIG_CRYPTO_DRBG_CTR
286 #define CRYPTO_DRBG_CTR_STRING "CTR "
287 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
288 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
289 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
290 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
291 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
292 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
293
294 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
295 unsigned char *outval, const struct drbg_string *in);
296 static int drbg_init_sym_kernel(struct drbg_state *drbg);
297 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
298
299 /* BCC function for CTR DRBG as defined in 10.4.3 */
300 static int drbg_ctr_bcc(struct drbg_state *drbg,
301 unsigned char *out, const unsigned char *key,
302 struct list_head *in)
303 {
304 int ret = 0;
305 struct drbg_string *curr = NULL;
306 struct drbg_string data;
307 short cnt = 0;
308
309 drbg_string_fill(&data, out, drbg_blocklen(drbg));
310
311 /* 10.4.3 step 2 / 4 */
312 list_for_each_entry(curr, in, list) {
313 const unsigned char *pos = curr->buf;
314 size_t len = curr->len;
315 /* 10.4.3 step 4.1 */
316 while (len) {
317 /* 10.4.3 step 4.2 */
318 if (drbg_blocklen(drbg) == cnt) {
319 cnt = 0;
320 ret = drbg_kcapi_sym(drbg, key, out, &data);
321 if (ret)
322 return ret;
323 }
324 out[cnt] ^= *pos;
325 pos++;
326 cnt++;
327 len--;
328 }
329 }
330 /* 10.4.3 step 4.2 for last block */
331 if (cnt)
332 ret = drbg_kcapi_sym(drbg, key, out, &data);
333
334 return ret;
335 }
336
337 /*
338 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
339 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
340 * the scratchpad is used as follows:
341 * drbg_ctr_update:
342 * temp
343 * start: drbg->scratchpad
344 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
345 * note: the cipher writing into this variable works
346 * blocklen-wise. Now, when the statelen is not a multiple
347 * of blocklen, the generateion loop below "spills over"
348 * by at most blocklen. Thus, we need to give sufficient
349 * memory.
350 * df_data
351 * start: drbg->scratchpad +
352 * drbg_statelen(drbg) + drbg_blocklen(drbg)
353 * length: drbg_statelen(drbg)
354 *
355 * drbg_ctr_df:
356 * pad
357 * start: df_data + drbg_statelen(drbg)
358 * length: drbg_blocklen(drbg)
359 * iv
360 * start: pad + drbg_blocklen(drbg)
361 * length: drbg_blocklen(drbg)
362 * temp
363 * start: iv + drbg_blocklen(drbg)
364 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
365 * note: temp is the buffer that the BCC function operates
366 * on. BCC operates blockwise. drbg_statelen(drbg)
367 * is sufficient when the DRBG state length is a multiple
368 * of the block size. For AES192 (and maybe other ciphers)
369 * this is not correct and the length for temp is
370 * insufficient (yes, that also means for such ciphers,
371 * the final output of all BCC rounds are truncated).
372 * Therefore, add drbg_blocklen(drbg) to cover all
373 * possibilities.
374 */
375
376 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
377 static int drbg_ctr_df(struct drbg_state *drbg,
378 unsigned char *df_data, size_t bytes_to_return,
379 struct list_head *seedlist)
380 {
381 int ret = -EFAULT;
382 unsigned char L_N[8];
383 /* S3 is input */
384 struct drbg_string S1, S2, S4, cipherin;
385 LIST_HEAD(bcc_list);
386 unsigned char *pad = df_data + drbg_statelen(drbg);
387 unsigned char *iv = pad + drbg_blocklen(drbg);
388 unsigned char *temp = iv + drbg_blocklen(drbg);
389 size_t padlen = 0;
390 unsigned int templen = 0;
391 /* 10.4.2 step 7 */
392 unsigned int i = 0;
393 /* 10.4.2 step 8 */
394 const unsigned char *K = (unsigned char *)
395 "\x00\x01\x02\x03\x04\x05\x06\x07"
396 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
397 "\x10\x11\x12\x13\x14\x15\x16\x17"
398 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
399 unsigned char *X;
400 size_t generated_len = 0;
401 size_t inputlen = 0;
402 struct drbg_string *seed = NULL;
403
404 memset(pad, 0, drbg_blocklen(drbg));
405 memset(iv, 0, drbg_blocklen(drbg));
406
407 /* 10.4.2 step 1 is implicit as we work byte-wise */
408
409 /* 10.4.2 step 2 */
410 if ((512/8) < bytes_to_return)
411 return -EINVAL;
412
413 /* 10.4.2 step 2 -- calculate the entire length of all input data */
414 list_for_each_entry(seed, seedlist, list)
415 inputlen += seed->len;
416 drbg_cpu_to_be32(inputlen, &L_N[0]);
417
418 /* 10.4.2 step 3 */
419 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
420
421 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
422 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
423 /* wrap the padlen appropriately */
424 if (padlen)
425 padlen = drbg_blocklen(drbg) - padlen;
426 /*
427 * pad / padlen contains the 0x80 byte and the following zero bytes.
428 * As the calculated padlen value only covers the number of zero
429 * bytes, this value has to be incremented by one for the 0x80 byte.
430 */
431 padlen++;
432 pad[0] = 0x80;
433
434 /* 10.4.2 step 4 -- first fill the linked list and then order it */
435 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
436 list_add_tail(&S1.list, &bcc_list);
437 drbg_string_fill(&S2, L_N, sizeof(L_N));
438 list_add_tail(&S2.list, &bcc_list);
439 list_splice_tail(seedlist, &bcc_list);
440 drbg_string_fill(&S4, pad, padlen);
441 list_add_tail(&S4.list, &bcc_list);
442
443 /* 10.4.2 step 9 */
444 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
445 /*
446 * 10.4.2 step 9.1 - the padding is implicit as the buffer
447 * holds zeros after allocation -- even the increment of i
448 * is irrelevant as the increment remains within length of i
449 */
450 drbg_cpu_to_be32(i, iv);
451 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
452 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
453 if (ret)
454 goto out;
455 /* 10.4.2 step 9.3 */
456 i++;
457 templen += drbg_blocklen(drbg);
458 }
459
460 /* 10.4.2 step 11 */
461 X = temp + (drbg_keylen(drbg));
462 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
463
464 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
465
466 /* 10.4.2 step 13 */
467 while (generated_len < bytes_to_return) {
468 short blocklen = 0;
469 /*
470 * 10.4.2 step 13.1: the truncation of the key length is
471 * implicit as the key is only drbg_blocklen in size based on
472 * the implementation of the cipher function callback
473 */
474 ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
475 if (ret)
476 goto out;
477 blocklen = (drbg_blocklen(drbg) <
478 (bytes_to_return - generated_len)) ?
479 drbg_blocklen(drbg) :
480 (bytes_to_return - generated_len);
481 /* 10.4.2 step 13.2 and 14 */
482 memcpy(df_data + generated_len, X, blocklen);
483 generated_len += blocklen;
484 }
485
486 ret = 0;
487
488 out:
489 memset(iv, 0, drbg_blocklen(drbg));
490 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
491 memset(pad, 0, drbg_blocklen(drbg));
492 return ret;
493 }
494
495 /*
496 * update function of CTR DRBG as defined in 10.2.1.2
497 *
498 * The reseed variable has an enhanced meaning compared to the update
499 * functions of the other DRBGs as follows:
500 * 0 => initial seed from initialization
501 * 1 => reseed via drbg_seed
502 * 2 => first invocation from drbg_ctr_update when addtl is present. In
503 * this case, the df_data scratchpad is not deleted so that it is
504 * available for another calls to prevent calling the DF function
505 * again.
506 * 3 => second invocation from drbg_ctr_update. When the update function
507 * was called with addtl, the df_data memory already contains the
508 * DFed addtl information and we do not need to call DF again.
509 */
510 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
511 int reseed)
512 {
513 int ret = -EFAULT;
514 /* 10.2.1.2 step 1 */
515 unsigned char *temp = drbg->scratchpad;
516 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
517 drbg_blocklen(drbg);
518 unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
519 unsigned int len = 0;
520 struct drbg_string cipherin;
521
522 if (3 > reseed)
523 memset(df_data, 0, drbg_statelen(drbg));
524
525 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
526 if (seed) {
527 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
528 if (ret)
529 goto out;
530 }
531
532 drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
533 /*
534 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
535 * zeroizes all memory during initialization
536 */
537 while (len < (drbg_statelen(drbg))) {
538 /* 10.2.1.2 step 2.1 */
539 crypto_inc(drbg->V, drbg_blocklen(drbg));
540 /*
541 * 10.2.1.2 step 2.2 */
542 ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
543 if (ret)
544 goto out;
545 /* 10.2.1.2 step 2.3 and 3 */
546 len += drbg_blocklen(drbg);
547 }
548
549 /* 10.2.1.2 step 4 */
550 temp_p = temp;
551 df_data_p = df_data;
552 for (len = 0; len < drbg_statelen(drbg); len++) {
553 *temp_p ^= *df_data_p;
554 df_data_p++; temp_p++;
555 }
556
557 /* 10.2.1.2 step 5 */
558 memcpy(drbg->C, temp, drbg_keylen(drbg));
559 /* 10.2.1.2 step 6 */
560 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
561 ret = 0;
562
563 out:
564 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
565 if (2 != reseed)
566 memset(df_data, 0, drbg_statelen(drbg));
567 return ret;
568 }
569
570 /*
571 * scratchpad use: drbg_ctr_update is called independently from
572 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
573 */
574 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
575 static int drbg_ctr_generate(struct drbg_state *drbg,
576 unsigned char *buf, unsigned int buflen,
577 struct list_head *addtl)
578 {
579 int len = 0;
580 int ret = 0;
581 struct drbg_string data;
582
583 /* 10.2.1.5.2 step 2 */
584 if (addtl && !list_empty(addtl)) {
585 ret = drbg_ctr_update(drbg, addtl, 2);
586 if (ret)
587 return 0;
588 }
589
590 /* 10.2.1.5.2 step 4.1 */
591 crypto_inc(drbg->V, drbg_blocklen(drbg));
592 drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
593 while (len < buflen) {
594 int outlen = 0;
595 /* 10.2.1.5.2 step 4.2 */
596 ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
597 if (ret) {
598 len = ret;
599 goto out;
600 }
601 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
602 drbg_blocklen(drbg) : (buflen - len);
603 if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
604 /* 10.2.1.5.2 step 6 */
605 crypto_inc(drbg->V, drbg_blocklen(drbg));
606 continue;
607 }
608 /* 10.2.1.5.2 step 4.3 */
609 memcpy(buf + len, drbg->scratchpad, outlen);
610 len += outlen;
611 /* 10.2.1.5.2 step 6 */
612 if (len < buflen)
613 crypto_inc(drbg->V, drbg_blocklen(drbg));
614 }
615
616 /* 10.2.1.5.2 step 6 */
617 ret = drbg_ctr_update(drbg, NULL, 3);
618 if (ret)
619 len = ret;
620
621 out:
622 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
623 return len;
624 }
625
626 static struct drbg_state_ops drbg_ctr_ops = {
627 .update = drbg_ctr_update,
628 .generate = drbg_ctr_generate,
629 .crypto_init = drbg_init_sym_kernel,
630 .crypto_fini = drbg_fini_sym_kernel,
631 };
632 #endif /* CONFIG_CRYPTO_DRBG_CTR */
633
634 /******************************************************************
635 * HMAC DRBG callback functions
636 ******************************************************************/
637
638 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
639 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
640 unsigned char *outval, const struct list_head *in);
641 static int drbg_init_hash_kernel(struct drbg_state *drbg);
642 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
643 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
644
645 #ifdef CONFIG_CRYPTO_DRBG_HMAC
646 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
647 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
648 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
649 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
650 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
651 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
652 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
653 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
654 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
655
656 /* update function of HMAC DRBG as defined in 10.1.2.2 */
657 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
658 int reseed)
659 {
660 int ret = -EFAULT;
661 int i = 0;
662 struct drbg_string seed1, seed2, vdata;
663 LIST_HEAD(seedlist);
664 LIST_HEAD(vdatalist);
665
666 if (!reseed)
667 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
668 memset(drbg->V, 1, drbg_statelen(drbg));
669
670 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
671 list_add_tail(&seed1.list, &seedlist);
672 /* buffer of seed2 will be filled in for loop below with one byte */
673 drbg_string_fill(&seed2, NULL, 1);
674 list_add_tail(&seed2.list, &seedlist);
675 /* input data of seed is allowed to be NULL at this point */
676 if (seed)
677 list_splice_tail(seed, &seedlist);
678
679 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
680 list_add_tail(&vdata.list, &vdatalist);
681 for (i = 2; 0 < i; i--) {
682 /* first round uses 0x0, second 0x1 */
683 unsigned char prefix = DRBG_PREFIX0;
684 if (1 == i)
685 prefix = DRBG_PREFIX1;
686 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
687 seed2.buf = &prefix;
688 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
689 if (ret)
690 return ret;
691
692 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
693 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
694 if (ret)
695 return ret;
696
697 /* 10.1.2.2 step 3 */
698 if (!seed)
699 return ret;
700 }
701
702 return 0;
703 }
704
705 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
706 static int drbg_hmac_generate(struct drbg_state *drbg,
707 unsigned char *buf,
708 unsigned int buflen,
709 struct list_head *addtl)
710 {
711 int len = 0;
712 int ret = 0;
713 struct drbg_string data;
714 LIST_HEAD(datalist);
715
716 /* 10.1.2.5 step 2 */
717 if (addtl && !list_empty(addtl)) {
718 ret = drbg_hmac_update(drbg, addtl, 1);
719 if (ret)
720 return ret;
721 }
722
723 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724 list_add_tail(&data.list, &datalist);
725 while (len < buflen) {
726 unsigned int outlen = 0;
727 /* 10.1.2.5 step 4.1 */
728 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
729 if (ret)
730 return ret;
731 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732 drbg_blocklen(drbg) : (buflen - len);
733 if (!drbg_fips_continuous_test(drbg, drbg->V))
734 continue;
735
736 /* 10.1.2.5 step 4.2 */
737 memcpy(buf + len, drbg->V, outlen);
738 len += outlen;
739 }
740
741 /* 10.1.2.5 step 6 */
742 if (addtl && !list_empty(addtl))
743 ret = drbg_hmac_update(drbg, addtl, 1);
744 else
745 ret = drbg_hmac_update(drbg, NULL, 1);
746 if (ret)
747 return ret;
748
749 return len;
750 }
751
752 static struct drbg_state_ops drbg_hmac_ops = {
753 .update = drbg_hmac_update,
754 .generate = drbg_hmac_generate,
755 .crypto_init = drbg_init_hash_kernel,
756 .crypto_fini = drbg_fini_hash_kernel,
757 };
758 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
759
760 /******************************************************************
761 * Hash DRBG callback functions
762 ******************************************************************/
763
764 #ifdef CONFIG_CRYPTO_DRBG_HASH
765 #define CRYPTO_DRBG_HASH_STRING "HASH "
766 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
767 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
768 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
769 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
770 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
771 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
772 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
773 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
774
775 /*
776 * Increment buffer
777 *
778 * @dst buffer to increment
779 * @add value to add
780 */
781 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
782 const unsigned char *add, size_t addlen)
783 {
784 /* implied: dstlen > addlen */
785 unsigned char *dstptr;
786 const unsigned char *addptr;
787 unsigned int remainder = 0;
788 size_t len = addlen;
789
790 dstptr = dst + (dstlen-1);
791 addptr = add + (addlen-1);
792 while (len) {
793 remainder += *dstptr + *addptr;
794 *dstptr = remainder & 0xff;
795 remainder >>= 8;
796 len--; dstptr--; addptr--;
797 }
798 len = dstlen - addlen;
799 while (len && remainder > 0) {
800 remainder = *dstptr + 1;
801 *dstptr = remainder & 0xff;
802 remainder >>= 8;
803 len--; dstptr--;
804 }
805 }
806
807 /*
808 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
809 * interlinked, the scratchpad is used as follows:
810 * drbg_hash_update
811 * start: drbg->scratchpad
812 * length: drbg_statelen(drbg)
813 * drbg_hash_df:
814 * start: drbg->scratchpad + drbg_statelen(drbg)
815 * length: drbg_blocklen(drbg)
816 *
817 * drbg_hash_process_addtl uses the scratchpad, but fully completes
818 * before either of the functions mentioned before are invoked. Therefore,
819 * drbg_hash_process_addtl does not need to be specifically considered.
820 */
821
822 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
823 static int drbg_hash_df(struct drbg_state *drbg,
824 unsigned char *outval, size_t outlen,
825 struct list_head *entropylist)
826 {
827 int ret = 0;
828 size_t len = 0;
829 unsigned char input[5];
830 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
831 struct drbg_string data;
832
833 /* 10.4.1 step 3 */
834 input[0] = 1;
835 drbg_cpu_to_be32((outlen * 8), &input[1]);
836
837 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
838 drbg_string_fill(&data, input, 5);
839 list_add(&data.list, entropylist);
840
841 /* 10.4.1 step 4 */
842 while (len < outlen) {
843 short blocklen = 0;
844 /* 10.4.1 step 4.1 */
845 ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
846 if (ret)
847 goto out;
848 /* 10.4.1 step 4.2 */
849 input[0]++;
850 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
851 drbg_blocklen(drbg) : (outlen - len);
852 memcpy(outval + len, tmp, blocklen);
853 len += blocklen;
854 }
855
856 out:
857 memset(tmp, 0, drbg_blocklen(drbg));
858 return ret;
859 }
860
861 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
862 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
863 int reseed)
864 {
865 int ret = 0;
866 struct drbg_string data1, data2;
867 LIST_HEAD(datalist);
868 LIST_HEAD(datalist2);
869 unsigned char *V = drbg->scratchpad;
870 unsigned char prefix = DRBG_PREFIX1;
871
872 if (!seed)
873 return -EINVAL;
874
875 if (reseed) {
876 /* 10.1.1.3 step 1 */
877 memcpy(V, drbg->V, drbg_statelen(drbg));
878 drbg_string_fill(&data1, &prefix, 1);
879 list_add_tail(&data1.list, &datalist);
880 drbg_string_fill(&data2, V, drbg_statelen(drbg));
881 list_add_tail(&data2.list, &datalist);
882 }
883 list_splice_tail(seed, &datalist);
884
885 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
886 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
887 if (ret)
888 goto out;
889
890 /* 10.1.1.2 / 10.1.1.3 step 4 */
891 prefix = DRBG_PREFIX0;
892 drbg_string_fill(&data1, &prefix, 1);
893 list_add_tail(&data1.list, &datalist2);
894 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
895 list_add_tail(&data2.list, &datalist2);
896 /* 10.1.1.2 / 10.1.1.3 step 4 */
897 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
898
899 out:
900 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
901 return ret;
902 }
903
904 /* processing of additional information string for Hash DRBG */
905 static int drbg_hash_process_addtl(struct drbg_state *drbg,
906 struct list_head *addtl)
907 {
908 int ret = 0;
909 struct drbg_string data1, data2;
910 LIST_HEAD(datalist);
911 unsigned char prefix = DRBG_PREFIX2;
912
913 /* 10.1.1.4 step 2 */
914 if (!addtl || list_empty(addtl))
915 return 0;
916
917 /* 10.1.1.4 step 2a */
918 drbg_string_fill(&data1, &prefix, 1);
919 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
920 list_add_tail(&data1.list, &datalist);
921 list_add_tail(&data2.list, &datalist);
922 list_splice_tail(addtl, &datalist);
923 ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
924 if (ret)
925 goto out;
926
927 /* 10.1.1.4 step 2b */
928 drbg_add_buf(drbg->V, drbg_statelen(drbg),
929 drbg->scratchpad, drbg_blocklen(drbg));
930
931 out:
932 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
933 return ret;
934 }
935
936 /* Hashgen defined in 10.1.1.4 */
937 static int drbg_hash_hashgen(struct drbg_state *drbg,
938 unsigned char *buf,
939 unsigned int buflen)
940 {
941 int len = 0;
942 int ret = 0;
943 unsigned char *src = drbg->scratchpad;
944 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
945 struct drbg_string data;
946 LIST_HEAD(datalist);
947
948 /* 10.1.1.4 step hashgen 2 */
949 memcpy(src, drbg->V, drbg_statelen(drbg));
950
951 drbg_string_fill(&data, src, drbg_statelen(drbg));
952 list_add_tail(&data.list, &datalist);
953 while (len < buflen) {
954 unsigned int outlen = 0;
955 /* 10.1.1.4 step hashgen 4.1 */
956 ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
957 if (ret) {
958 len = ret;
959 goto out;
960 }
961 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
962 drbg_blocklen(drbg) : (buflen - len);
963 if (!drbg_fips_continuous_test(drbg, dst)) {
964 crypto_inc(src, drbg_statelen(drbg));
965 continue;
966 }
967 /* 10.1.1.4 step hashgen 4.2 */
968 memcpy(buf + len, dst, outlen);
969 len += outlen;
970 /* 10.1.1.4 hashgen step 4.3 */
971 if (len < buflen)
972 crypto_inc(src, drbg_statelen(drbg));
973 }
974
975 out:
976 memset(drbg->scratchpad, 0,
977 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
978 return len;
979 }
980
981 /* generate function for Hash DRBG as defined in 10.1.1.4 */
982 static int drbg_hash_generate(struct drbg_state *drbg,
983 unsigned char *buf, unsigned int buflen,
984 struct list_head *addtl)
985 {
986 int len = 0;
987 int ret = 0;
988 union {
989 unsigned char req[8];
990 __be64 req_int;
991 } u;
992 unsigned char prefix = DRBG_PREFIX3;
993 struct drbg_string data1, data2;
994 LIST_HEAD(datalist);
995
996 /* 10.1.1.4 step 2 */
997 ret = drbg_hash_process_addtl(drbg, addtl);
998 if (ret)
999 return ret;
1000 /* 10.1.1.4 step 3 */
1001 len = drbg_hash_hashgen(drbg, buf, buflen);
1002
1003 /* this is the value H as documented in 10.1.1.4 */
1004 /* 10.1.1.4 step 4 */
1005 drbg_string_fill(&data1, &prefix, 1);
1006 list_add_tail(&data1.list, &datalist);
1007 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1008 list_add_tail(&data2.list, &datalist);
1009 ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1010 if (ret) {
1011 len = ret;
1012 goto out;
1013 }
1014
1015 /* 10.1.1.4 step 5 */
1016 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1017 drbg->scratchpad, drbg_blocklen(drbg));
1018 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1019 drbg->C, drbg_statelen(drbg));
1020 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1021 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1022
1023 out:
1024 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1025 return len;
1026 }
1027
1028 /*
1029 * scratchpad usage: as update and generate are used isolated, both
1030 * can use the scratchpad
1031 */
1032 static struct drbg_state_ops drbg_hash_ops = {
1033 .update = drbg_hash_update,
1034 .generate = drbg_hash_generate,
1035 .crypto_init = drbg_init_hash_kernel,
1036 .crypto_fini = drbg_fini_hash_kernel,
1037 };
1038 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1039
1040 /******************************************************************
1041 * Functions common for DRBG implementations
1042 ******************************************************************/
1043
1044 /*
1045 * Seeding or reseeding of the DRBG
1046 *
1047 * @drbg: DRBG state struct
1048 * @pers: personalization / additional information buffer
1049 * @reseed: 0 for initial seed process, 1 for reseeding
1050 *
1051 * return:
1052 * 0 on success
1053 * error value otherwise
1054 */
1055 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1056 bool reseed)
1057 {
1058 int ret = 0;
1059 unsigned char *entropy = NULL;
1060 size_t entropylen = 0;
1061 struct drbg_string data1;
1062 LIST_HEAD(seedlist);
1063
1064 /* 9.1 / 9.2 / 9.3.1 step 3 */
1065 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1066 pr_devel("DRBG: personalization string too long %zu\n",
1067 pers->len);
1068 return -EINVAL;
1069 }
1070
1071 if (drbg->test_data && drbg->test_data->testentropy) {
1072 drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1073 drbg->test_data->testentropy->len);
1074 pr_devel("DRBG: using test entropy\n");
1075 } else {
1076 /*
1077 * Gather entropy equal to the security strength of the DRBG.
1078 * With a derivation function, a nonce is required in addition
1079 * to the entropy. A nonce must be at least 1/2 of the security
1080 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1081 * of the strength. The consideration of a nonce is only
1082 * applicable during initial seeding.
1083 */
1084 entropylen = drbg_sec_strength(drbg->core->flags);
1085 if (!entropylen)
1086 return -EFAULT;
1087 if (!reseed)
1088 entropylen = ((entropylen + 1) / 2) * 3;
1089 pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1090 entropylen);
1091 entropy = kzalloc(entropylen, GFP_KERNEL);
1092 if (!entropy)
1093 return -ENOMEM;
1094 get_random_bytes(entropy, entropylen);
1095 drbg_string_fill(&data1, entropy, entropylen);
1096 }
1097 list_add_tail(&data1.list, &seedlist);
1098
1099 /*
1100 * concatenation of entropy with personalization str / addtl input)
1101 * the variable pers is directly handed in by the caller, so check its
1102 * contents whether it is appropriate
1103 */
1104 if (pers && pers->buf && 0 < pers->len) {
1105 list_add_tail(&pers->list, &seedlist);
1106 pr_devel("DRBG: using personalization string\n");
1107 }
1108
1109 if (!reseed) {
1110 memset(drbg->V, 0, drbg_statelen(drbg));
1111 memset(drbg->C, 0, drbg_statelen(drbg));
1112 }
1113
1114 ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1115 if (ret)
1116 goto out;
1117
1118 drbg->seeded = true;
1119 /* 10.1.1.2 / 10.1.1.3 step 5 */
1120 drbg->reseed_ctr = 1;
1121
1122 out:
1123 kzfree(entropy);
1124 return ret;
1125 }
1126
1127 /* Free all substructures in a DRBG state without the DRBG state structure */
1128 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1129 {
1130 if (!drbg)
1131 return;
1132 kzfree(drbg->V);
1133 drbg->V = NULL;
1134 kzfree(drbg->C);
1135 drbg->C = NULL;
1136 kzfree(drbg->scratchpad);
1137 drbg->scratchpad = NULL;
1138 drbg->reseed_ctr = 0;
1139 #ifdef CONFIG_CRYPTO_FIPS
1140 kzfree(drbg->prev);
1141 drbg->prev = NULL;
1142 drbg->fips_primed = false;
1143 #endif
1144 }
1145
1146 /*
1147 * Allocate all sub-structures for a DRBG state.
1148 * The DRBG state structure must already be allocated.
1149 */
1150 static inline int drbg_alloc_state(struct drbg_state *drbg)
1151 {
1152 int ret = -ENOMEM;
1153 unsigned int sb_size = 0;
1154
1155 drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1156 if (!drbg->V)
1157 goto err;
1158 drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1159 if (!drbg->C)
1160 goto err;
1161 #ifdef CONFIG_CRYPTO_FIPS
1162 drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1163 if (!drbg->prev)
1164 goto err;
1165 drbg->fips_primed = false;
1166 #endif
1167 /* scratchpad is only generated for CTR and Hash */
1168 if (drbg->core->flags & DRBG_HMAC)
1169 sb_size = 0;
1170 else if (drbg->core->flags & DRBG_CTR)
1171 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1172 drbg_statelen(drbg) + /* df_data */
1173 drbg_blocklen(drbg) + /* pad */
1174 drbg_blocklen(drbg) + /* iv */
1175 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1176 else
1177 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1178
1179 if (0 < sb_size) {
1180 drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1181 if (!drbg->scratchpad)
1182 goto err;
1183 }
1184 return 0;
1185
1186 err:
1187 drbg_dealloc_state(drbg);
1188 return ret;
1189 }
1190
1191 /*************************************************************************
1192 * DRBG interface functions
1193 *************************************************************************/
1194
1195 /*
1196 * DRBG generate function as required by SP800-90A - this function
1197 * generates random numbers
1198 *
1199 * @drbg DRBG state handle
1200 * @buf Buffer where to store the random numbers -- the buffer must already
1201 * be pre-allocated by caller
1202 * @buflen Length of output buffer - this value defines the number of random
1203 * bytes pulled from DRBG
1204 * @addtl Additional input that is mixed into state, may be NULL -- note
1205 * the entropy is pulled by the DRBG internally unconditionally
1206 * as defined in SP800-90A. The additional input is mixed into
1207 * the state in addition to the pulled entropy.
1208 *
1209 * return: 0 when all bytes are generated; < 0 in case of an error
1210 */
1211 static int drbg_generate(struct drbg_state *drbg,
1212 unsigned char *buf, unsigned int buflen,
1213 struct drbg_string *addtl)
1214 {
1215 int len = 0;
1216 LIST_HEAD(addtllist);
1217
1218 if (0 == buflen || !buf) {
1219 pr_devel("DRBG: no output buffer provided\n");
1220 return -EINVAL;
1221 }
1222 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1223 pr_devel("DRBG: wrong format of additional information\n");
1224 return -EINVAL;
1225 }
1226
1227 /* 9.3.1 step 2 */
1228 len = -EINVAL;
1229 if (buflen > (drbg_max_request_bytes(drbg))) {
1230 pr_devel("DRBG: requested random numbers too large %u\n",
1231 buflen);
1232 goto err;
1233 }
1234
1235 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1236
1237 /* 9.3.1 step 4 */
1238 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1239 pr_devel("DRBG: additional information string too long %zu\n",
1240 addtl->len);
1241 goto err;
1242 }
1243 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1244
1245 /*
1246 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1247 * here. The spec is a bit convoluted here, we make it simpler.
1248 */
1249 if ((drbg_max_requests(drbg)) < drbg->reseed_ctr)
1250 drbg->seeded = false;
1251
1252 if (drbg->pr || !drbg->seeded) {
1253 pr_devel("DRBG: reseeding before generation (prediction "
1254 "resistance: %s, state %s)\n",
1255 drbg->pr ? "true" : "false",
1256 drbg->seeded ? "seeded" : "unseeded");
1257 /* 9.3.1 steps 7.1 through 7.3 */
1258 len = drbg_seed(drbg, addtl, true);
1259 if (len)
1260 goto err;
1261 /* 9.3.1 step 7.4 */
1262 addtl = NULL;
1263 }
1264
1265 if (addtl && 0 < addtl->len)
1266 list_add_tail(&addtl->list, &addtllist);
1267 /* 9.3.1 step 8 and 10 */
1268 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1269
1270 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1271 drbg->reseed_ctr++;
1272 if (0 >= len)
1273 goto err;
1274
1275 /*
1276 * Section 11.3.3 requires to re-perform self tests after some
1277 * generated random numbers. The chosen value after which self
1278 * test is performed is arbitrary, but it should be reasonable.
1279 * However, we do not perform the self tests because of the following
1280 * reasons: it is mathematically impossible that the initial self tests
1281 * were successfully and the following are not. If the initial would
1282 * pass and the following would not, the kernel integrity is violated.
1283 * In this case, the entire kernel operation is questionable and it
1284 * is unlikely that the integrity violation only affects the
1285 * correct operation of the DRBG.
1286 *
1287 * Albeit the following code is commented out, it is provided in
1288 * case somebody has a need to implement the test of 11.3.3.
1289 */
1290 #if 0
1291 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1292 int err = 0;
1293 pr_devel("DRBG: start to perform self test\n");
1294 if (drbg->core->flags & DRBG_HMAC)
1295 err = alg_test("drbg_pr_hmac_sha256",
1296 "drbg_pr_hmac_sha256", 0, 0);
1297 else if (drbg->core->flags & DRBG_CTR)
1298 err = alg_test("drbg_pr_ctr_aes128",
1299 "drbg_pr_ctr_aes128", 0, 0);
1300 else
1301 err = alg_test("drbg_pr_sha256",
1302 "drbg_pr_sha256", 0, 0);
1303 if (err) {
1304 pr_err("DRBG: periodical self test failed\n");
1305 /*
1306 * uninstantiate implies that from now on, only errors
1307 * are returned when reusing this DRBG cipher handle
1308 */
1309 drbg_uninstantiate(drbg);
1310 return 0;
1311 } else {
1312 pr_devel("DRBG: self test successful\n");
1313 }
1314 }
1315 #endif
1316
1317 /*
1318 * All operations were successful, return 0 as mandated by
1319 * the kernel crypto API interface.
1320 */
1321 len = 0;
1322 err:
1323 return len;
1324 }
1325
1326 /*
1327 * Wrapper around drbg_generate which can pull arbitrary long strings
1328 * from the DRBG without hitting the maximum request limitation.
1329 *
1330 * Parameters: see drbg_generate
1331 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1332 * the entire drbg_generate_long request fails
1333 */
1334 static int drbg_generate_long(struct drbg_state *drbg,
1335 unsigned char *buf, unsigned int buflen,
1336 struct drbg_string *addtl)
1337 {
1338 unsigned int len = 0;
1339 unsigned int slice = 0;
1340 do {
1341 int err = 0;
1342 unsigned int chunk = 0;
1343 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1344 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1345 mutex_lock(&drbg->drbg_mutex);
1346 err = drbg_generate(drbg, buf + len, chunk, addtl);
1347 mutex_unlock(&drbg->drbg_mutex);
1348 if (0 > err)
1349 return err;
1350 len += chunk;
1351 } while (slice > 0 && (len < buflen));
1352 return 0;
1353 }
1354
1355 /*
1356 * DRBG instantiation function as required by SP800-90A - this function
1357 * sets up the DRBG handle, performs the initial seeding and all sanity
1358 * checks required by SP800-90A
1359 *
1360 * @drbg memory of state -- if NULL, new memory is allocated
1361 * @pers Personalization string that is mixed into state, may be NULL -- note
1362 * the entropy is pulled by the DRBG internally unconditionally
1363 * as defined in SP800-90A. The additional input is mixed into
1364 * the state in addition to the pulled entropy.
1365 * @coreref reference to core
1366 * @pr prediction resistance enabled
1367 *
1368 * return
1369 * 0 on success
1370 * error value otherwise
1371 */
1372 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1373 int coreref, bool pr)
1374 {
1375 int ret = -EOPNOTSUPP;
1376
1377 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1378 "%s\n", coreref, pr ? "enabled" : "disabled");
1379 mutex_lock(&drbg->drbg_mutex);
1380 drbg->core = &drbg_cores[coreref];
1381 drbg->pr = pr;
1382 drbg->seeded = false;
1383 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1384 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1385 case DRBG_HMAC:
1386 drbg->d_ops = &drbg_hmac_ops;
1387 break;
1388 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1389 #ifdef CONFIG_CRYPTO_DRBG_HASH
1390 case DRBG_HASH:
1391 drbg->d_ops = &drbg_hash_ops;
1392 break;
1393 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1394 #ifdef CONFIG_CRYPTO_DRBG_CTR
1395 case DRBG_CTR:
1396 drbg->d_ops = &drbg_ctr_ops;
1397 break;
1398 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1399 default:
1400 goto unlock;
1401 }
1402
1403 /* 9.1 step 1 is implicit with the selected DRBG type */
1404
1405 /*
1406 * 9.1 step 2 is implicit as caller can select prediction resistance
1407 * and the flag is copied into drbg->flags --
1408 * all DRBG types support prediction resistance
1409 */
1410
1411 /* 9.1 step 4 is implicit in drbg_sec_strength */
1412
1413 ret = drbg_alloc_state(drbg);
1414 if (ret)
1415 goto unlock;
1416
1417 ret = -EFAULT;
1418 if (drbg->d_ops->crypto_init(drbg))
1419 goto err;
1420 ret = drbg_seed(drbg, pers, false);
1421 if (ret) {
1422 drbg->d_ops->crypto_fini(drbg);
1423 goto err;
1424 }
1425
1426 mutex_unlock(&drbg->drbg_mutex);
1427 return 0;
1428
1429 err:
1430 drbg_dealloc_state(drbg);
1431 unlock:
1432 mutex_unlock(&drbg->drbg_mutex);
1433 return ret;
1434 }
1435
1436 /*
1437 * DRBG uninstantiate function as required by SP800-90A - this function
1438 * frees all buffers and the DRBG handle
1439 *
1440 * @drbg DRBG state handle
1441 *
1442 * return
1443 * 0 on success
1444 */
1445 static int drbg_uninstantiate(struct drbg_state *drbg)
1446 {
1447 mutex_lock(&drbg->drbg_mutex);
1448 drbg->d_ops->crypto_fini(drbg);
1449 drbg_dealloc_state(drbg);
1450 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1451 mutex_unlock(&drbg->drbg_mutex);
1452 return 0;
1453 }
1454
1455 /*
1456 * Helper function for setting the test data in the DRBG
1457 *
1458 * @drbg DRBG state handle
1459 * @test_data test data to sets
1460 */
1461 static inline void drbg_set_testdata(struct drbg_state *drbg,
1462 struct drbg_test_data *test_data)
1463 {
1464 if (!test_data || !test_data->testentropy)
1465 return;
1466 mutex_lock(&drbg->drbg_mutex);;
1467 drbg->test_data = test_data;
1468 mutex_unlock(&drbg->drbg_mutex);
1469 }
1470
1471 /***************************************************************
1472 * Kernel crypto API cipher invocations requested by DRBG
1473 ***************************************************************/
1474
1475 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1476 struct sdesc {
1477 struct shash_desc shash;
1478 char ctx[];
1479 };
1480
1481 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1482 {
1483 struct sdesc *sdesc;
1484 struct crypto_shash *tfm;
1485
1486 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1487 if (IS_ERR(tfm)) {
1488 pr_info("DRBG: could not allocate digest TFM handle\n");
1489 return PTR_ERR(tfm);
1490 }
1491 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1492 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1493 GFP_KERNEL);
1494 if (!sdesc) {
1495 crypto_free_shash(tfm);
1496 return -ENOMEM;
1497 }
1498
1499 sdesc->shash.tfm = tfm;
1500 sdesc->shash.flags = 0;
1501 drbg->priv_data = sdesc;
1502 return 0;
1503 }
1504
1505 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1506 {
1507 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1508 if (sdesc) {
1509 crypto_free_shash(sdesc->shash.tfm);
1510 kzfree(sdesc);
1511 }
1512 drbg->priv_data = NULL;
1513 return 0;
1514 }
1515
1516 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1517 unsigned char *outval, const struct list_head *in)
1518 {
1519 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1520 struct drbg_string *input = NULL;
1521
1522 if (key)
1523 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1524 crypto_shash_init(&sdesc->shash);
1525 list_for_each_entry(input, in, list)
1526 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1527 return crypto_shash_final(&sdesc->shash, outval);
1528 }
1529 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1530
1531 #ifdef CONFIG_CRYPTO_DRBG_CTR
1532 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1533 {
1534 int ret = 0;
1535 struct crypto_cipher *tfm;
1536
1537 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1538 if (IS_ERR(tfm)) {
1539 pr_info("DRBG: could not allocate cipher TFM handle\n");
1540 return PTR_ERR(tfm);
1541 }
1542 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1543 drbg->priv_data = tfm;
1544 return ret;
1545 }
1546
1547 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1548 {
1549 struct crypto_cipher *tfm =
1550 (struct crypto_cipher *)drbg->priv_data;
1551 if (tfm)
1552 crypto_free_cipher(tfm);
1553 drbg->priv_data = NULL;
1554 return 0;
1555 }
1556
1557 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1558 unsigned char *outval, const struct drbg_string *in)
1559 {
1560 struct crypto_cipher *tfm =
1561 (struct crypto_cipher *)drbg->priv_data;
1562
1563 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1564 /* there is only component in *in */
1565 BUG_ON(in->len < drbg_blocklen(drbg));
1566 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1567 return 0;
1568 }
1569 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1570
1571 /***************************************************************
1572 * Kernel crypto API interface to register DRBG
1573 ***************************************************************/
1574
1575 /*
1576 * Look up the DRBG flags by given kernel crypto API cra_name
1577 * The code uses the drbg_cores definition to do this
1578 *
1579 * @cra_name kernel crypto API cra_name
1580 * @coreref reference to integer which is filled with the pointer to
1581 * the applicable core
1582 * @pr reference for setting prediction resistance
1583 *
1584 * return: flags
1585 */
1586 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1587 int *coreref, bool *pr)
1588 {
1589 int i = 0;
1590 size_t start = 0;
1591 int len = 0;
1592
1593 *pr = true;
1594 /* disassemble the names */
1595 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1596 start = 10;
1597 *pr = false;
1598 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1599 start = 8;
1600 } else {
1601 return;
1602 }
1603
1604 /* remove the first part */
1605 len = strlen(cra_driver_name) - start;
1606 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1607 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1608 len)) {
1609 *coreref = i;
1610 return;
1611 }
1612 }
1613 }
1614
1615 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1616 {
1617 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1618 bool pr = false;
1619 int coreref = 0;
1620
1621 mutex_init(&drbg->drbg_mutex);
1622 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1623 /*
1624 * when personalization string is needed, the caller must call reset
1625 * and provide the personalization string as seed information
1626 */
1627 return drbg_instantiate(drbg, NULL, coreref, pr);
1628 }
1629
1630 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1631 {
1632 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1633 }
1634
1635 /*
1636 * Generate random numbers invoked by the kernel crypto API:
1637 * The API of the kernel crypto API is extended as follows:
1638 *
1639 * If dlen is larger than zero, rdata is interpreted as the output buffer
1640 * where random data is to be stored.
1641 *
1642 * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1643 * which holds the additional information string that is used for the
1644 * DRBG generation process. The output buffer that is to be used to store
1645 * data is also pointed to by struct drbg_gen.
1646 */
1647 static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1648 unsigned int dlen)
1649 {
1650 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1651 if (0 < dlen) {
1652 return drbg_generate_long(drbg, rdata, dlen, NULL);
1653 } else {
1654 struct drbg_gen *data = (struct drbg_gen *)rdata;
1655 struct drbg_string addtl;
1656 /* catch NULL pointer */
1657 if (!data)
1658 return 0;
1659 drbg_set_testdata(drbg, data->test_data);
1660 /* linked list variable is now local to allow modification */
1661 drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1662 return drbg_generate_long(drbg, data->outbuf, data->outlen,
1663 &addtl);
1664 }
1665 }
1666
1667 /*
1668 * Reset the DRBG invoked by the kernel crypto API
1669 * The reset implies a full re-initialization of the DRBG. Similar to the
1670 * generate function of drbg_kcapi_random, this function extends the
1671 * kernel crypto API interface with struct drbg_gen
1672 */
1673 static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1674 {
1675 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1676 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1677 bool pr = false;
1678 struct drbg_string seed_string;
1679 int coreref = 0;
1680
1681 drbg_uninstantiate(drbg);
1682 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1683 &pr);
1684 if (0 < slen) {
1685 drbg_string_fill(&seed_string, seed, slen);
1686 return drbg_instantiate(drbg, &seed_string, coreref, pr);
1687 } else {
1688 struct drbg_gen *data = (struct drbg_gen *)seed;
1689 /* allow invocation of API call with NULL, 0 */
1690 if (!data)
1691 return drbg_instantiate(drbg, NULL, coreref, pr);
1692 drbg_set_testdata(drbg, data->test_data);
1693 /* linked list variable is now local to allow modification */
1694 drbg_string_fill(&seed_string, data->addtl->buf,
1695 data->addtl->len);
1696 return drbg_instantiate(drbg, &seed_string, coreref, pr);
1697 }
1698 }
1699
1700 /***************************************************************
1701 * Kernel module: code to load the module
1702 ***************************************************************/
1703
1704 /*
1705 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1706 * of the error handling.
1707 *
1708 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1709 * as seed source of get_random_bytes does not fail.
1710 *
1711 * Note 2: There is no sensible way of testing the reseed counter
1712 * enforcement, so skip it.
1713 */
1714 static inline int __init drbg_healthcheck_sanity(void)
1715 {
1716 #ifdef CONFIG_CRYPTO_FIPS
1717 int len = 0;
1718 #define OUTBUFLEN 16
1719 unsigned char buf[OUTBUFLEN];
1720 struct drbg_state *drbg = NULL;
1721 int ret = -EFAULT;
1722 int rc = -EFAULT;
1723 bool pr = false;
1724 int coreref = 0;
1725 struct drbg_string addtl;
1726 size_t max_addtllen, max_request_bytes;
1727
1728 /* only perform test in FIPS mode */
1729 if (!fips_enabled)
1730 return 0;
1731
1732 #ifdef CONFIG_CRYPTO_DRBG_CTR
1733 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1734 #elif defined CONFIG_CRYPTO_DRBG_HASH
1735 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1736 #else
1737 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1738 #endif
1739
1740 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1741 if (!drbg)
1742 return -ENOMEM;
1743
1744 /*
1745 * if the following tests fail, it is likely that there is a buffer
1746 * overflow as buf is much smaller than the requested or provided
1747 * string lengths -- in case the error handling does not succeed
1748 * we may get an OOPS. And we want to get an OOPS as this is a
1749 * grave bug.
1750 */
1751
1752 /* get a valid instance of DRBG for following tests */
1753 ret = drbg_instantiate(drbg, NULL, coreref, pr);
1754 if (ret) {
1755 rc = ret;
1756 goto outbuf;
1757 }
1758 max_addtllen = drbg_max_addtl(drbg);
1759 max_request_bytes = drbg_max_request_bytes(drbg);
1760 drbg_string_fill(&addtl, buf, max_addtllen + 1);
1761 /* overflow addtllen with additonal info string */
1762 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1763 BUG_ON(0 < len);
1764 /* overflow max_bits */
1765 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1766 BUG_ON(0 < len);
1767 drbg_uninstantiate(drbg);
1768
1769 /* overflow max addtllen with personalization string */
1770 ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1771 BUG_ON(0 == ret);
1772 /* all tests passed */
1773 rc = 0;
1774
1775 pr_devel("DRBG: Sanity tests for failure code paths successfully "
1776 "completed\n");
1777
1778 drbg_uninstantiate(drbg);
1779 outbuf:
1780 kzfree(drbg);
1781 return rc;
1782 #else /* CONFIG_CRYPTO_FIPS */
1783 return 0;
1784 #endif /* CONFIG_CRYPTO_FIPS */
1785 }
1786
1787 static struct crypto_alg drbg_algs[22];
1788
1789 /*
1790 * Fill the array drbg_algs used to register the different DRBGs
1791 * with the kernel crypto API. To fill the array, the information
1792 * from drbg_cores[] is used.
1793 */
1794 static inline void __init drbg_fill_array(struct crypto_alg *alg,
1795 const struct drbg_core *core, int pr)
1796 {
1797 int pos = 0;
1798 static int priority = 100;
1799
1800 memset(alg, 0, sizeof(struct crypto_alg));
1801 memcpy(alg->cra_name, "stdrng", 6);
1802 if (pr) {
1803 memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1804 pos = 8;
1805 } else {
1806 memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1807 pos = 10;
1808 }
1809 memcpy(alg->cra_driver_name + pos, core->cra_name,
1810 strlen(core->cra_name));
1811
1812 alg->cra_priority = priority;
1813 priority++;
1814 /*
1815 * If FIPS mode enabled, the selected DRBG shall have the
1816 * highest cra_priority over other stdrng instances to ensure
1817 * it is selected.
1818 */
1819 if (fips_enabled)
1820 alg->cra_priority += 200;
1821
1822 alg->cra_flags = CRYPTO_ALG_TYPE_RNG;
1823 alg->cra_ctxsize = sizeof(struct drbg_state);
1824 alg->cra_type = &crypto_rng_type;
1825 alg->cra_module = THIS_MODULE;
1826 alg->cra_init = drbg_kcapi_init;
1827 alg->cra_exit = drbg_kcapi_cleanup;
1828 alg->cra_u.rng.rng_make_random = drbg_kcapi_random;
1829 alg->cra_u.rng.rng_reset = drbg_kcapi_reset;
1830 alg->cra_u.rng.seedsize = 0;
1831 }
1832
1833 static int __init drbg_init(void)
1834 {
1835 unsigned int i = 0; /* pointer to drbg_algs */
1836 unsigned int j = 0; /* pointer to drbg_cores */
1837 int ret = -EFAULT;
1838
1839 ret = drbg_healthcheck_sanity();
1840 if (ret)
1841 return ret;
1842
1843 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1844 pr_info("DRBG: Cannot register all DRBG types"
1845 "(slots needed: %zu, slots available: %zu)\n",
1846 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1847 return ret;
1848 }
1849
1850 /*
1851 * each DRBG definition can be used with PR and without PR, thus
1852 * we instantiate each DRBG in drbg_cores[] twice.
1853 *
1854 * As the order of placing them into the drbg_algs array matters
1855 * (the later DRBGs receive a higher cra_priority) we register the
1856 * prediction resistance DRBGs first as the should not be too
1857 * interesting.
1858 */
1859 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1860 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1861 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1862 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1863 return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1864 }
1865
1866 static void __exit drbg_exit(void)
1867 {
1868 crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1869 }
1870
1871 module_init(drbg_init);
1872 module_exit(drbg_exit);
1873 #ifndef CRYPTO_DRBG_HASH_STRING
1874 #define CRYPTO_DRBG_HASH_STRING ""
1875 #endif
1876 #ifndef CRYPTO_DRBG_HMAC_STRING
1877 #define CRYPTO_DRBG_HMAC_STRING ""
1878 #endif
1879 #ifndef CRYPTO_DRBG_CTR_STRING
1880 #define CRYPTO_DRBG_CTR_STRING ""
1881 #endif
1882 MODULE_LICENSE("GPL");
1883 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1884 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1885 "using following cores: "
1886 CRYPTO_DRBG_HASH_STRING
1887 CRYPTO_DRBG_HMAC_STRING
1888 CRYPTO_DRBG_CTR_STRING);