2 * Software multibuffer async crypto daemon.
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
6 * Adapted from crypto daemon.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
33 static void *mcryptd_alloc_instance(struct crypto_alg
*alg
, unsigned int head
,
36 struct mcryptd_flush_list
{
37 struct list_head list
;
41 static struct mcryptd_flush_list __percpu
*mcryptd_flist
;
43 struct hashd_instance_ctx
{
44 struct crypto_ahash_spawn spawn
;
45 struct mcryptd_queue
*queue
;
48 static void mcryptd_queue_worker(struct work_struct
*work
);
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate
*cstate
, unsigned long delay
)
52 struct mcryptd_flush_list
*flist
;
54 if (!cstate
->flusher_engaged
) {
55 /* put the flusher on the flush list */
56 flist
= per_cpu_ptr(mcryptd_flist
, smp_processor_id());
57 mutex_lock(&flist
->lock
);
58 list_add_tail(&cstate
->flush_list
, &flist
->list
);
59 cstate
->flusher_engaged
= true;
60 cstate
->next_flush
= jiffies
+ delay
;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq
,
62 &cstate
->flush
, delay
);
63 mutex_unlock(&flist
->lock
);
66 EXPORT_SYMBOL(mcryptd_arm_flusher
);
68 static int mcryptd_init_queue(struct mcryptd_queue
*queue
,
69 unsigned int max_cpu_qlen
)
72 struct mcryptd_cpu_queue
*cpu_queue
;
74 queue
->cpu_queue
= alloc_percpu(struct mcryptd_cpu_queue
);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue
, queue
->cpu_queue
);
76 if (!queue
->cpu_queue
)
78 for_each_possible_cpu(cpu
) {
79 cpu_queue
= per_cpu_ptr(queue
->cpu_queue
, cpu
);
80 pr_debug("cpu_queue #%d %p\n", cpu
, queue
->cpu_queue
);
81 crypto_init_queue(&cpu_queue
->queue
, max_cpu_qlen
);
82 INIT_WORK(&cpu_queue
->work
, mcryptd_queue_worker
);
87 static void mcryptd_fini_queue(struct mcryptd_queue
*queue
)
90 struct mcryptd_cpu_queue
*cpu_queue
;
92 for_each_possible_cpu(cpu
) {
93 cpu_queue
= per_cpu_ptr(queue
->cpu_queue
, cpu
);
94 BUG_ON(cpu_queue
->queue
.qlen
);
96 free_percpu(queue
->cpu_queue
);
99 static int mcryptd_enqueue_request(struct mcryptd_queue
*queue
,
100 struct crypto_async_request
*request
,
101 struct mcryptd_hash_request_ctx
*rctx
)
104 struct mcryptd_cpu_queue
*cpu_queue
;
107 cpu_queue
= this_cpu_ptr(queue
->cpu_queue
);
110 err
= crypto_enqueue_request(&cpu_queue
->queue
, request
);
111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112 cpu
, cpu_queue
, request
);
113 queue_work_on(cpu
, kcrypto_wq
, &cpu_queue
->work
);
120 * Try to opportunisticlly flush the partially completed jobs if
121 * crypto daemon is the only task running.
123 static void mcryptd_opportunistic_flush(void)
125 struct mcryptd_flush_list
*flist
;
126 struct mcryptd_alg_cstate
*cstate
;
128 flist
= per_cpu_ptr(mcryptd_flist
, smp_processor_id());
129 while (single_task_running()) {
130 mutex_lock(&flist
->lock
);
131 cstate
= list_first_entry_or_null(&flist
->list
,
132 struct mcryptd_alg_cstate
, flush_list
);
133 if (!cstate
|| !cstate
->flusher_engaged
) {
134 mutex_unlock(&flist
->lock
);
137 list_del(&cstate
->flush_list
);
138 cstate
->flusher_engaged
= false;
139 mutex_unlock(&flist
->lock
);
140 cstate
->alg_state
->flusher(cstate
);
145 * Called in workqueue context, do one real cryption work (via
146 * req->complete) and reschedule itself if there are more work to
149 static void mcryptd_queue_worker(struct work_struct
*work
)
151 struct mcryptd_cpu_queue
*cpu_queue
;
152 struct crypto_async_request
*req
, *backlog
;
156 * Need to loop through more than once for multi-buffer to
160 cpu_queue
= container_of(work
, struct mcryptd_cpu_queue
, work
);
162 while (i
< MCRYPTD_BATCH
|| single_task_running()) {
164 * preempt_disable/enable is used to prevent
165 * being preempted by mcryptd_enqueue_request()
169 backlog
= crypto_get_backlog(&cpu_queue
->queue
);
170 req
= crypto_dequeue_request(&cpu_queue
->queue
);
175 mcryptd_opportunistic_flush();
180 backlog
->complete(backlog
, -EINPROGRESS
);
181 req
->complete(req
, 0);
182 if (!cpu_queue
->queue
.qlen
)
186 if (cpu_queue
->queue
.qlen
)
187 queue_work(kcrypto_wq
, &cpu_queue
->work
);
190 void mcryptd_flusher(struct work_struct
*__work
)
192 struct mcryptd_alg_cstate
*alg_cpu_state
;
193 struct mcryptd_alg_state
*alg_state
;
194 struct mcryptd_flush_list
*flist
;
197 cpu
= smp_processor_id();
198 alg_cpu_state
= container_of(to_delayed_work(__work
),
199 struct mcryptd_alg_cstate
, flush
);
200 alg_state
= alg_cpu_state
->alg_state
;
201 if (alg_cpu_state
->cpu
!= cpu
)
202 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
203 cpu
, alg_cpu_state
->cpu
);
205 if (alg_cpu_state
->flusher_engaged
) {
206 flist
= per_cpu_ptr(mcryptd_flist
, cpu
);
207 mutex_lock(&flist
->lock
);
208 list_del(&alg_cpu_state
->flush_list
);
209 alg_cpu_state
->flusher_engaged
= false;
210 mutex_unlock(&flist
->lock
);
211 alg_state
->flusher(alg_cpu_state
);
214 EXPORT_SYMBOL_GPL(mcryptd_flusher
);
216 static inline struct mcryptd_queue
*mcryptd_get_queue(struct crypto_tfm
*tfm
)
218 struct crypto_instance
*inst
= crypto_tfm_alg_instance(tfm
);
219 struct mcryptd_instance_ctx
*ictx
= crypto_instance_ctx(inst
);
224 static void *mcryptd_alloc_instance(struct crypto_alg
*alg
, unsigned int head
,
228 struct crypto_instance
*inst
;
231 p
= kzalloc(head
+ sizeof(*inst
) + tail
, GFP_KERNEL
);
233 return ERR_PTR(-ENOMEM
);
235 inst
= (void *)(p
+ head
);
238 if (snprintf(inst
->alg
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
239 "mcryptd(%s)", alg
->cra_driver_name
) >= CRYPTO_MAX_ALG_NAME
)
242 memcpy(inst
->alg
.cra_name
, alg
->cra_name
, CRYPTO_MAX_ALG_NAME
);
244 inst
->alg
.cra_priority
= alg
->cra_priority
+ 50;
245 inst
->alg
.cra_blocksize
= alg
->cra_blocksize
;
246 inst
->alg
.cra_alignmask
= alg
->cra_alignmask
;
257 static inline bool mcryptd_check_internal(struct rtattr
**tb
, u32
*type
,
260 struct crypto_attr_type
*algt
;
262 algt
= crypto_get_attr_type(tb
);
266 *type
|= algt
->type
& CRYPTO_ALG_INTERNAL
;
267 *mask
|= algt
->mask
& CRYPTO_ALG_INTERNAL
;
269 if (*type
& *mask
& CRYPTO_ALG_INTERNAL
)
275 static int mcryptd_hash_init_tfm(struct crypto_tfm
*tfm
)
277 struct crypto_instance
*inst
= crypto_tfm_alg_instance(tfm
);
278 struct hashd_instance_ctx
*ictx
= crypto_instance_ctx(inst
);
279 struct crypto_ahash_spawn
*spawn
= &ictx
->spawn
;
280 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
281 struct crypto_ahash
*hash
;
283 hash
= crypto_spawn_ahash(spawn
);
285 return PTR_ERR(hash
);
288 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
289 sizeof(struct mcryptd_hash_request_ctx
) +
290 crypto_ahash_reqsize(hash
));
294 static void mcryptd_hash_exit_tfm(struct crypto_tfm
*tfm
)
296 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
298 crypto_free_ahash(ctx
->child
);
301 static int mcryptd_hash_setkey(struct crypto_ahash
*parent
,
302 const u8
*key
, unsigned int keylen
)
304 struct mcryptd_hash_ctx
*ctx
= crypto_ahash_ctx(parent
);
305 struct crypto_ahash
*child
= ctx
->child
;
308 crypto_ahash_clear_flags(child
, CRYPTO_TFM_REQ_MASK
);
309 crypto_ahash_set_flags(child
, crypto_ahash_get_flags(parent
) &
310 CRYPTO_TFM_REQ_MASK
);
311 err
= crypto_ahash_setkey(child
, key
, keylen
);
312 crypto_ahash_set_flags(parent
, crypto_ahash_get_flags(child
) &
313 CRYPTO_TFM_RES_MASK
);
317 static int mcryptd_hash_enqueue(struct ahash_request
*req
,
318 crypto_completion_t complete
)
322 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
323 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
324 struct mcryptd_queue
*queue
=
325 mcryptd_get_queue(crypto_ahash_tfm(tfm
));
327 rctx
->complete
= req
->base
.complete
;
328 req
->base
.complete
= complete
;
330 ret
= mcryptd_enqueue_request(queue
, &req
->base
, rctx
);
335 static void mcryptd_hash_init(struct crypto_async_request
*req_async
, int err
)
337 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(req_async
->tfm
);
338 struct crypto_ahash
*child
= ctx
->child
;
339 struct ahash_request
*req
= ahash_request_cast(req_async
);
340 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
341 struct ahash_request
*desc
= &rctx
->areq
;
343 if (unlikely(err
== -EINPROGRESS
))
346 ahash_request_set_tfm(desc
, child
);
347 ahash_request_set_callback(desc
, CRYPTO_TFM_REQ_MAY_SLEEP
,
348 rctx
->complete
, req_async
);
350 rctx
->out
= req
->result
;
351 err
= crypto_ahash_init(desc
);
355 rctx
->complete(&req
->base
, err
);
359 static int mcryptd_hash_init_enqueue(struct ahash_request
*req
)
361 return mcryptd_hash_enqueue(req
, mcryptd_hash_init
);
364 static void mcryptd_hash_update(struct crypto_async_request
*req_async
, int err
)
366 struct ahash_request
*req
= ahash_request_cast(req_async
);
367 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
369 if (unlikely(err
== -EINPROGRESS
))
372 rctx
->out
= req
->result
;
373 err
= ahash_mcryptd_update(&rctx
->areq
);
375 req
->base
.complete
= rctx
->complete
;
382 rctx
->complete(&req
->base
, err
);
386 static int mcryptd_hash_update_enqueue(struct ahash_request
*req
)
388 return mcryptd_hash_enqueue(req
, mcryptd_hash_update
);
391 static void mcryptd_hash_final(struct crypto_async_request
*req_async
, int err
)
393 struct ahash_request
*req
= ahash_request_cast(req_async
);
394 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
396 if (unlikely(err
== -EINPROGRESS
))
399 rctx
->out
= req
->result
;
400 err
= ahash_mcryptd_final(&rctx
->areq
);
402 req
->base
.complete
= rctx
->complete
;
409 rctx
->complete(&req
->base
, err
);
413 static int mcryptd_hash_final_enqueue(struct ahash_request
*req
)
415 return mcryptd_hash_enqueue(req
, mcryptd_hash_final
);
418 static void mcryptd_hash_finup(struct crypto_async_request
*req_async
, int err
)
420 struct ahash_request
*req
= ahash_request_cast(req_async
);
421 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
423 if (unlikely(err
== -EINPROGRESS
))
425 rctx
->out
= req
->result
;
426 err
= ahash_mcryptd_finup(&rctx
->areq
);
429 req
->base
.complete
= rctx
->complete
;
436 rctx
->complete(&req
->base
, err
);
440 static int mcryptd_hash_finup_enqueue(struct ahash_request
*req
)
442 return mcryptd_hash_enqueue(req
, mcryptd_hash_finup
);
445 static void mcryptd_hash_digest(struct crypto_async_request
*req_async
, int err
)
447 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(req_async
->tfm
);
448 struct crypto_ahash
*child
= ctx
->child
;
449 struct ahash_request
*req
= ahash_request_cast(req_async
);
450 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
451 struct ahash_request
*desc
= &rctx
->areq
;
453 if (unlikely(err
== -EINPROGRESS
))
456 ahash_request_set_tfm(desc
, child
);
457 ahash_request_set_callback(desc
, CRYPTO_TFM_REQ_MAY_SLEEP
,
458 rctx
->complete
, req_async
);
460 rctx
->out
= req
->result
;
461 err
= ahash_mcryptd_digest(desc
);
465 rctx
->complete(&req
->base
, err
);
469 static int mcryptd_hash_digest_enqueue(struct ahash_request
*req
)
471 return mcryptd_hash_enqueue(req
, mcryptd_hash_digest
);
474 static int mcryptd_hash_export(struct ahash_request
*req
, void *out
)
476 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
478 return crypto_ahash_export(&rctx
->areq
, out
);
481 static int mcryptd_hash_import(struct ahash_request
*req
, const void *in
)
483 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
485 return crypto_ahash_import(&rctx
->areq
, in
);
488 static int mcryptd_create_hash(struct crypto_template
*tmpl
, struct rtattr
**tb
,
489 struct mcryptd_queue
*queue
)
491 struct hashd_instance_ctx
*ctx
;
492 struct ahash_instance
*inst
;
493 struct hash_alg_common
*halg
;
494 struct crypto_alg
*alg
;
499 if (!mcryptd_check_internal(tb
, &type
, &mask
))
502 halg
= ahash_attr_alg(tb
[1], type
, mask
);
504 return PTR_ERR(halg
);
507 pr_debug("crypto: mcryptd hash alg: %s\n", alg
->cra_name
);
508 inst
= mcryptd_alloc_instance(alg
, ahash_instance_headroom(),
514 ctx
= ahash_instance_ctx(inst
);
517 err
= crypto_init_ahash_spawn(&ctx
->spawn
, halg
,
518 ahash_crypto_instance(inst
));
522 type
= CRYPTO_ALG_ASYNC
;
523 if (alg
->cra_flags
& CRYPTO_ALG_INTERNAL
)
524 type
|= CRYPTO_ALG_INTERNAL
;
525 inst
->alg
.halg
.base
.cra_flags
= type
;
527 inst
->alg
.halg
.digestsize
= halg
->digestsize
;
528 inst
->alg
.halg
.statesize
= halg
->statesize
;
529 inst
->alg
.halg
.base
.cra_ctxsize
= sizeof(struct mcryptd_hash_ctx
);
531 inst
->alg
.halg
.base
.cra_init
= mcryptd_hash_init_tfm
;
532 inst
->alg
.halg
.base
.cra_exit
= mcryptd_hash_exit_tfm
;
534 inst
->alg
.init
= mcryptd_hash_init_enqueue
;
535 inst
->alg
.update
= mcryptd_hash_update_enqueue
;
536 inst
->alg
.final
= mcryptd_hash_final_enqueue
;
537 inst
->alg
.finup
= mcryptd_hash_finup_enqueue
;
538 inst
->alg
.export
= mcryptd_hash_export
;
539 inst
->alg
.import
= mcryptd_hash_import
;
540 inst
->alg
.setkey
= mcryptd_hash_setkey
;
541 inst
->alg
.digest
= mcryptd_hash_digest_enqueue
;
543 err
= ahash_register_instance(tmpl
, inst
);
545 crypto_drop_ahash(&ctx
->spawn
);
555 static struct mcryptd_queue mqueue
;
557 static int mcryptd_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
559 struct crypto_attr_type
*algt
;
561 algt
= crypto_get_attr_type(tb
);
563 return PTR_ERR(algt
);
565 switch (algt
->type
& algt
->mask
& CRYPTO_ALG_TYPE_MASK
) {
566 case CRYPTO_ALG_TYPE_DIGEST
:
567 return mcryptd_create_hash(tmpl
, tb
, &mqueue
);
574 static void mcryptd_free(struct crypto_instance
*inst
)
576 struct mcryptd_instance_ctx
*ctx
= crypto_instance_ctx(inst
);
577 struct hashd_instance_ctx
*hctx
= crypto_instance_ctx(inst
);
579 switch (inst
->alg
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) {
580 case CRYPTO_ALG_TYPE_AHASH
:
581 crypto_drop_ahash(&hctx
->spawn
);
582 kfree(ahash_instance(inst
));
585 crypto_drop_spawn(&ctx
->spawn
);
590 static struct crypto_template mcryptd_tmpl
= {
592 .create
= mcryptd_create
,
593 .free
= mcryptd_free
,
594 .module
= THIS_MODULE
,
597 struct mcryptd_ahash
*mcryptd_alloc_ahash(const char *alg_name
,
600 char mcryptd_alg_name
[CRYPTO_MAX_ALG_NAME
];
601 struct crypto_ahash
*tfm
;
603 if (snprintf(mcryptd_alg_name
, CRYPTO_MAX_ALG_NAME
,
604 "mcryptd(%s)", alg_name
) >= CRYPTO_MAX_ALG_NAME
)
605 return ERR_PTR(-EINVAL
);
606 tfm
= crypto_alloc_ahash(mcryptd_alg_name
, type
, mask
);
608 return ERR_CAST(tfm
);
609 if (tfm
->base
.__crt_alg
->cra_module
!= THIS_MODULE
) {
610 crypto_free_ahash(tfm
);
611 return ERR_PTR(-EINVAL
);
614 return __mcryptd_ahash_cast(tfm
);
616 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash
);
618 int ahash_mcryptd_digest(struct ahash_request
*desc
)
620 return crypto_ahash_init(desc
) ?: ahash_mcryptd_finup(desc
);
623 int ahash_mcryptd_update(struct ahash_request
*desc
)
625 /* alignment is to be done by multi-buffer crypto algorithm if needed */
627 return crypto_ahash_update(desc
);
630 int ahash_mcryptd_finup(struct ahash_request
*desc
)
632 /* alignment is to be done by multi-buffer crypto algorithm if needed */
634 return crypto_ahash_finup(desc
);
637 int ahash_mcryptd_final(struct ahash_request
*desc
)
639 /* alignment is to be done by multi-buffer crypto algorithm if needed */
641 return crypto_ahash_final(desc
);
644 struct crypto_ahash
*mcryptd_ahash_child(struct mcryptd_ahash
*tfm
)
646 struct mcryptd_hash_ctx
*ctx
= crypto_ahash_ctx(&tfm
->base
);
650 EXPORT_SYMBOL_GPL(mcryptd_ahash_child
);
652 struct ahash_request
*mcryptd_ahash_desc(struct ahash_request
*req
)
654 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
657 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc
);
659 void mcryptd_free_ahash(struct mcryptd_ahash
*tfm
)
661 crypto_free_ahash(&tfm
->base
);
663 EXPORT_SYMBOL_GPL(mcryptd_free_ahash
);
665 static int __init
mcryptd_init(void)
668 struct mcryptd_flush_list
*flist
;
670 mcryptd_flist
= alloc_percpu(struct mcryptd_flush_list
);
671 for_each_possible_cpu(cpu
) {
672 flist
= per_cpu_ptr(mcryptd_flist
, cpu
);
673 INIT_LIST_HEAD(&flist
->list
);
674 mutex_init(&flist
->lock
);
677 err
= mcryptd_init_queue(&mqueue
, MCRYPTD_MAX_CPU_QLEN
);
679 free_percpu(mcryptd_flist
);
683 err
= crypto_register_template(&mcryptd_tmpl
);
685 mcryptd_fini_queue(&mqueue
);
686 free_percpu(mcryptd_flist
);
692 static void __exit
mcryptd_exit(void)
694 mcryptd_fini_queue(&mqueue
);
695 crypto_unregister_template(&mcryptd_tmpl
);
696 free_percpu(mcryptd_flist
);
699 subsys_initcall(mcryptd_init
);
700 module_exit(mcryptd_exit
);
702 MODULE_LICENSE("GPL");
703 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
704 MODULE_ALIAS_CRYPTO("mcryptd");